1
|
Desouky MA, Michel HE, Elsherbiny DA, George MY. Recent pharmacological insights on abating toxic protein species burden in neurological disorders: Emphasis on 26S proteasome activation. Life Sci 2024:123206. [PMID: 39489397 DOI: 10.1016/j.lfs.2024.123206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/30/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Protein homeostasis (proteostasis) refers to the plethora of mechanisms that safeguard the proper folding of the newly synthesized proteins. It entails various intricately regulated cues that demolish the toxic protein species to prevent their aggregation. The ubiquitin-proteasome system (UPS) is recognized as a salient protein degradation system, with a substantial role in maintaining proteostasis. However, under certain circumstances the protein degradation capacity of the UPS is overwhelmed, leading to the accumulation of misfolded proteins. Several neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, Huntington disease, and amyotrophic lateral sclerosis are characterized with the presence of protein aggregates and proteinopathy. Accordingly, enhancing the 26S proteasome degradation activity might delineate a pioneering approach in targeting various proteotoxic disorders. Regrettably, the exact molecular approaches that enhance the proteasomal activity are still not fully understood. Therefore, this review aimed to underscore several signaling cascades that might restore the degradation capacity of this molecular machine. In this review, we discuss the different molecular components of the UPS and how 26S proteasomes are deleteriously affected in many neurodegenerative diseases. Moreover, we summarize different signaling pathways that can be utilized to renovate the 26S proteasome functional capacity, alongside currently known druggable targets in this circuit and various classes of proteasome activators.
Collapse
Affiliation(s)
- Mahmoud A Desouky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Haidy E Michel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Doaa A Elsherbiny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt.
| |
Collapse
|
2
|
Sinane M, Grunberger C, Gentile L, Moriou C, Chaker V, Coutrot P, Guenneguez A, Poullaouec MA, Connan S, Stiger-Pouvreau V, Zubia M, Fleury Y, Cérantola S, Kervarec N, Al-Mourabit A, Petek S, Voisset C. Potential of Marine Sponge Metabolites against Prions: Bromotyrosine Derivatives, a Family of Interest. Mar Drugs 2024; 22:456. [PMID: 39452864 PMCID: PMC11509309 DOI: 10.3390/md22100456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
The screening of 166 extracts from tropical marine organisms (invertebrates, macroalgae) and 3 cyclolipopeptides from microorganisms against yeast prions highlighted the potential of Verongiida sponges to prevent the propagation of prions. We isolated the known compounds purealidin Q (1), aplysamine-2 (2), pseudoceratinine A (3), aerophobin-2 (4), aplysamine-1 (5), and pseudoceratinine B (6) for the first time from the Wallisian sponge Suberea laboutei. We then tested compounds 1-6 and sixteen other bromotyrosine and bromophenol derivatives previously isolated from Verongiida sponges against yeast prions, demonstrating the potential of 1-3, 5, 6, aplyzanzine C (7), purealidin A (10), psammaplysenes D (11) and F (12), anomoian F (14), and N,N-dimethyldibromotyramine (15). Following biological tests on mammalian cells, we report here the identification of the hitherto unknown ability of the six bromotyrosine derivatives 1, 2, 5, 7, 11, and 14 of marine origin to reduce the spread of the PrPSc prion and the ability of compounds 1 and 2 to reduce endoplasmic reticulum stress. These two biological activities of these bromotyrosine derivatives are, to our knowledge, described here for the first time, offering a new therapeutic perspective for patients suffering from prion diseases that are presently untreatable and consequently fatal.
Collapse
Affiliation(s)
- Maha Sinane
- Univ Brest, Inserm, EFS, UMR 1078, GGB, School of Medicine, F-29200 Brest, France; (M.S.); (L.G.); (V.C.); (P.C.)
| | - Colin Grunberger
- IRD, CNRS, Ifremer, Univ Brest, LEMAR, IUEM, F-29280 Plouzane, France; (C.G.); (A.G.); (M.-A.P.); (S.C.); (V.S.-P.)
| | - Lucile Gentile
- Univ Brest, Inserm, EFS, UMR 1078, GGB, School of Medicine, F-29200 Brest, France; (M.S.); (L.G.); (V.C.); (P.C.)
| | - Céline Moriou
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, F-91190 Gif-sur-Yvette, France; (C.M.); (A.A.-M.)
| | - Victorien Chaker
- Univ Brest, Inserm, EFS, UMR 1078, GGB, School of Medicine, F-29200 Brest, France; (M.S.); (L.G.); (V.C.); (P.C.)
| | - Pierre Coutrot
- Univ Brest, Inserm, EFS, UMR 1078, GGB, School of Medicine, F-29200 Brest, France; (M.S.); (L.G.); (V.C.); (P.C.)
| | - Alain Guenneguez
- IRD, CNRS, Ifremer, Univ Brest, LEMAR, IUEM, F-29280 Plouzane, France; (C.G.); (A.G.); (M.-A.P.); (S.C.); (V.S.-P.)
| | - Marie-Aude Poullaouec
- IRD, CNRS, Ifremer, Univ Brest, LEMAR, IUEM, F-29280 Plouzane, France; (C.G.); (A.G.); (M.-A.P.); (S.C.); (V.S.-P.)
| | - Solène Connan
- IRD, CNRS, Ifremer, Univ Brest, LEMAR, IUEM, F-29280 Plouzane, France; (C.G.); (A.G.); (M.-A.P.); (S.C.); (V.S.-P.)
| | - Valérie Stiger-Pouvreau
- IRD, CNRS, Ifremer, Univ Brest, LEMAR, IUEM, F-29280 Plouzane, France; (C.G.); (A.G.); (M.-A.P.); (S.C.); (V.S.-P.)
| | - Mayalen Zubia
- UPF, Ifremer, ILM, IRD, UMR 241 SECOPOL, BP6570, 98702 Faa’a, Tahiti, French Polynesia;
| | - Yannick Fleury
- Univ Brest, Univ Bretagne Sud, CNRS, LBCM, EMR 6076, F-29000 Quimper, France;
| | | | - Nelly Kervarec
- Univ Brest, Plateforme Spectrométrie de Masse, F-29238 Brest, France;
| | - Ali Al-Mourabit
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, F-91190 Gif-sur-Yvette, France; (C.M.); (A.A.-M.)
| | - Sylvain Petek
- IRD, CNRS, Ifremer, Univ Brest, LEMAR, IUEM, F-29280 Plouzane, France; (C.G.); (A.G.); (M.-A.P.); (S.C.); (V.S.-P.)
| | - Cécile Voisset
- Univ Brest, Inserm, EFS, UMR 1078, GGB, School of Medicine, F-29200 Brest, France; (M.S.); (L.G.); (V.C.); (P.C.)
- Univ Brest, Inserm, UMR 1101, LaTIM, School of Medicine, F-29200 Brest, France
| |
Collapse
|
3
|
Mubeen H, Masood A, Zafar A, Khan ZQ, Khan MQ, Nisa AU. Insights into AlphaFold's breakthrough in neurodegenerative diseases. Ir J Med Sci 2024; 193:2577-2588. [PMID: 38833116 DOI: 10.1007/s11845-024-03721-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/19/2024] [Indexed: 06/06/2024]
Abstract
Neurodegenerative diseases (ND) are disorders of the central nervous system (CNS) characterized by impairment in neurons' functions, and complete loss, leading to memory loss, and difficulty in learning, language, and movement processes. The most common among these NDs are Alzheimer's disease (AD) and Parkinson's disease (PD), although several other disorders also exist. These are frontotemporal dementia (FTD), amyotrophic lateral syndrome (ALS), Huntington's disease (HD), and others; the major pathological hallmark of NDs is the proteinopathies, either of amyloid-β (Aβ), tauopathies, or synucleinopathies. Aggregation of proteins that do not undergo normal configuration, either due to mutations or through some disturbance in cellular pathway contributes to the diseases. Artificial Intelligence (AI) and deep learning (DL) have proven to be successful in the diagnosis and treatment of various congenital diseases. DL approaches like AlphaFold (AF) are a major leap towards success in CNS disorders. This 3D protein geometry modeling algorithm developed by DeepMind has the potential to revolutionize biology. AF has the potential to predict 3D-protein confirmation at an accuracy level comparable to experimentally predicted one, with the additional advantage of precisely estimating protein interactions. This breakthrough will be beneficial to identify diseases' advancement and the disturbance of signaling pathways stimulating impaired functions of proteins. Though AlphaFold has solved a major problem in structural biology, it cannot predict membrane proteins-a beneficial approach for drug designing.
Collapse
Affiliation(s)
- Hira Mubeen
- Department of Biotechnology, Faculty of Science & Technology, University of Central Punjab, Lahore, Pakistan.
| | - Ammara Masood
- Department of Biotechnology, Faculty of Science & Technology, University of Central Punjab, Lahore, Pakistan
| | - Asma Zafar
- Department of Biotechnology, Faculty of Science & Technology, University of Central Punjab, Lahore, Pakistan
| | - Zohaira Qayyum Khan
- Department of Biotechnology, Faculty of Science & Technology, University of Central Punjab, Lahore, Pakistan
| | - Muneeza Qayyum Khan
- Department of Biotechnology, Faculty of Science & Technology, University of Central Punjab, Lahore, Pakistan
| | - Alim Un Nisa
- Pakistan Council of Scientific and Industrial Research, Lahore, Pakistan
| |
Collapse
|
4
|
Hara H, Chida J, Batchuluun B, Takahashi E, Kido H, Sakaguchi S. Protective role of cytosolic prion protein against virus infection in prion-infected cells. J Virol 2024; 98:e0126224. [PMID: 39194237 PMCID: PMC11406989 DOI: 10.1128/jvi.01262-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Production of the amyloidogenic prion protein, PrPSc, which forms infectious protein aggregates, or prions, is a key pathogenic event in prion diseases. Functional prion-like protein aggregations, such as the mitochondrial adaptor protein MAVS and the inflammasome component protein ASC, have been identified to play a protective role in viral infections in mammalian cells. In this study, to investigate if PrPSc could play a functional role against external stimuli, we infected prion-infected cells with a neurotropic influenza A virus strain, IAV/WSN. We found that prion-infected cells were highly resistant to IAV/WSN infection. In these cells, NF-κB nuclear translocation was disturbed; therefore, mitochondrial superoxide dismutase (mtSOD) expression was suppressed, and mitochondrial reactive oxygen species (mtROS) was increased. The elevated mtROS subsequently activated NLRP3 inflammasomes, leading to the suppression of IAV/WSN-induced necroptosis. We also found that prion-infected cells accumulated a portion of PrP molecules in the cytosol, and that the N-terminal potential nuclear translocation signal of PrP impeded NF-κB nuclear translocation. These results suggest that PrPSc might play a functional role in protection against viral infections by stimulating the NLRP3 inflammasome-dependent antivirus mechanism through the cytosolic PrP-mediated disturbance of NF-κB nuclear translocation, which leads to suppression of mtSOD expression and consequently upregulation of the NLRP3 inflammasome activator mtROS. IMPORTANCE Cytosolic PrP has been detected in prion-infected cells and suggested to be involved in the neurotoxicity of prions. Here, we also detected cytosolic PrP in prion-infected cells. We further found that the nuclear translocation of NF-κB was disturbed in prion-infected cells and that the N-terminal potential nuclear translocation signal of PrP expressed in the cytosol disturbed the nuclear translocation of NF-κB. Thus, the N-terminal nuclear translocation signal of cytosolic PrP might play a role in prion neurotoxicity. Prion-like protein aggregates in other protein misfolding disorders, including Alzheimer's disease were reported to play a protective role against various environmental stimuli. We here showed that prion-infected cells were partially resistant to IAV/WSN infection due to the cytosolic PrP-mediated disturbance of the nuclear translocation of NF-κB, which consequently activated NLRP3 inflammasomes after IAV/WSN infection. It is thus possible that prions could also play a protective role in viral infections.
Collapse
Affiliation(s)
- Hideyuki Hara
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
- Core Research Facility, Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
| | - Junji Chida
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| | - Batzaya Batchuluun
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| | - Etsuhisa Takahashi
- Division of Enzyme Chemistry, The Institute for Enzyme Research, Tokushima University (KOSOKEN), Tokushima, Japan
| | - Hiroshi Kido
- Division of Enzyme Chemistry, The Institute for Enzyme Research, Tokushima University (KOSOKEN), Tokushima, Japan
| | - Suehiro Sakaguchi
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| |
Collapse
|
5
|
Desouky MA, George MY, Michel HE, Elsherbiny DA. Roflumilast escalates α-synuclein aggregate degradation in rotenone-induced Parkinson's disease in rats: Modulation of the ubiquitin-proteasome system and endoplasmic reticulum stress. Chem Biol Interact 2023; 379:110491. [PMID: 37105514 DOI: 10.1016/j.cbi.2023.110491] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/02/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023]
Abstract
Perturbation of the protein homeostasis circuit is one of the principal attributes associated with many neurodegenerative disorders, such as Parkinson's disease (PD). This study aimed to explore the neuroprotective effect of roflumilast (ROF), a phosphodiesterase-4 inhibitor, in a rotenone-induced rat model of PD and investigate the potential underlying mechanisms. Interestingly, ROF (1 mg/kg, p.o.) attenuated motor impairment, prevented brain lesions, and rescued the dopaminergic neurons in rotenone-treated rats. Furthermore, it reduced misfolded α-synuclein burden. ROF also promoted the midbrain cyclic adenosine monophosphate level, which subsequently enhanced the 26S proteasome activity and the expression of the 20S proteasome. ROF counteracted rotenone-induced endoplasmic reticulum stress, which was demonstrated by its impact on activating transcription factor 6, glucose-regulated protein 78, and C/EBP homologous protein levels. Moreover, ROF averted rotenone-induced oxidative stress, as evidenced by its effects on the levels of nuclear factor erythroid 2-related factor 2, heme oxygenase-1, reduced glutathione, and lipid peroxides with a significant anti-apoptotic activity. Collectively, this study implies repurposing of ROF as a novel neuroprotective drug owning to its ability to restore normal protein homeostasis.
Collapse
Affiliation(s)
- Mahmoud A Desouky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| | - Haidy E Michel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt.
| | - Doaa A Elsherbiny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| |
Collapse
|
6
|
Divya S, Ravanan P. Cellular battle against endoplasmic reticulum stress and its adverse effect on health. Life Sci 2023; 323:121705. [PMID: 37075943 DOI: 10.1016/j.lfs.2023.121705] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
The endoplasmic reticulum (ER) is a dynamic organelle and a reliable performer for precisely folded proteins. To maintain its function and integrity, arrays of sensory and quality control systems enhance protein folding fidelity and resolve the highest error-prone areas. Yet numerous internal and external factors disrupt its homeostasis and trigger ER stress responses. Cells try to reduce the number of misfolded proteins via the UPR mechanism, and ER-related garbage disposals systems like ER-associated degradation (ERAD), ER-lysosome-associated degradation (ERLAD), ER-Associated RNA Silencing (ERAS), extracellular chaperoning, and autophagy systems, which activates and increase the cell survival rate by degrading misfolded proteins, prevent the aggregated proteins and remove the dysfunctional organelles. Throughout life, organisms must confront environmental stress to survive and develop. Communication between the ER & other organelles, signaling events mediated by calcium, reactive oxygen species, and inflammation are linked to diverse stress signaling pathways and regulate cell survival or cell death mechanisms. Unresolved cellular damages can cross the threshold limit of their survival, resulting in cell death or driving for various diseases. The multifaceted ability of unfolded protein response facilitates the therapeutic target and a biomarker for various diseases, helping with early diagnosis and detecting the severity of diseases.
Collapse
Affiliation(s)
- Subramaniyan Divya
- Functional Genomics Laboratory, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610005, Tamil Nadu, India
| | - Palaniyandi Ravanan
- Functional Genomics Laboratory, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610005, Tamil Nadu, India.
| |
Collapse
|
7
|
Yoo YM, Joo SS. Melatonin Can Modulate Neurodegenerative Diseases by Regulating Endoplasmic Reticulum Stress. Int J Mol Sci 2023; 24:ijms24032381. [PMID: 36768703 PMCID: PMC9916953 DOI: 10.3390/ijms24032381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
As people age, their risks of developing degenerative diseases such as cancer, diabetes, Parkinson's Disease (PD), Alzheimer's Disease (AD), rheumatoid arthritis, and osteoporosis are generally increasing. Millions of people worldwide suffer from these diseases as they age. In most countries, neurodegenerative diseases are generally recognized as the number one cause afflicting the elderly. Endoplasmic reticulum (ER) stress has been suggested to be associated with some human neurological diseases, such as PD and AD. Melatonin, a neuroendocrine hormone mainly synthesized in the pineal gland, is involved in pleiotropically biological functions, including the control of the circadian rhythm, immune enhancement, and antioxidant, anti-aging, and anti-tumor effects. Although there are many papers on the prevention or suppression of diseases by melatonin, there are very few papers about the effects of melatonin on ER stress in neurons and neurodegenerative diseases. This paper aims to summarize and present the effects of melatonin reported so far, focusing on its effects on neurons and neurodegenerative diseases related to ER stress. Studies have shown that the primary target molecule of ER stress for melatonin is CHOP, and PERK and GRP78/BiP are the secondary target molecules. Therefore, melatonin is crucial in protecting neurons and treating neurodegeneration against ER stress.
Collapse
Affiliation(s)
- Yeong-Min Yoo
- East Coast Life Sciences Institute, College of Life Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
- Correspondence: (Y.-M.Y.); (S.S.J.); Tel.: +82-10-2494-5309 (Y.-M.Y.); +82-33-640-2856 (S.S.J.); Fax: +82-33-640-2849 (Y.-M.Y. & S.S.J.)
| | - Seong Soo Joo
- Department of Marine Bioscience, College of Life Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
- Correspondence: (Y.-M.Y.); (S.S.J.); Tel.: +82-10-2494-5309 (Y.-M.Y.); +82-33-640-2856 (S.S.J.); Fax: +82-33-640-2849 (Y.-M.Y. & S.S.J.)
| |
Collapse
|
8
|
Lozada Ortiz J, Betancor M, Pérez Lázaro S, Bolea R, Badiola JJ, Otero A. Endoplasmic reticulum stress and ubiquitin-proteasome system impairment in natural scrapie. Front Mol Neurosci 2023; 16:1175364. [PMID: 37152434 PMCID: PMC10160437 DOI: 10.3389/fnmol.2023.1175364] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023] Open
Abstract
Chronic accumulation of misfolded proteins such as PrPSc can alter the endoplasmic reticulum homeostasis triggering the unfolded protein response (UPR). In this pathogenic event, the molecular chaperones play an important role. Several reports in humans and animals have suggested that neurodegeneration is related to endoplasmic reticulum stress in diseases caused by the accumulation of misfolded proteins. In this study, we investigated the expression of three endoplasmic reticulum stress markers: PERK (protein kinase R-like endoplasmic reticulum kinase), BiP (binding immunoglobulin protein), and PDI (Protein Disulfide Isomerase). In addition, we evaluated the accumulation of ubiquitin as a marker for protein degradation mediated by the proteasome. These proteins were studied in brain tissues of sheep affected by scrapie in clinical and preclinical stages of the disease. Results were compared with those observed in healthy controls. Scrapie-infected sheep showed significant higher levels of PERK, BiP/Grp78 and PDI than healthy animals. As we observed before in models of spontaneous prion disease, PDI was the most altered ER stress marker between scrapie-infected and healthy sheep. Significantly increased intraneuronal and neuropil ubiquitinated deposits were observed in certain brain areas in scrapie-affected animals compared to controls. Our results suggest that the neuropathological and neuroinflammatory phenomena that develop in prion diseases cause endoplasmic reticulum stress in brain cells triggering the UPR. In addition, the significantly higher accumulation of ubiquitin aggregates in scrapie-affected animals suggests an impairment of the ubiquitin-proteasome system in natural scrapie. Therefore, these proteins may contribute as biomarkers and/or therapeutic targets for prion diseases.
Collapse
|
9
|
Vidal E, Sánchez-Martín MA, Eraña H, Lázaro SP, Pérez-Castro MA, Otero A, Charco JM, Marín B, López-Moreno R, Díaz-Domínguez CM, Geijo M, Ordóñez M, Cantero G, di Bari M, Lorenzo NL, Pirisinu L, d’Agostino C, Torres JM, Béringue V, Telling G, Badiola JJ, Pumarola M, Bolea R, Nonno R, Requena JR, Castilla J. Bona fide atypical scrapie faithfully reproduced for the first time in a rodent model. Acta Neuropathol Commun 2022; 10:179. [PMID: 36514160 PMCID: PMC9749341 DOI: 10.1186/s40478-022-01477-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/10/2022] [Indexed: 12/15/2022] Open
Abstract
Atypical Scrapie, which is not linked to epidemics, is assumed to be an idiopathic spontaneous prion disease in small ruminants. Therefore, its occurrence is unlikely to be controlled through selective breeding or other strategies as it is done for classical scrapie outbreaks. Its spontaneous nature and its sporadic incidence worldwide is reminiscent of the incidence of idiopathic spontaneous prion diseases in humans, which account for more than 85% of the cases in humans. Hence, developing animal models that consistently reproduce this phenomenon of spontaneous PrP misfolding, is of importance to study the pathobiology of idiopathic spontaneous prion disorders. Transgenic mice overexpressing sheep PrPC with I112 polymorphism (TgShI112, 1-2 × PrP levels compared to sheep brain) manifest clinical signs of a spongiform encephalopathy spontaneously as early as 380 days of age. The brains of these animals show the neuropathological hallmarks of prion disease and biochemical analyses of the misfolded prion protein show a ladder-like PrPres pattern with a predominant 7-10 kDa band. Brain homogenates from spontaneously diseased transgenic mice were inoculated in several models to assess their transmissibility and characterize the prion strain generated: TgShI112 (ovine I112 ARQ PrPC), Tg338 (ovine VRQ PrPC), Tg501 (ovine ARQ PrPC), Tg340 (human M129 PrPC), Tg361 (human V129 PrPC), TgVole (bank vole I109 PrPC), bank vole (I109I PrPC), and sheep (AHQ/ARR and AHQ/AHQ churra-tensina breeds). Our analysis of the results of these bioassays concludes that the strain generated in this model is indistinguishable to that causing atypical scrapie (Nor98). Thus, we present the first faithful model for a bona fide, transmissible, ovine, atypical scrapie prion disease.
Collapse
Affiliation(s)
- Enric Vidal
- grid.424716.2Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia Spain ,grid.424716.2IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia Spain
| | - Manuel A. Sánchez-Martín
- grid.11762.330000 0001 2180 1817Transgenic Facility. Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
| | - Hasier Eraña
- grid.420175.50000 0004 0639 2420Centro de Investigación Cooperativa en Biociencias (CIC BioGUNE), Laboratorio de Investigación de Priones, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia Spain ,ATLAS Molecular Pharma S. L., Derio, Bizkaia Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Sonia Pérez Lázaro
- grid.11205.370000 0001 2152 8769Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza–IA2, Zaragoza, Spain
| | - Miguel A. Pérez-Castro
- grid.420175.50000 0004 0639 2420Centro de Investigación Cooperativa en Biociencias (CIC BioGUNE), Laboratorio de Investigación de Priones, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia Spain
| | - Alicia Otero
- grid.11205.370000 0001 2152 8769Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza–IA2, Zaragoza, Spain
| | - Jorge M. Charco
- grid.420175.50000 0004 0639 2420Centro de Investigación Cooperativa en Biociencias (CIC BioGUNE), Laboratorio de Investigación de Priones, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia Spain ,ATLAS Molecular Pharma S. L., Derio, Bizkaia Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Belén Marín
- grid.11205.370000 0001 2152 8769Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza–IA2, Zaragoza, Spain
| | - Rafael López-Moreno
- grid.420175.50000 0004 0639 2420Centro de Investigación Cooperativa en Biociencias (CIC BioGUNE), Laboratorio de Investigación de Priones, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia Spain
| | - Carlos M. Díaz-Domínguez
- grid.420175.50000 0004 0639 2420Centro de Investigación Cooperativa en Biociencias (CIC BioGUNE), Laboratorio de Investigación de Priones, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia Spain
| | - Mariví Geijo
- grid.509696.50000 0000 9853 6743Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Montserrat Ordóñez
- grid.424716.2Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia Spain ,grid.424716.2IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia Spain
| | - Guillermo Cantero
- grid.424716.2Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia Spain ,grid.424716.2IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia Spain
| | - Michele di Bari
- grid.416651.10000 0000 9120 6856Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore Di Sanità, 00161 Rome, Italy
| | - Nuria L. Lorenzo
- grid.11794.3a0000000109410645CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, Santiago, Spain
| | - Laura Pirisinu
- grid.416651.10000 0000 9120 6856Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore Di Sanità, 00161 Rome, Italy
| | - Claudia d’Agostino
- grid.416651.10000 0000 9120 6856Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore Di Sanità, 00161 Rome, Italy
| | - Juan María Torres
- grid.419190.40000 0001 2300 669XCentro de Investigación en Sanidad Animal (CISA), Centro Superior de Investigaciones Científicas (CSIC) Valdeolmos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28130 Madrid, Spain
| | - Vincent Béringue
- grid.417961.cMolecular Virology and Immunology, Institut National de La Recherche Agronomique (INRA), Université Paris-Saclay, Jouy-en-Josas, France
| | - Glenn Telling
- grid.47894.360000 0004 1936 8083Prion Research Center (PRC) and the Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO USA
| | - Juan J. Badiola
- grid.11205.370000 0001 2152 8769Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza–IA2, Zaragoza, Spain
| | - Martí Pumarola
- Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Campus de UAB, Bellaterra, 08193 Barcelona, Catalonia Spain
| | - Rosa Bolea
- grid.11205.370000 0001 2152 8769Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza–IA2, Zaragoza, Spain
| | - Romolo Nonno
- grid.416651.10000 0000 9120 6856Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore Di Sanità, 00161 Rome, Italy
| | - Jesús R. Requena
- grid.11794.3a0000000109410645CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, Santiago, Spain
| | - Joaquín Castilla
- grid.420175.50000 0004 0639 2420Centro de Investigación Cooperativa en Biociencias (CIC BioGUNE), Laboratorio de Investigación de Priones, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain ,grid.424810.b0000 0004 0467 2314IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia Spain
| |
Collapse
|
10
|
Quach TT, Stratton HJ, Khanna R, Mackey-Alfonso S, Deems N, Honnorat J, Meyer K, Duchemin AM. Neurodegenerative Diseases: From Dysproteostasis, Altered Calcium Signalosome to Selective Neuronal Vulnerability to AAV-Mediated Gene Therapy. Int J Mol Sci 2022; 23:ijms232214188. [PMID: 36430666 PMCID: PMC9694178 DOI: 10.3390/ijms232214188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022] Open
Abstract
Despite intense research into the multifaceted etiology of neurodegenerative diseases (ND), they remain incurable. Here we provide a brief overview of several major ND and explore novel therapeutic approaches. Although the cause (s) of ND are not fully understood, the accumulation of misfolded/aggregated proteins in the brain is a common pathological feature. This aggregation may initiate disruption of Ca++ signaling, which is an early pathological event leading to altered dendritic structure, neuronal dysfunction, and cell death. Presently, ND gene therapies remain unidimensional, elusive, and limited to modifying one pathological feature while ignoring others. Considering the complexity of signaling cascades in ND, we discuss emerging therapeutic concepts and suggest that deciphering the molecular mechanisms involved in dendritic pathology may broaden the phenotypic spectrum of ND treatment. An innovative multiplexed gene transfer strategy that employs silencing and/or over-expressing multiple effectors could preserve vulnerable neurons before they are lost. Such therapeutic approaches may extend brain health span and ameliorate burdensome chronic disease states.
Collapse
Affiliation(s)
- Tam T. Quach
- Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
- INSERM U1217/CNRS UMR5310, Université de Lyon, Université Claude Bernard Lyon 1, 69677 Lyon, France
| | | | - Rajesh Khanna
- Department of Molecular Pathobiology, New York University, New York, NY 10010, USA
| | - Sabrina Mackey-Alfonso
- Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Nicolas Deems
- Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Jérome Honnorat
- INSERM U1217/CNRS UMR5310, Université de Lyon, Université Claude Bernard Lyon 1, 69677 Lyon, France
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, 69677 Lyon, France
- SynatAc Team, Institut NeuroMyoGène, 69677 Lyon, France
| | - Kathrin Meyer
- The Research Institute of Nationwide Children Hospital, Columbus, OH 43205, USA
- Department of Pediatric, The Ohio State University, Columbus, OH 43210, USA
| | - Anne-Marie Duchemin
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: ; Tel.: +1-614-293-5517; Fax: +1-614-293-7599
| |
Collapse
|
11
|
Betancor M, Pérez-Lázaro S, Otero A, Marín B, Martín-Burriel I, Blennow K, Badiola JJ, Zetterberg H, Bolea R. Neurogranin and Neurofilament Light Chain as Preclinical Biomarkers in Scrapie. Int J Mol Sci 2022; 23:7182. [PMID: 35806183 PMCID: PMC9266981 DOI: 10.3390/ijms23137182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/19/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023] Open
Abstract
Prion diseases are diagnosed in the symptomatic stage, when the neuronal damage is spread throughout the central nervous system (CNS). The assessment of biological features that allow the detection of asymptomatic cases is needed, and, in this context, scrapie, where pre-symptomatic infected animals can be detected through rectal biopsy, becomes a good study model. Neurogranin (Ng) and neurofilament light chain (NfL) are proteins that reflect synaptic and axonal damage and have been studied as cerebrospinal fluid (CSF) biomarkers in different neurodegenerative disorders. In this study, we evaluated Ng and NfL both at the protein and transcript levels in the CNS of preclinical and clinical scrapie-affected sheep compared with healthy controls and assessed their levels in ovine CSF. The correlation between these proteins and the main neuropathological events in prion diseases, PrPSc deposition and spongiosis, was also assessed. The results show a decrease in Ng and NfL at the protein and gene expression levels as the disease progresses, and significant changes between the control and preclinical animals. On the contrary, the CSF levels of NfL increased throughout the progression of the disease. Negative correlations between neuropathological markers of prion disease and the concentration of the studied proteins were also found. Although further research is needed, these results suggest that Ng and NfL could act as biomarkers for neurodegeneration onset and intensity in preclinical cases of scrapie.
Collapse
Affiliation(s)
- Marina Betancor
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, IIS Aragon, 50009 Zaragoza, Spain; (M.B.); (S.P.-L.); (B.M.); (I.M.-B.); (J.J.B.); (R.B.)
| | - Sonia Pérez-Lázaro
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, IIS Aragon, 50009 Zaragoza, Spain; (M.B.); (S.P.-L.); (B.M.); (I.M.-B.); (J.J.B.); (R.B.)
| | - Alicia Otero
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, IIS Aragon, 50009 Zaragoza, Spain; (M.B.); (S.P.-L.); (B.M.); (I.M.-B.); (J.J.B.); (R.B.)
| | - Belén Marín
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, IIS Aragon, 50009 Zaragoza, Spain; (M.B.); (S.P.-L.); (B.M.); (I.M.-B.); (J.J.B.); (R.B.)
| | - Inmaculada Martín-Burriel
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, IIS Aragon, 50009 Zaragoza, Spain; (M.B.); (S.P.-L.); (B.M.); (I.M.-B.); (J.J.B.); (R.B.)
- Laboratory of Biochemical Genetics (LAGENBIO), Faculty of Veterinary, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, 28220 Madrid, Spain
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy, University of Gothenburg, 405 30 Mölndal, Sweden; (K.B.); (H.Z.)
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 413 45 Mölndal, Sweden
| | - Juan José Badiola
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, IIS Aragon, 50009 Zaragoza, Spain; (M.B.); (S.P.-L.); (B.M.); (I.M.-B.); (J.J.B.); (R.B.)
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy, University of Gothenburg, 405 30 Mölndal, Sweden; (K.B.); (H.Z.)
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 413 45 Mölndal, Sweden
- Department of Neurodegenerative Disease, University College LondonInstitute of Neurology, Queen Square, London WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Rosa Bolea
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, IIS Aragon, 50009 Zaragoza, Spain; (M.B.); (S.P.-L.); (B.M.); (I.M.-B.); (J.J.B.); (R.B.)
| |
Collapse
|
12
|
Khadka A, Spiers JG, Cheng L, Hill AF. Extracellular vesicles with diagnostic and therapeutic potential for prion diseases. Cell Tissue Res 2022; 392:247-267. [PMID: 35394216 PMCID: PMC10113352 DOI: 10.1007/s00441-022-03621-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/25/2022] [Indexed: 12/14/2022]
Abstract
Prion diseases (PrD) or transmissible spongiform encephalopathies (TSE) are invariably fatal and pathogenic neurodegenerative disorders caused by the self-propagated misfolding of cellular prion protein (PrPC) to the neurotoxic pathogenic form (PrPTSE) via a yet undefined but profoundly complex mechanism. Despite several decades of research on PrD, the basic understanding of where and how PrPC is transformed to the misfolded, aggregation-prone and pathogenic PrPTSE remains elusive. The primary clinical hallmarks of PrD include vacuolation-associated spongiform changes and PrPTSE accumulation in neural tissue together with astrogliosis. The difficulty in unravelling the disease mechanisms has been related to the rare occurrence and long incubation period (over decades) followed by a very short clinical phase (few months). Additional challenge in unravelling the disease is implicated to the unique nature of the agent, its complexity and strain diversity, resulting in the heterogeneity of the clinical manifestations and potentially diverse disease mechanisms. Recent advances in tissue isolation and processing techniques have identified novel means of intercellular communication through extracellular vesicles (EVs) that contribute to PrPTSE transmission in PrD. This review will comprehensively discuss PrPTSE transmission and neurotoxicity, focusing on the role of EVs in disease progression, biomarker discovery and potential therapeutic agents for the treatment of PrD.
Collapse
Affiliation(s)
- Arun Khadka
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Jereme G Spiers
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Lesley Cheng
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Andrew F Hill
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia. .,Institute for Health and Sport, Victoria University, Footscray, VIC, Australia.
| |
Collapse
|
13
|
George DE, Tepe JJ. Advances in Proteasome Enhancement by Small Molecules. Biomolecules 2021; 11:1789. [PMID: 34944433 PMCID: PMC8699248 DOI: 10.3390/biom11121789] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 01/11/2023] Open
Abstract
The proteasome system is a large and complex molecular machinery responsible for the degradation of misfolded, damaged, and redundant cellular proteins. When proteasome function is impaired, unwanted proteins accumulate, which can lead to several diseases including age-related and neurodegenerative diseases. Enhancing proteasome-mediated substrate degradation with small molecules may therefore be a valuable strategy for the treatment of various neurodegenerative diseases such as Parkinson's, Alzheimer's, and Huntington's diseases. In this review, we discuss the structure of proteasome and how proteasome's proteolytic activity is associated with aging and various neurodegenerative diseases. We also summarize various classes of compounds that are capable of enhancing, directly or indirectly, proteasome-mediated protein degradation.
Collapse
Affiliation(s)
| | - Jetze J. Tepe
- Department of Chemistry and Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
14
|
Betancor M, Moreno-Martínez L, López-Pérez Ó, Otero A, Hernaiz A, Barrio T, Badiola JJ, Osta R, Bolea R, Martín-Burriel I. Therapeutic Assay with the Non-toxic C-Terminal Fragment of Tetanus Toxin (TTC) in Transgenic Murine Models of Prion Disease. Mol Neurobiol 2021; 58:5312-5326. [PMID: 34283400 PMCID: PMC8497292 DOI: 10.1007/s12035-021-02489-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/08/2021] [Indexed: 11/28/2022]
Abstract
The non-toxic C-terminal fragment of the tetanus toxin (TTC) has been described as a neuroprotective molecule since it binds to Trk receptors and activates Trk-dependent signaling, activating neuronal survival pathways and inhibiting apoptosis. Previous in vivo studies have demonstrated the ability of this molecule to increase mice survival, inhibit apoptosis and regulate autophagy in murine models of neurodegenerative diseases such as amyotrophic lateral sclerosis and spinal muscular atrophy. Prion diseases are fatal neurodegenerative disorders in which the main pathogenic event is the conversion of the cellular prion protein (PrPC) into an abnormal and misfolded isoform known as PrPSc. These diseases share different pathological features with other neurodegenerative diseases, such as amyotrophic lateral sclerosis, Parkinson's disease or Alzheimer's disease. Hitherto, there are no effective therapies to treat prion diseases. Here, we present a pilot study to test the therapeutic potential of TTC to treat prion diseases. C57BL6 wild-type mice and the transgenic mice Tg338, which overexpress PrPC, were intracerebrally inoculated with scrapie prions and then subjected to a treatment consisting of repeated intramuscular injections of TTC. Our results indicate that TTC displays neuroprotective effects in the murine models of prion disease reducing apoptosis, regulating autophagy and therefore increasing neuronal survival, although TTC did not increase survival time in these models.
Collapse
Affiliation(s)
- Marina Betancor
- Centro de Encefalopatías Y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, IIS Aragón, 50013, Zaragoza, Spain
| | - Laura Moreno-Martínez
- Laboratory of Genetics and Biochemistry (LAGENBIO), Faculty of Veterinary, Institute for Health Research Aragon (IIS Aragón), AgriFood Institute of Aragon (IA2), University of Zaragoza, Miguel Servet 177, 50013, Zaragoza, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Óscar López-Pérez
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Madrid, Spain.,Instituto de Investigación Biomédica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Alicia Otero
- Centro de Encefalopatías Y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, IIS Aragón, 50013, Zaragoza, Spain
| | - Adelaida Hernaiz
- Centro de Encefalopatías Y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, IIS Aragón, 50013, Zaragoza, Spain.,Laboratory of Genetics and Biochemistry (LAGENBIO), Faculty of Veterinary, Institute for Health Research Aragon (IIS Aragón), AgriFood Institute of Aragon (IA2), University of Zaragoza, Miguel Servet 177, 50013, Zaragoza, Spain
| | - Tomás Barrio
- UMR Institut National de La Recherche Pour L'Agriculture, L'Alimentation Et L'Environment (INRAE)/École Nationale Vétérinaire de Toulouse (ENVT) 1225 IHAP (Interactions Hôtes-Agents Pathogènes), 31076, Toulouse, France
| | - Juan José Badiola
- Centro de Encefalopatías Y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, IIS Aragón, 50013, Zaragoza, Spain
| | - Rosario Osta
- Laboratory of Genetics and Biochemistry (LAGENBIO), Faculty of Veterinary, Institute for Health Research Aragon (IIS Aragón), AgriFood Institute of Aragon (IA2), University of Zaragoza, Miguel Servet 177, 50013, Zaragoza, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Rosa Bolea
- Centro de Encefalopatías Y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, IIS Aragón, 50013, Zaragoza, Spain.
| | - Inmaculada Martín-Burriel
- Centro de Encefalopatías Y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, IIS Aragón, 50013, Zaragoza, Spain.,Laboratory of Genetics and Biochemistry (LAGENBIO), Faculty of Veterinary, Institute for Health Research Aragon (IIS Aragón), AgriFood Institute of Aragon (IA2), University of Zaragoza, Miguel Servet 177, 50013, Zaragoza, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Madrid, Spain
| |
Collapse
|
15
|
Evidence of p75 Neurotrophin Receptor Involvement in the Central Nervous System Pathogenesis of Classical Scrapie in Sheep and a Transgenic Mouse Model. Int J Mol Sci 2021; 22:ijms22052714. [PMID: 33800240 PMCID: PMC7962525 DOI: 10.3390/ijms22052714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/27/2021] [Accepted: 02/28/2021] [Indexed: 11/17/2022] Open
Abstract
Neurotrophins constitute a group of growth factor that exerts important functions in the nervous system of vertebrates. They act through two classes of transmembrane receptors: tyrosine-kinase receptors and the p75 neurotrophin receptor (p75NTR). The activation of p75NTR can favor cell survival or apoptosis depending on diverse factors. Several studies evidenced a link between p75NTR and the pathogenesis of prion diseases. In this study, we investigated the distribution of several neurotrophins and their receptors, including p75NTR, in the brain of naturally scrapie-affected sheep and experimentally infected ovinized transgenic mice and its correlation with other markers of prion disease. No evident changes in infected mice or sheep were observed regarding neurotrophins and their receptors except for the immunohistochemistry against p75NTR. Infected mice showed higher abundance of p75NTR immunostained cells than their non-infected counterparts. The astrocytic labeling correlated with other neuropathological alterations of prion disease. Confocal microscopy demonstrated the co-localization of p75NTR and the astrocytic marker GFAP, suggesting an involvement of astrocytes in p75NTR-mediated neurodegeneration. In contrast, p75NTR staining in sheep lacked astrocytic labeling. However, digital image analyses revealed increased labeling intensities in preclinical sheep compared with non-infected and terminal sheep in several brain nuclei. This suggests that this receptor is overexpressed in early stages of prion-related neurodegeneration in sheep. Our results confirm a role of p75NTR in the pathogenesis of classical ovine scrapie in both the natural host and in an experimental transgenic mouse model.
Collapse
|