1
|
Kodous AS, Taha EO, El-Maghraby DF, Hassana AA, Atta MM. Gamma radiation assisted green synthesis of hesperidin-reduced graphene oxide nanocomposite targeted JNK/SMAD4/MMP2 signaling pathway. Sci Rep 2024; 14:11535. [PMID: 38773159 PMCID: PMC11109164 DOI: 10.1038/s41598-024-60347-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/22/2024] [Indexed: 05/23/2024] Open
Abstract
In this study, a novel method for the fabrication of hesperidin/reduced graphene oxide nanocomposite (RGOH) with the assistance of gamma rays is reported. The different RGOHs were obtained by varying hesperidin concentrations (25, 50, 100, and 200 wt.%) in graphene oxide (GO) solution. Hesperidin concentrations (25, 50, 100, and 200 wt.%) in graphene oxide (GO) were varied to produce the various RGOHs. Upon irradiation with 80 kGy from γ-Ray, the successful reduction of GO occurred in the presence of hesperidin. The reduction process was confirmed by different characterization techniques such as FTIR, XRD, HRTEM, and Raman Spectroscopy. A cytotoxicity study using the MTT method was performed to evaluate the cytotoxic-anticancer effects of arbitrary RGOH on Wi38, CaCo2, and HepG2 cell lines. The assessment of RGOH's anti-inflammatory activity, including the monitoring of IL-1B and IL-6 activities as well as NF-kB gene expression was done. In addition, the anti-invasive and antimetastatic properties of RGOH, ICAM, and VCAM were assessed. Additionally, the expression of the MMP2-9 gene was quantified. The assessment of apoptotic activity was conducted by the detection of gene expressions related to BCl2 and P53. The documentation of the JNK/SMAD4/MMP2 signaling pathway was ultimately accomplished. The findings of our study indicate that RGOH therapy has significant inhibitory effects on the JNK/SMAD4/MMP2 pathway. This suggests that it could be a potential therapeutic option for cancer.
Collapse
Affiliation(s)
- Ahmad S Kodous
- Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Eman O Taha
- Petroleum Applications Department, Egyptian Petroleum Research Institute (EPRI), Cairo, Egypt
| | - Dina F El-Maghraby
- Health Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Asmaa A Hassana
- Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - M M Atta
- Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| |
Collapse
|
2
|
Yang S, Baeg E, Kim K, Kim D, Xu D, Ahn JH, Yang S. Neurodiagnostic and neurotherapeutic potential of graphene nanomaterials. Biosens Bioelectron 2024; 247:115906. [PMID: 38101185 DOI: 10.1016/j.bios.2023.115906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/06/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Graphene has emerged as a highly promising nanomaterial for a variety of advanced technologies, including batteries, energy, electronics, and biotechnologies. Its recent contribution to neurotechnology is particularly noteworthy because its superior conductivity, chemical resilience, biocompatibility, thermal stability, and scalable nature make it well-suited for measuring brain activity and plasticity in health and disease. Graphene-mediated compounds are microfabricated in two central methods: chemical processes with natural graphite and chemical vapor deposition of graphene in a film form. They are widely used as biosensors and bioelectronics for neurodiagnostic and neurotherapeutic purposes in several brain disorders, such as Parkinson's disease, stroke, glioma, epilepsy, tinnitus, and Alzheimer's disease. This review provides an overview of studies that have demonstrated the technical advances of graphene nanomaterials in neuroscientific and clinical applications. We also discuss current limitations and future demands in relation to the clinical application of graphene, highlighting its potential technological and clinical significance for treating brain disorders. Our review underscores the potential of graphene nanomaterials as powerful tools for advancing the understanding of the brain and developing new therapeutic strategies.
Collapse
Affiliation(s)
- Sunggu Yang
- Department of Nano-bioengineering, Incheon National University, Incheon, 22012, Republic of Korea; Center for Brain-Machine Interface, Incheon National University, Incheon, 22012, Republic of Korea; gBrain Inc., Incheon, 21984, Republic of Korea.
| | - Eunha Baeg
- Department of Nano-bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Kyungtae Kim
- Department of Nano-bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Donggue Kim
- Department of Nano-bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Duo Xu
- School of Electrical & Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jong-Hyun Ahn
- School of Electrical & Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Sungchil Yang
- Department of Neuroscience, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| |
Collapse
|
3
|
Iannazzo D, Celesti C, Giofrè SV, Ettari R, Bitto A. Theranostic Applications of 2D Graphene-Based Materials for Solid Tumors Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2380. [PMID: 37630966 PMCID: PMC10459055 DOI: 10.3390/nano13162380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023]
Abstract
Solid tumors are a leading cause of cancer-related deaths globally, being characterized by rapid tumor growth and local and distant metastases. The failures encountered in cancer treatment are mainly related to the complicated biology of the tumor microenvironment. Nanoparticles-based (NPs) approaches have shown the potential to overcome the limitations caused by the pathophysiological features of solid cancers, enabling the development of multifunctional systems for cancer diagnosis and therapy and allowing effective inhibition of tumor growth. Among the different classes of NPs, 2D graphene-based nanomaterials (GBNs), due to their outstanding chemical and physical properties, easy surface multi-functionalization, near-infrared (NIR) light absorption and tunable biocompatibility, represent ideal nanoplatforms for the development of theranostic tools for the treatment of solid tumors. Here, we reviewed the most recent advances related to the synthesis of nano-systems based on graphene, graphene oxide (GO), reduced graphene oxide (rGO), and graphene quantum dots (GQDs), for the development of theranostic NPs to be used for photoacoustic imaging-guided photothermal-chemotherapy, photothermal (PTT) and photodynamic therapy (PDT), applied to solid tumors destruction. The advantages in using these nano-systems are here discussed for each class of GBNs, taking into consideration the different chemical properties and possibility of multi-functionalization, as well as biodistribution and toxicity aspects that represent a key challenge for their translation into clinical use.
Collapse
Affiliation(s)
- Daniela Iannazzo
- Department of Engineering, University of Messina, 98166 Messina, Italy;
| | - Consuelo Celesti
- Department of Engineering, University of Messina, 98166 Messina, Italy;
| | - Salvatore V. Giofrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina, 98165 Messina, Italy; (S.V.G.); (R.E.)
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina, 98165 Messina, Italy; (S.V.G.); (R.E.)
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
4
|
Chin SM, Reina G, Chau NDQ, Chabrol T, Wion D, Bouamrani A, Gay E, Nishina Y, Bianco A, Berger F. Functional Graphene for Peritumoral Brain Microenvironment Modulation Therapy in Glioblastoma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208227. [PMID: 36732906 DOI: 10.1002/smll.202208227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/09/2023] [Indexed: 05/04/2023]
Abstract
Peritumoral brain invasion is the main target to cure glioblastoma. Chemoradiotherapy and targeted therapies fail to combat peritumoral relapse. Brain inaccessibility and tumor heterogeneity explain this failure, combined with overlooking the peritumor microenvironment. Reduce graphene oxide (rGO) provides a unique opportunity to modulate the local brain microenvironment. Multimodal graphene impacts are reported on glioblastoma cells in vitro but fail when translated in vivo because of low diffusion. This issue is solved by developing a new rGO formulation involving ultramixing during the functionalization with polyethyleneimine (PEI) leading to the formation of highly water-stable rGO-PEI. Wide mice brain diffusion and biocompatibility are demonstrated. Using an invasive GL261 model, an anti-invasive effect is observed. A major unexpected modification of the peritumoral area is also observed with the neutralization of gliosis. In vitro, mechanistic investigations are performed using primary astrocytes and cytokine array. The result suggests that direct contact of rGO-PEIUT neutralizes astrogliosis, decreasing several proinflammatory cytokines that would explain a bystander tumor anti-invasive effect. rGO also significantly downregulates several proinvasive/protumoral cytokines at the tumor cell level. The results open the way to a new microenvironment anti-invasive nanotherapy using a new graphene nanomaterial that is optimized for in vivo brain delivery.
Collapse
Affiliation(s)
- Shan Min Chin
- Emmanuel Gay, François Berger, INSERM UMR1205, Brain Tech Lab, Grenoble Alpes University, Grenoble, 38000, France
| | - Giacomo Reina
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Ngoc Do Quyen Chau
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Tanguy Chabrol
- Emmanuel Gay, François Berger, INSERM UMR1205, Brain Tech Lab, Grenoble Alpes University, Grenoble, 38000, France
| | - Didier Wion
- Emmanuel Gay, François Berger, INSERM UMR1205, Brain Tech Lab, Grenoble Alpes University, Grenoble, 38000, France
| | - Ali Bouamrani
- Emmanuel Gay, François Berger, INSERM UMR1205, Brain Tech Lab, Grenoble Alpes University, Grenoble, 38000, France
| | - Emmanuel Gay
- Emmanuel Gay, François Berger, INSERM UMR1205, Brain Tech Lab, Grenoble Alpes University, Grenoble, 38000, France
| | - Yuta Nishina
- Graduate School of Natural Science and Technology, Okayama University, Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
- Research Core for Interdisciplinary Sciences, Okayama University, Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - François Berger
- Emmanuel Gay, François Berger, INSERM UMR1205, Brain Tech Lab, Grenoble Alpes University, Grenoble, 38000, France
| |
Collapse
|
5
|
Caffo M, Curcio A, Rajiv K, Caruso G, Venza M, Germanò A. Potential Role of Carbon Nanomaterials in the Treatment of Malignant Brain Gliomas. Cancers (Basel) 2023; 15:2575. [PMID: 37174040 PMCID: PMC10177363 DOI: 10.3390/cancers15092575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/11/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Malignant gliomas are the most common primary brain tumors in adults up to an extent of 78% of all primary malignant brain tumors. However, total surgical resection is almost unachievable due to the considerable infiltrative ability of glial cells. The efficacy of current multimodal therapeutic strategies is, furthermore, limited by the lack of specific therapies against malignant cells, and, therefore, the prognosis of these in patients is still very unfavorable. The limitations of conventional therapies, which may result from inefficient delivery of the therapeutic or contrast agent to brain tumors, are major reasons for this unsolved clinical problem. The major problem in brain drug delivery is the presence of the blood-brain barrier, which limits the delivery of many chemotherapeutic agents. Nanoparticles, thanks to their chemical configuration, are able to go through the blood-brain barrier carrying drugs or genes targeted against gliomas. Carbon nanomaterials show distinct properties including electronic properties, a penetrating capability on the cell membrane, high drug-loading and pH-dependent therapeutic unloading capacities, thermal properties, a large surface area, and easy modification with molecules, which render them as suitable candidates for deliver drugs. In this review, we will focus on the potential effectiveness of the use of carbon nanomaterials in the treatment of malignant gliomas and discuss the current progress of in vitro and in vivo researches of carbon nanomaterials-based drug delivery to brain.
Collapse
Affiliation(s)
- Maria Caffo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Neurosurgical Clinic, University of Messina, 98125 Messina, Italy (A.C.)
| | - Antonello Curcio
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Neurosurgical Clinic, University of Messina, 98125 Messina, Italy (A.C.)
| | - Kumar Rajiv
- NIET, National Institute of Medical Science, New Delhi 110007, India
- University of Delhi, New Delhi 110007, India
| | - Gerardo Caruso
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Neurosurgical Clinic, University of Messina, 98125 Messina, Italy (A.C.)
| | - Mario Venza
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Neurosurgical Clinic, University of Messina, 98125 Messina, Italy (A.C.)
| | - Antonino Germanò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Neurosurgical Clinic, University of Messina, 98125 Messina, Italy (A.C.)
| |
Collapse
|
6
|
Szczepaniak J, Sosnowska M, Wierzbicki M, Witkowska-Pilaszewicz O, Strojny-Cieslak B, Jagiello J, Fraczek W, Kusmierz M, Grodzik M. Reduced Graphene Oxide Modulates the FAK-Dependent Signaling Pathway in Glioblastoma Multiforme Cells In Vitro. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15175843. [PMID: 36079225 PMCID: PMC9457042 DOI: 10.3390/ma15175843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/28/2022] [Accepted: 08/19/2022] [Indexed: 05/27/2023]
Abstract
Aggressive invasiveness is a common feature of malignant gliomas, despite their high level of tumor heterogeneity and possible diverse cell origins. Therefore, it is important to explore new therapeutic methods. In this study, we evaluated and compared the effects of graphene (GN) and reduced graphene oxides (rGOs) on a highly invasive and neoplastic cell line, U87. The surface functional groups of the GN and rGO flakes were characterized by X-ray photoelectron spectroscopy. The antitumor activity of these flakes was obtained by using the neutral red assay and their anti-migratory activity was determined using the wound healing assay. Further, we investigated the mRNA and protein expression levels of important cell adhesion molecules involved in migration and invasiveness. The rGO flakes, particularly rGO/ATS and rGO/TUD, were found highly toxic. The migration potential of both U87 and Hs5 cells decreased, especially after rGO/TUD treatment. A post-treatment decrease in mobility and FAK expression was observed in U87 cells treated with rGO/ATS and rGO/TUD flakes. The rGO/TUD treatment also reduced β-catenin expression in U87 cells. Our results suggest that rGO flakes reduce the migration and invasiveness of U87 tumor cells and can, thus, be used as potential antitumor agents.
Collapse
Affiliation(s)
- Jaroslaw Szczepaniak
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| | - Malwina Sosnowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| | - Mateusz Wierzbicki
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| | - Olga Witkowska-Pilaszewicz
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Barbara Strojny-Cieslak
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| | - Joanna Jagiello
- Graphene and Composites Research Group, Łukasiewicz Research Network-Institute of Microelectronics and Photonics, 01-919 Warsaw, Poland
| | - Wiktoria Fraczek
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| | - Marcin Kusmierz
- Analytical Laboratory, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031 Lublin, Poland
| | - Marta Grodzik
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| |
Collapse
|
7
|
Wang B, Guo H, Xu H, Chen Y, Zhao G, Yu H. The Role of Graphene Oxide Nanocarriers in Treating Gliomas. Front Oncol 2022; 12:736177. [PMID: 35155223 PMCID: PMC8831729 DOI: 10.3389/fonc.2022.736177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Gliomas are the most common primary malignant tumors of the central nervous system, and their conventional treatment involves maximal safe surgical resection combined with radiotherapy and temozolomide chemotherapy; however, this treatment does not meet the requirements of patients in terms of survival and quality of life. Graphene oxide (GO) has excellent physical and chemical properties and plays an important role in the treatment of gliomas mainly through four applications, viz. direct killing, drug delivery, immunotherapy, and phototherapy. This article reviews research on GO nanocarriers in the treatment of gliomas in recent years and also highlights new ideas for the treatment of these tumors.
Collapse
Affiliation(s)
- Bin Wang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Hanfei Guo
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Haiyang Xu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Yong Chen
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Gang Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Gang Zhao, ; Hongquan Yu,
| | - Hongquan Yu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Gang Zhao, ; Hongquan Yu,
| |
Collapse
|
8
|
Díez-Pascual AM. Carbon-Based Nanomaterials. Int J Mol Sci 2021; 22:ijms22147726. [PMID: 34299346 PMCID: PMC8307333 DOI: 10.3390/ijms22147726] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 02/01/2023] Open
Affiliation(s)
- Ana María Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, España (Spain)
| |
Collapse
|