1
|
Bagheri MJ, Rezazadeh Valojerdi M, Salehnia M. The Effects of Endometrial Mesenchymal Stem Cells on The In Vitro Maturation of Germinal Vesicle Oocytes in Hanging Drop and Sodium Alginate Hydrogel Co-Culture Systems. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2024; 18:278-285. [PMID: 38973282 PMCID: PMC11245584 DOI: 10.22074/ijfs.2023.2006017.1487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Indexed: 07/09/2024]
Abstract
BACKGROUND The aim of this study is to investigate the co-culture effects of human endometrial mesenchymal stem cells (EnMSCs) with mouse oocytes to enhance their maturation and development by using the hanging drop and sodium alginate hydrogel methods. MATERIALS AND METHODS In this experimental study, we prepared human EnMSCs (2.5×105 cells/mL) and co-cultured them with partially denuded mouse oocytes by the hanging drop (n=120) and sodium alginate hydrogel (n=120) methods. Control oocytes (n=230, total) were cultured in both systems in the absence of human EnMSCs for 18 hours. Both survival and maturation rates of the oocytes were analysed morphologically. After insemination with capacitated sperm, the fertilization and development of the embryos up to the blastocyst stage were assessed and compared statistically for all of the study groups via one-way ANOVA and the t tests. RESULTS Oocytes cultured in the hanging drop method had a significantly higher survival rate than their control group (92.60 ± 4.36% vs. 84.20 ± 3.12%, P=0.018). There were no significant differences between the two experimental groups in terms of survival. The mean percent of oocytes that reached the metaphase II (MII) stage was 64.35 ± 3.19% and fertilised was 62.25 ± 4.43% in the hanging drop method; these rates were 63.43 ± 1.92% and 58.14 ± 4.14 in sodium alginate hydrogel method, respectively. These rates were higher than their controls (P<0.050), but there were no statistical differences between the two experimental groups (P>0.050). Among the studied groups, the highest significant blastocyst rate (32.55 ± 2.18%) was observed in the hanging drop experimental group (P=0.0017). CONCLUSION The results of this study show that human EnMSCs improve the survival, maturation, and development rates of oocytes and they could have future clinical applications.
Collapse
Affiliation(s)
- Mohammad Jafar Bagheri
- Anatomy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mojdeh Salehnia
- Anatomy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
Sarvari A, Niasari-Naslaji A, Shirazi A, Heidari B, Boroujeni SB, Moradi MH, Naderi MM, Behzadi B, Mehrazar MM, Dehghan MM. Effect of Intra-ovarian Injection of Mesenchymal Stem Cells or its Conditioned Media on Repeated OPU-IVEP Outcomes in Jersey Heifers and Its Relationship with Follicular Fluid Inflammatory Markers. Avicenna J Med Biotechnol 2024; 16:16-28. [PMID: 38605741 PMCID: PMC11005394 DOI: 10.18502/ajmb.v16i1.14167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/26/2023] [Indexed: 04/13/2024] Open
Abstract
Background Repeated Ovum Pick Up (OPU) could have a detrimental effect on ovarian function, reducing In Vitro Embryo Production (IVEP). The present study examined the therapeutic effect of adipose-derived Mesenchymal Stem Cells (MSCs) or its Conditioned Medium (ConM) on ovarian trauma following repeated OPU. Resolvin E1 (RvE1) and Interleukin-12 (IL-12) were investigated as biomarkers. Methods Jersey heifers (n=8) experienced 11 OPU sessions including 5 pre-treatment and 6 treatment sessions. Heifers received intra-ovarian administration of MSCs or ConM (right ovary) and Dulbecco's Modified Phosphate Buffer Saline (DMPBS; left ovary) after OPU in sessions 5 and 8 and 2 weeks after session 11. The concentrations of RvE1 and IL-12 in follicular fluid was evaluated on sessions 1, 5, 6, 9, and 4 weeks after session 11. Following each OPU session, the IVEP parameters were recorded. Results Intra-ovarian administration of MSCs, ConM, and DMPBS did not affect IVEP parameters (p>0.05). The concentration of IL-12 in follicular fluid increased at the last session of pre-treatment (Session 5; p<0.05) and remained elevated throughout the treatment period. There was no correlation between IL-12 and IVEP parameters (p>0.05). However, RvE1 remained relatively high during the pre-treatment and decreased toward the end of treatment period (p<0.05). This in turn was associated with decline in some IVEP parameters (p<0.05). Conclusion Intra-ovarian administration of MSCs or ConM during repeated OPU did not enhance IVEP outcomes in Bos taurus heifers. The positive association between RvE1 and some of IVEP parameters could nominate RvE1 as a promising biomarker to predict IVEP parameters following repeated OPU.
Collapse
Affiliation(s)
- Ali Sarvari
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Amir Niasari-Naslaji
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Abolfazl Shirazi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Banafsheh Heidari
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Sara Borjian Boroujeni
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad Hossein Moradi
- Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran
| | - Mohammad-Mahdi Naderi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Bahareh Behzadi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad-Mahdi Mehrazar
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad Mehdi Dehghan
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
3
|
Shafiei G, Saheli M, Ganjalikhan-Hakemi S, Haghpanah T, Nematollahi-Mahani SN. Administration of adipose-derived mesenchymal stem cell conditioned medium improves ovarian function in polycystic ovary syndrome rats: involvement of epigenetic modifiers system. J Ovarian Res 2023; 16:238. [PMID: 38102694 PMCID: PMC10722730 DOI: 10.1186/s13048-023-01317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a widespread heterogeneous disease that is in association with genetic, epigenetic, endocrine and environmental factors. Adipose-derived mesenchymal stem cell (ASC) and ASC-conditioned medium (ASC-CM) have shown promising abilities in tissue regeneration. In the present study, we aimed to investigate the effects of ASC and ASC-CM on epigenetic regulators, steroidal function and folliculogenesis in the letrozole-induced PCOS rats. RESULTS Based on the measurement of the oral glucose tolerance test and physical parameters including body weight, estrus cycle pattern as well as ovary dimensions, PCOS-induced rats in sham and control (CTRL) groups showed signs of reproductive dysfunctions such as lack of regular estrus cyclicity, metabolic disorders such as increased ovary dimension, body weight and blood glucose level alteration which were improved especially by ASC-CM administration.
Collapse
Affiliation(s)
- Golnaz Shafiei
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mona Saheli
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Sepideh Ganjalikhan-Hakemi
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Haghpanah
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Seyed Noureddin Nematollahi-Mahani
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
4
|
Cacciottola L, Vitale F, Donnez J, Dolmans MM. Use of mesenchymal stem cells to enhance or restore fertility potential: a systematic review of available experimental strategies. Hum Reprod Open 2023; 2023:hoad040. [PMID: 37954935 PMCID: PMC10637864 DOI: 10.1093/hropen/hoad040] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/15/2023] [Indexed: 11/14/2023] Open
Abstract
STUDY QUESTION To what extent does regenerative medicine with stem cell therapy help to address infertility issues for future clinical application? SUMMARY ANSWER Regenerative medicine using different stem cell sources is yielding promising results in terms of protecting the ovarian reserve from damage and senescence, and improving fertility potential in various preclinical settings. WHAT IS KNOWN ALREADY Regenerative medicine using stem cell therapy is emerging as a potential strategy to address a number of issues in the field of human reproduction. Indeed, different types of adult and fetal mesenchymal stem cells (MSCs) have been tested with promising results, owing to their ability to differentiate into different tissue lineages, move toward specific injured sites (homing), and generate a secretome with wound-healing, proangiogenic, and antioxidant capacities. STUDY DESIGN SIZE DURATION Guided by the checklist for preferred reporting items for systematic reviews and meta-analyses, we retrieved relevant studies from PubMed, Medline, and Embase databases until June 2023 using the following keywords: 'mesenchymal stem cells' AND 'ovarian follicles' OR 'ovarian tissue culture' OR 'ovarian follicle culture' OR 'cumulus oocyte complex'. Only peer-reviewed published articles written in English were included. PARTICIPANTS/MATERIALS SETTING METHODS The primary outcome for the experimental strategies was evaluation of the ovarian reserve, with a focus on follicle survival, number, and growth. Secondary outcomes involved analyses of other parameters associated with the follicle pool, such as hormones and growth factors, ovarian tissue viability markers including oxidative stress levels, oocyte growth and maturation rates, and of course pregnancy outcomes. MAIN RESULTS AND THE ROLE OF CHANCE Preclinical studies exploring MSCs from different animal origins and tissue sources in specific conditions were selected (n = 112), including: in vitro culture of granulosa cells, ovarian tissue and isolated ovarian follicles; ovarian tissue transplantation; and systemic or intraovarian injection after gonadotoxic or age-related follicle pool decline. Protecting the ovarian reserve from aging and gonadotoxic damage has been widely tested in vitro and in vivo using murine models and is now yielding initial data in the first ever case series of patients with premature ovarian insufficiency. Use of MSCs as feeder cells in ovarian tissue culture was found to improve follicle outcomes and oocyte competence, bringing us one step closer to future clinical application. MSCs also have proved effective at boosting revascularization in the transplantation site when grafting ovarian tissue in experimental animal models. LIMITATIONS REASONS FOR CAUTION While preclinical results look promising in terms of protecting the ovarian reserve in different experimental models (especially those in vitro using various mammal experimental models and in vivo using murine models), there is still a lot of work to do before this approach can be considered safe and successfully implemented in a clinical setting. WIDER IMPLICATIONS OF THE FINDINGS All gathered data on the one hand show that regenerative medicine techniques are quickly gaining ground among innovative techniques being developed for future clinical application in the field of reproductive medicine. After proving MSC effectiveness in preclinical settings, there is still a lot of work to do before MSCs can be safely and effectively used in different clinical applications. STUDY FUNDING/COMPETING INTERESTS This study was supported by grants from the Fonds National de la Recherche Scientifique de Belgique (FNRS-PDR T.0077.14, FNRS-CDR J.0063.20, and grant 5/4/150/5 awarded to Marie-Madeleine Dolmans), Fonds Spéciaux de Recherche, and the Fondation St Luc. None of the authors have any competing interest to disclose. REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- L Cacciottola
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - F Vitale
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - J Donnez
- Society for Research into Infertility, Brussels, Belgium
- Université Catholique de Louvain, Brussels, Belgium
| | - M M Dolmans
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
5
|
Baouche M, Ochota M, Mermillod P, Locatelli Y, Nizanski W. Feline Wharton's jelly-derived mesenchymal stem cells as a feeder layer for oocytes maturation and embryos culture in vitro. Front Vet Sci 2023; 10:1252484. [PMID: 37869498 PMCID: PMC10590214 DOI: 10.3389/fvets.2023.1252484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/11/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Due to their capacity to release growth factors and cytokines, co-culture using mesenchymal stem cells has been considered a good alternative to promoting the maturation of the oocytes and the embryo's development quality in vitro in different mammalian species. In this regard, we investigated the effect of feline Wharton's jelly MSCs as feeders layer in oocyte maturation-consequently, the development of resulting embryos in co-culture. Methods Oocytes with dark cytoplasm and a few layers of cumulus cells were collected and subjected to in vitro maturation and embryo culture using commercial media with and without MSCs addition. The oocytes' nuclear maturation and the degree of cumulus expansion in different groups were assessed after 24 h; the development of the embryo was evaluated every 12 h until day eight. Results Although MSCs increased the proportion of cumulus cells oocytes exhibiting cumulus expansion, there were no significant differences in the percentage of matured oocytes (metaphase II) among the groups (p > 0.05). However, the embryo development differs significantly, with a higher cleavage, morula, and blastocyst percentage in oocytes matured with MSC co-culture conditions than in commercial media alone (p < 0.05). Also, we observed higher morula and blastocyst rates in the embryos co-cultured with MSCs during the in vitro culture (p > 0.05). Conclusion Based on our results, the co-culture with MSCs during the oocyte maturation resulted in better embryo development, as well as the MSCs addition during embryo culture returned an increased number of morula and blastocysts. Further research is needed to fully understand and optimize the use of MSCs in oocyte maturation and embryo development.
Collapse
Affiliation(s)
- Meriem Baouche
- Department of Reproduction and Clinic of Farm Animals, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Małgorzata Ochota
- Department of Reproduction and Clinic of Farm Animals, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Pascal Mermillod
- Physiology of Reproduction and Behaviors (PRC), INRAE, CNRS, University of Tours, Tours, France
| | - Yann Locatelli
- Physiology of Reproduction and Behaviors (PRC), INRAE, CNRS, University of Tours, Tours, France
- Museum National d’Histoire Naturelle, Réserve Zoologique de la Haute Touche, Obterre, France
| | - Wojciech Nizanski
- Department of Reproduction and Clinic of Farm Animals, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
6
|
Liu YX, Sun JM, Ho CK, Gao Y, Wen DS, Liu YD, Huang L, Zhang YF. Advancements in adipose-derived stem cell therapy for skin fibrosis. World J Stem Cells 2023; 15:342-353. [PMID: 37342214 PMCID: PMC10277960 DOI: 10.4252/wjsc.v15.i5.342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/30/2023] [Accepted: 04/13/2023] [Indexed: 05/26/2023] Open
Abstract
Pathological scarring and scleroderma, which are the most common conditions of skin fibrosis, pathologically manifest as fibroblast proliferation and extracellular matrix (ECM) hyperplasia. Fibroblast proliferation and ECM hyperplasia lead to fibrotic tissue remodeling, causing an exaggerated and prolonged wound-healing response. The pathogenesis of these diseases has not been fully clarified and is unfortunately accompanied by exceptionally high medical needs and poor treatment effects. Currently, a promising and relatively low-cost treatment has emerged-adipose-derived stem cell (ASC) therapy as a branch of stem cell therapy, including ASCs and their derivatives-purified ASC, stromal vascular fraction, ASC-conditioned medium, ASC exosomes, etc., which are rich in sources and easy to obtain. ASCs have been widely used in therapeutic settings for patients, primarily for the defection of soft tissues, such as breast enhancement and facial contouring. In the field of skin regeneration, ASC therapy has become a hot research topic because it is beneficial for reversing skin fibrosis. The ability of ASCs to control profibrotic factors as well as anti-inflammatory and immunomodulatory actions will be discussed in this review, as well as their new applications in the treatment of skin fibrosis. Although the long-term effect of ASC therapy is still unclear, ASCs have emerged as one of the most promising systemic antifibrotic therapies under development.
Collapse
Affiliation(s)
- Yu-Xin Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jia-Ming Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Chia-Kang Ho
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Ya Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Dong-Sheng Wen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Yang-Dan Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Lu Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Yi-Fan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| |
Collapse
|
7
|
Weinzierl A, Harder Y, Schmauss D, Menger MD, Laschke MW. Microvascular Fragments Protect Ischemic Musculocutaneous Flap Tissue from Necrosis by Improving Nutritive Tissue Perfusion and Suppressing Apoptosis. Biomedicines 2023; 11:biomedicines11051454. [PMID: 37239125 DOI: 10.3390/biomedicines11051454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/06/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Microvascular fragments (MVF) derived from enzymatically digested adipose tissue are functional vessel segments that have been shown to increase the survival rate of surgical flaps. However, the underlying mechanisms have not been clarified so far. To achieve this, we raised random-pattern musculocutaneous flaps on the back of wild-type mice and mounted them into dorsal skinfold chambers. The flaps were injected with MVF that were freshly isolated from green fluorescent protein-positive (GFP+) donor mice or saline solution (control). On days 1, 3, 5, 7, and 10 after surgery, intravital fluorescence microscopy was performed for the quantitative assessment of angiogenesis, nutritive blood perfusion, and flap necrosis. Subsequently, the flaps were analyzed by histology and immunohistochemistry. The injection of MVF reduced necrosis of the ischemic flap tissue by ~20%. When compared to controls, MVF-injected flaps also displayed a significantly higher functional capillary density and number of newly formed microvessels in the transition zone, where vital tissue bordered on necrotic tissue. Immunohistochemical analyses revealed a markedly lower number of cleaved caspase-3+ apoptotic cells in the transition zone of MVF-injected flaps and a significantly increased number of CD31+ microvessels in both the flaps' base and transition zone. Up to ~10% of these microvessels were GFP+, proving their origin from injected MVF. These findings demonstrate that MVF reduce flap necrosis by increasing angiogenesis, improving nutritive tissue perfusion, and suppressing apoptosis. Hence, the injection of MVF may represent a promising strategy to reduce ischemia-induced flap necrosis in future clinical practice.
Collapse
Affiliation(s)
- Andrea Weinzierl
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Yves Harder
- Department of Plastic, Reconstructive and Aesthetic Surgery, Ospedale Regionale di Lugano, Ente Ospedaliero Cantonale (EOC), 6900 Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Daniel Schmauss
- Department of Plastic, Reconstructive and Aesthetic Surgery, Ospedale Regionale di Lugano, Ente Ospedaliero Cantonale (EOC), 6900 Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| |
Collapse
|
8
|
Peserico A, Di Berardino C, Capacchietti G, Camerano Spelta Rapini C, Liverani L, Boccaccini AR, Russo V, Mauro A, Barboni B. IVM Advances for Early Antral Follicle-Enclosed Oocytes Coupling Reproductive Tissue Engineering to Inductive Influences of Human Chorionic Gonadotropin and Ovarian Surface Epithelium Coculture. Int J Mol Sci 2023; 24:ijms24076626. [PMID: 37047595 PMCID: PMC10095509 DOI: 10.3390/ijms24076626] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/26/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
In vitro maturation (IVM) is not a routine assisted reproductive technology (ART) for oocytes collected from early antral (EA) follicles, a large source of potentially available gametes. Despite substantial improvements in IVM in the past decade, the outcomes remain low for EA-derived oocytes due to their reduced developmental competences. To optimize IVM for ovine EA-derived oocytes, a three-dimensional (3D) scaffold-mediated follicle-enclosed oocytes (FEO) system was compared with a validated cumulus-oocyte complex (COC) protocol. Gonadotropin stimulation (eCG and/or hCG) and/or somatic cell coculture (ovarian vs. extraovarian-cell source) were supplied to both systems. The maturation rate and parthenogenetic activation were significantly improved by combining hCG stimulation with ovarian surface epithelium (OSE) cells coculture exclusively on the FEO system. Based on the data, the paracrine factors released specifically from OSE enhanced the hCG-triggering of oocyte maturation mechanisms by acting through the mural compartment (positive effect on FEO and not on COC) by stimulating the EGFR signaling. Overall, the FEO system performed on a developed reproductive scaffold proved feasible and reliable in promoting a synergic cytoplasmatic and nuclear maturation, offering a novel cultural strategy to widen the availability of mature gametes for ART.
Collapse
Affiliation(s)
- Alessia Peserico
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Chiara Di Berardino
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Giulia Capacchietti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Chiara Camerano Spelta Rapini
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Liliana Liverani
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander University of Erlangen-Nuremberg, 91054 Erlangen, Germany
- DGS S.p.A., 00142 Rome, Italy
| | - Aldo Roberto Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Valentina Russo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Annunziata Mauro
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Barbara Barboni
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
9
|
Benefit of Adjuvant Mesenchymal Stem Cell Transplantation to Critical-Sized Peripheral Nerve Defect Repair: A Systematic Review and Meta-Analysis of Preclinical Studies. J Clin Med 2023; 12:jcm12041306. [PMID: 36835844 PMCID: PMC9966712 DOI: 10.3390/jcm12041306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Critically sized nerve defects cause devastating life-long disabilities and require interposition for reconstruction. Additional local application of mesenchymal stem cells (MSCs) is considered promising to enhance peripheral nerve regeneration. To better understand the role of MSCs in peripheral nerve reconstruction, we performed a systematic review and meta-analysis of the effects of MSCs on critically sized segment nerve defects in preclinical studies. 5146 articles were screened following PRISMA guidelines using PubMed and Web of Science. A total of 27 preclinical studies (n = 722 rats) were included in the meta-analysis. The mean difference or the standardized mean difference with 95% confidence intervals for motor function, conduction velocity, and histomorphological parameters of nerve regeneration, as well as the degree of muscle atrophy, was compared in rats with critically sized defects and autologous nerve reconstruction treated with or without MSCs. The co-transplantation of MSCs increased the sciatic functional index (3.93, 95% CI 2.62 to 5.24, p < 0.00001) and nerve conduction velocity recovery (1.49, 95% CI 1.13 to 1.84, p = 0.009), decreased the atrophy of targeted muscles (gastrocnemius: 0.63, 95% CI 0.29 to 0.97 p = 0.004; triceps surae: 0.08, 95% CI 0.06 to 0.10 p = 0.71), and promoted the regeneration of injured axons (axon number: 1.10, 95% CI 0.78 to 1.42, p < 0.00001; myelin sheath thickness: 0.15, 95% CI 0.12 to 0.17, p = 0.28). Reconstruction of critically sized peripheral nerve defects is often hindered by impaired postoperative regeneration, especially in defects that require an autologous nerve graft. This meta-analysis indicates that additional application of MSC can enhance postoperative peripheral nerve regeneration in rats. Based on the promising results in vivo experiments, further studies are needed to demonstrate potential clinical benefits.
Collapse
|
10
|
Nazifi S, Nazari H, Hassanpour H, Ahmadi E, Afzali A. Co‐culturing or conditioned medium of Sertoli cells: Which one supports in vitro maturation of bovine oocytes and developmental competency of resulting embryos? Vet Med Sci 2022; 8:2646-2654. [DOI: 10.1002/vms3.939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Sina Nazifi
- DVM Graduate Student, Faculty of Veterinary Medicine Shahrekord University Shahrekord Iran
| | - Hassan Nazari
- Research Institute of Animal Embryo Technology Shahrekord University Shahrekord Iran
| | - Hossein Hassanpour
- Department of Basic Sciences Faculty of Veterinary Medicine, Shahrekord University Shahrekord Iran
| | - Ebrahim Ahmadi
- Research Institute of Animal Embryo Technology Shahrekord University Shahrekord Iran
| | - Azita Afzali
- Clinical Embryologist Shahrekord University of Medical Sciences Shahrekord Iran
| |
Collapse
|
11
|
Can mesenchymal stem cells derived from adipose tissue and their conditioned medium improve ovarian functions? A mini-review. ZYGOTE 2022; 30:589-592. [PMID: 35730554 DOI: 10.1017/s0967199422000235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Stable ovarian function is a key factor in the performance of the reproductive system. In contrast, some ovarian function-related diseases, such as polycystic ovarian syndrome, premature ovarian failure (POF), and ovarian cancer, are the main cause of infertility and death of women around the world. Despite multiple attempts, there are no effective tools against these conditions; however, mesenchymal stem cell-based therapy, especially using adipose tissue, has attracted much attention in medicine in light of its advantages such as easy isolation and accessibility. Conversely, it has been suggested that MSC-conditioned medium (CM) can restore injured tissues and has high immunocompatibility. So, here, we will summarize the effects of administration of MSCs and CM derived from adipose tissue on ovarian functions and related diseases.
Collapse
|
12
|
Park A, Oh HJ, Ji K, Choi EM, Kim D, Kim E, Kim MK. Effect of Passage Number of Conditioned Medium Collected from Equine Amniotic Fluid Mesenchymal Stem Cells: Porcine Oocyte Maturation and Embryo Development. Int J Mol Sci 2022; 23:ijms23126569. [PMID: 35743012 PMCID: PMC9224282 DOI: 10.3390/ijms23126569] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
Oocyte in vitro maturation (IVM) is the most important first step in in vitro embryo production. One prerequisite for the success of IVM in oocytes is to provide a rich culture microenvironment that meets the nutritional needs of developing oocytes. We applied different equine amniotic fluid mesenchymal stem cell conditioned medium (eAFMSC-CM) from passages 7, 18, and 27 to porcine oocytes during IVM to determine its effects on oocyte development and subsequent embryo development, specifically. The eAFMSC-CM from passage 7 (eAFMSC-CMp7) has a considerable impact on 9 genes: BAX, BCL2, SOD2, NRF2, TNFAIP6, PTGS2, HAS2, Cx37, and Cx43, which are associated with cumulus cell mediated oocyte maturation. GSH levels and distribution of mitochondrial and cortical granules were significantly increased in oocytes incubated with eAFMSC-CMp7. In addition, catalase and superoxide dismutase activities were high after IVM 44 h with eAFMSC-CMp7. After in vitro fertilization, blastocyst quality was significantly increased in the eAFMSC-CMp7 group compared to control. Lastly, the antioxidant effect of eAFMSC-CMp7 substantially regulated the expression of apoptosis, pluripotency related genes and decreased autophagy activity in blastocysts. Taken together, this study demonstrated that the eAFMSC-CMp7 enhanced the cytoplasmic maturation of oocytes and subsequent embryonic development by generating high antioxidant activity.
Collapse
Affiliation(s)
- Ahyoung Park
- Division of Animal and Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea; (A.P.); (H.J.O.); (K.J.); (E.M.C.); (D.K.)
| | - Hyun Ju Oh
- Division of Animal and Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea; (A.P.); (H.J.O.); (K.J.); (E.M.C.); (D.K.)
| | - Kukbin Ji
- Division of Animal and Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea; (A.P.); (H.J.O.); (K.J.); (E.M.C.); (D.K.)
| | - Eunha Miri Choi
- Division of Animal and Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea; (A.P.); (H.J.O.); (K.J.); (E.M.C.); (D.K.)
| | - Dongern Kim
- Division of Animal and Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea; (A.P.); (H.J.O.); (K.J.); (E.M.C.); (D.K.)
| | - Eunyoung Kim
- MK Biotech Inc., 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea;
| | - Min Kyu Kim
- Division of Animal and Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea; (A.P.); (H.J.O.); (K.J.); (E.M.C.); (D.K.)
- MK Biotech Inc., 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea;
- Correspondence: ; Tel.: +82-042-821-5773
| |
Collapse
|