1
|
Dougé A, El Ghazzi N, Lemal R, Rouzaire P. Adoptive T Cell Therapy in Solid Tumors: State-of-the Art, Current Challenges, and Upcoming Improvements. Mol Cancer Ther 2024; 23:272-284. [PMID: 37903371 DOI: 10.1158/1535-7163.mct-23-0310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/18/2023] [Accepted: 10/25/2023] [Indexed: 11/01/2023]
Abstract
In solid tumors, three main complementary approaches of adoptive T-cell therapies were successively developed: tumor-infiltrating lymphocytes, chimeric antigen receptor engineered T cells, and high-affinity T-cell receptor engineered T cells. In this review, we summarized rational and main results of these three adoptive T-cell therapies in solid tumors field and gave an overview of encouraging data and their limits. Then, we listed the major remaining challenges (including tumor antigen loss, on-target/off-tumor effect, tumor access difficulties and general/local immunosubversion) and their lines of research. Finally, we gave insight into the ongoing trials in solid tumor.
Collapse
Affiliation(s)
- Aurore Dougé
- Medical Oncology Department, University Hospital, Clermont-Ferrand, France
- EA(UR)7453 CHELTER - Clermont Auvergne University, Clermont-Ferrand, France
| | - Nathan El Ghazzi
- Medical Oncology Department, University Hospital, Clermont-Ferrand, France
| | - Richard Lemal
- EA(UR)7453 CHELTER - Clermont Auvergne University, Clermont-Ferrand, France
- Histocompatibility and Immunogenetic Department, University Hospital, Clermont-Ferrand, France
| | - Paul Rouzaire
- EA(UR)7453 CHELTER - Clermont Auvergne University, Clermont-Ferrand, France
- Histocompatibility and Immunogenetic Department, University Hospital, Clermont-Ferrand, France
| |
Collapse
|
2
|
Choi JY, Kim TJ. The Current Status and Future Perspectives of Chimeric Antigen Receptor-Engineered T Cell Therapy for the Management of Patients with Endometrial Cancer. Curr Issues Mol Biol 2023; 45:3359-3374. [PMID: 37185744 PMCID: PMC10136476 DOI: 10.3390/cimb45040220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Endometrial cancer (EC) is a gynecological neoplasm that is increasing in occurrence and mortality rates. Although endometrial cancer in the early stages shows a relatively favorable prognosis, there is an increase in cancer-related mortality rates in the advanced or recurrent endometrial carcinoma population and patients in the metastatic setting. This discrepancy has presented an opportunity for research and development of target therapies in this population. After obtaining promising results with hematologic cancers, chimeric antigen receptor (CAR)-T cell immunotherapy is gaining acceptance as a treatment for solid neoplasms. This treatment platform allows T cells to express tumor-specific CARs on the cell surface, which are administered to the patient to treat neoplastic cells. Given that CAR-T cell therapy has shown potential and clinical benefit compared to other T cell treatment platforms, additional research is required to overcome physiological limitations such as CAR-T cell depletion, immunosuppressive tumor microenvironment, and the lack of specific target molecules. Different approaches and development are ongoing to overcome these complications. This review examines CAR-T cell therapy's current use for endometrial carcinomas. We also discuss the significant adverse effects and limitations of this immunotherapeutic approach. Finally, we consolidate signal-seeking early-phase clinical trials and advancements that have shown promising results, leading to the approval of new immunotherapeutic agents for the disease.
Collapse
Affiliation(s)
- Ji-Young Choi
- Department of Gynecology and Infertility Medicine, CHA University Ilsan Medical Center, Goyang 1205, Republic of Korea
| | - Tae-Jin Kim
- Department of Urology, CHA University Ilsan Medical Center, CHA University School of Medicine, Goyang 1205, Republic of Korea
| |
Collapse
|
3
|
Steinbach C, Merchant A, Zaharie AT, Horak P, Marhold M, Krainer M. Current Developments in Cellular Therapy for Castration Resistant Prostate Cancer: A Systematic Review of Clinical Studies. Cancers (Basel) 2022; 14:5719. [PMID: 36428811 PMCID: PMC9688882 DOI: 10.3390/cancers14225719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/21/2022] [Indexed: 11/23/2022] Open
Abstract
Recently, the development of immunotherapies such as cellular therapy, monoclonal antibodies, vaccines and immunomodulators has revolutionized the treatment of various cancer entities. In order to close the existing gaps in knowledge about cellular immunotherapy, specifically focusing on the chimeric antigen receptors (CAR) T-cells, their benefits and application in clinical settings, we conducted a comprehensive systematic review. Two co-authors independently searched the literature and characterized the results. Out of 183 records, 26 were considered eligible. This review provides an overview of the cellular immunotherapy landscape in treating prostate cancer, honing in on the challenges of employing CAR T-cell therapy. CAR T-cell therapy is a promising avenue for research due to the presence of an array of different tumor specific antigens. In prostate cancer, the complex microenvironment of the tumor vastly contributes to the success or failure of immunotherapies.
Collapse
Affiliation(s)
- Christina Steinbach
- Internal Medicine I, Department of Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Almas Merchant
- Internal Medicine I, Department of Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Peter Horak
- Nationales Centrum für Tumorerkrankungen (NCT), 69120 Heidelberg, Germany
| | - Maximilian Marhold
- Internal Medicine I, Department of Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Michael Krainer
- Internal Medicine I, Department of Oncology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
4
|
Keshavarz A, Salehi A, Khosravi S, Shariati Y, Nasrabadi N, Kahrizi MS, Maghsoodi S, Mardi A, Azizi R, Jamali S, Fotovat F. Recent findings on chimeric antigen receptor (CAR)-engineered immune cell therapy in solid tumors and hematological malignancies. Stem Cell Res Ther 2022; 13:482. [PMID: 36153626 PMCID: PMC9509604 DOI: 10.1186/s13287-022-03163-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/12/2022] [Indexed: 11/10/2022] Open
Abstract
Advancements in adoptive cell therapy over the last four decades have revealed various new therapeutic strategies, such as chimeric antigen receptors (CARs), which are dedicated immune cells that are engineered and administered to eliminate cancer cells. In this context, CAR T-cells have shown significant promise in the treatment of hematological malignancies. However, many obstacles limit the efficacy of CAR T-cell therapy in both solid tumors and hematological malignancies. Consequently, CAR-NK and CAR-M cell therapies have recently emerged as novel therapeutic options for addressing the challenges associated with CAR T-cell therapies. Currently, many CAR immune cell trials are underway in various human malignancies around the world to improve antitumor activity and reduce the toxicity of CAR immune cell therapy. This review will describe the comprehensive literature of recent findings on CAR immune cell therapy in a wide range of human malignancies, as well as the challenges that have emerged in recent years.
Collapse
Affiliation(s)
- Ali Keshavarz
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Salehi
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Islamic Azad University,, Isfahan (Khorasgan) Branch, Isfahan, Iran
| | - Setareh Khosravi
- Department of Orthodontics, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran
| | - Yasaman Shariati
- Department of General Surgery, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Navid Nasrabadi
- Department of Endodontics, School of Dentistry, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Sairan Maghsoodi
- Department of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Amirhossein Mardi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramyar Azizi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Jamali
- Department of Endodontics, College of Stomatology, Stomatological Hospital, Xi’an Jiaotong University, Shaanxi, People’s Republic of China
| | - Farnoush Fotovat
- Department of Prosthodontics, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
5
|
Emerging Biomarker-Guided Therapies in Prostate Cancer. CURRENT ONCOLOGY (TORONTO, ONT.) 2022; 29:5054-5076. [PMID: 35877260 PMCID: PMC9319825 DOI: 10.3390/curroncol29070400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 12/25/2022]
Abstract
Prostate cancer remains one of the leading causes of cancer death in men worldwide. In the past decade, several new treatments for advanced prostate cancer have been approved. With a wide variety of available drugs, including cytotoxic agents, androgen receptor axis-targeted therapies, and alpha-emitting radiation therapy, identifying their optimal sequencing remains a challenge. Progress in the understanding of the biology of prostate cancer has provided an opportunity for a more refined and personalized treatment selection process. With the advancement of molecular sequencing techniques, genomic precision through the identification of potential treatment targets and predictive biomarkers has been rapidly evolving. In this review, we discussed biomarker-driven treatments for advanced prostate cancer. First, we presented predictive biomarkers for established, global standard treatments for advanced diseases, such as chemotherapy and androgen receptor axis-targeted agents. We also discussed targeted agents with recent approval for special populations, such as poly ADP ribose polymerase (PARP) inhibitors in patients with metastatic castrate-resistant prostate cancer with homologous recombination repair-deficient tumors, pembrolizumab in patients with high levels of microsatellite instability or high tumor mutational burden, and prostate-specific membrane antigen (PSMA) directed radioligand theragnostic treatment for PSMA expressing tumors. Additionally, we discussed evolving treatments, such as cancer vaccines, chimeric antigen receptor T-cells (CAR-T), Bispecific T-cell engagers (BiTEs), other targeted agents such as AKT inhibitors, and various combination treatments. In summary, advances in molecular genetics have begun to propel personalized medicine forward in the management of advanced prostate cancer, allowing for a more precise, biomarker-driven treatment selection with the goal of improving overall efficacy.
Collapse
|
6
|
López-Campos F, Gajate P, Romero-Laorden N, Zafra-Martín J, Juan M, Hernando Polo S, Conde Moreno A, Couñago F. Immunotherapy in Advanced Prostate Cancer: Current Knowledge and Future Directions. Biomedicines 2022; 10:537. [PMID: 35327339 PMCID: PMC8945350 DOI: 10.3390/biomedicines10030537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
The advent of immunotherapy has revolutionized cancer treatment. Unfortunately, this has not been the case for metastatic castration-resistant prostate cancer (mCRPC), likely due to the heterogeneous and immune-suppressive microenvironment present in prostate cancer. The identification of molecular biomarkers that could predict response to immunotherapy represents one of the current challenges in this clinical scenario. The management of advanced castration-resistant prostate cancer is rapidly evolving and immunotherapy treatments, mostly consisting of immune checkpoint inhibitors combinations, BiTE® (bispecific T-cell engager) immune therapies, and chimeric antigen receptors (CAR) are in development with promising results. This review analyses the current evidence of immunotherapy treatments for mCRPC, evaluating past failures and promising approaches and discussing the directions for future research.
Collapse
Affiliation(s)
- Fernando López-Campos
- Radiation Oncology Department, Hospital Universitario Ramón y Cajal, 28024 Madrid, Spain
| | - Pablo Gajate
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, 28024 Madrid, Spain;
| | - Nuria Romero-Laorden
- Medical Oncology Department, Hospital Universitario La Princesa, 28006 Madrid, Spain;
| | - Juan Zafra-Martín
- Department of Radiation Oncology, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain;
| | - Manel Juan
- Servei d’Immunologia, CDB-Hospital Clínic, Plataforma de Inmunoterapia HSJD-Clínic, 08036 Barcelona, Spain;
| | - Susana Hernando Polo
- Medical Oncology Department, Hospital Universitario Fundación Alcorcón, 28922 Alcorcón, Spain;
| | - Antonio Conde Moreno
- Radiation Oncology Department, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain;
| | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario Quirónsalud, 28223 Madrid, Spain;
- Department of Radiation Oncology, Hospital La Luz, 28003 Madrid, Spain
- Universidad Europea de Madrid, 28670 Madrid, Spain
| |
Collapse
|
7
|
Perera MP, Thomas PB, Risbridger GP, Taylor R, Azad A, Hofman MS, Williams ED, Vela I. Chimeric Antigen Receptor T-Cell Therapy in Metastatic Castrate-Resistant Prostate Cancer. Cancers (Basel) 2022; 14:cancers14030503. [PMID: 35158771 PMCID: PMC8833489 DOI: 10.3390/cancers14030503] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Prostate cancer is one of the most frequently diagnosed cancers amongst men worldwide. Treatment for metastatic disease is often in the form of androgen deprivation therapy. However, over the course of treatment affected men may become castrate-resistant. Options for men with metastatic castrate-resistant cancer are limited. This review focuses on the role of chimeric antigen receptor T-cell therapy (CAR-T) in men with metastatic castrate-resistant prostate cancer. This review is a contemporary appraisal of preclinical and clinical studies conducted in this emerging form of immunotherapy. A thorough evaluation of the role of CAR-T therapy in prostate cancer is provided, as well as the obstacles we must overcome to clinically translate this therapy for men affected with this rapidly fatal disease. Abstract Prostate cancer is the most commonly diagnosed solid-organ cancer amongst males worldwide. Metastatic castrate-resistant prostate cancer (mCRPC) is a rapidly fatal end-sequelae of prostate cancer. Therapeutic options for men with mCRPC are limited and are not curative in nature. The recent development of chimeric antigen receptor T-cell (CAR-T) therapy has revolutionised the treatment of treatment-resistant haematological malignancies, and several studies are underway investigating the utility of this technology in the treatment of solid tumours. In this review, we evaluate the current treatment options for men with mCRPC as well as the current landscape of preclinical and clinical trials of CAR-T cell therapy against prostate cancer. We also appraise the various prostate cancer-specific tumour-associated antigens that may be targeted by CAR-T cell technology. Finally, we examine the potential translational barriers of CAR-T cell therapy in solid tumours. Despite preclinical success, preliminary clinical trials in men with prostate cancer have had limited efficacy. Therefore, further clinically translatable preclinical models are required to enhance the understanding of the role of this investigational therapeutic in men with mCRPC. In the era of precision medicine, tailored immunotherapy administered to men in a tumour-agnostic approach provides hope to a group of men who otherwise have few treatment options available.
Collapse
Affiliation(s)
- Mahasha P.J. Perera
- School of Biomedical Sciences at Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD 4102, Australia; (P.B.T.); (E.D.W.)
- Queensland Bladder Cancer Initiative (QBCI), Woolloongabba, QLD 4102, Australia
- Department of Urology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
- Centre for Personalised Analysis of Cancers (CPAC), Brisbane, QLD 4102, Australia
- Correspondence: (M.P.P.); (I.V.)
| | - Patrick B. Thomas
- School of Biomedical Sciences at Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD 4102, Australia; (P.B.T.); (E.D.W.)
- Queensland Bladder Cancer Initiative (QBCI), Woolloongabba, QLD 4102, Australia
- Centre for Personalised Analysis of Cancers (CPAC), Brisbane, QLD 4102, Australia
| | - Gail P. Risbridger
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3168, Australia; (G.P.R.); (R.T.)
| | - Renea Taylor
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3168, Australia; (G.P.R.); (R.T.)
| | - Arun Azad
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (A.A.); (M.S.H.)
| | - Michael S. Hofman
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (A.A.); (M.S.H.)
| | - Elizabeth D. Williams
- School of Biomedical Sciences at Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD 4102, Australia; (P.B.T.); (E.D.W.)
- Queensland Bladder Cancer Initiative (QBCI), Woolloongabba, QLD 4102, Australia
- Centre for Personalised Analysis of Cancers (CPAC), Brisbane, QLD 4102, Australia
| | - Ian Vela
- School of Biomedical Sciences at Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD 4102, Australia; (P.B.T.); (E.D.W.)
- Queensland Bladder Cancer Initiative (QBCI), Woolloongabba, QLD 4102, Australia
- Department of Urology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
- Centre for Personalised Analysis of Cancers (CPAC), Brisbane, QLD 4102, Australia
- Correspondence: (M.P.P.); (I.V.)
| |
Collapse
|
8
|
Kim TJ, Lee YH, Koo KC. Current and future perspectives on CAR-T cell therapy for renal cell carcinoma: A comprehensive review. Investig Clin Urol 2022; 63:486-498. [PMID: 36067994 PMCID: PMC9448669 DOI: 10.4111/icu.20220103] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/22/2022] [Accepted: 07/06/2022] [Indexed: 01/02/2023] Open
Abstract
In the clinical setting of renal cell carcinoma (RCC), immune reactions such as tumor-specific T cell responses can be spontaneous events or can be elicited by checkpoint inhibitors, cytokines, and other immunotherapy modalities. The results from immunotherapy have led to significant advances in treatment methods and patient outcomes. The approval of nivolumab primarily as a second-line monotherapy and the latest approval of novel combination therapies as first-line treatment have established the significance of immunotherapy in the treatment of RCC. In this perspective, chimeric antigen receptor (CAR)-T cell therapy represents a major advance in the developing field of immunotherapy. This treatment modality facilitates T cells to express specific CARs on the cell surface which are reinfused to the patient to treat the analogous tumor cells. After showing treatment potential in hematological malignancies, this new therapeutic approach has become a strong candidate as a therapeutic modality for solid neoplasms. Although CAR-T cell therapy has shown promise and clinical benefit compared to previous T-cell modulated immunotherapies, further studies are warranted to overcome unfavorable physiological settings and hindrances such as the lack of specific molecular targets, depletion of CAR-T cells, a hostile tumor microenvironment, and on/off-tumor toxicities. Several approaches are being considered and research is ongoing to overcome these problems. In this comprehensive review, we provide the rationale and preliminary results of CAR-T cell therapy in RCC and discuss emerging novel strategies and future directions.
Collapse
Affiliation(s)
- Tae Jin Kim
- Department of Urology, CHA University College of Medicine, CHA Bundang Medical Center, Seongnam, Korea
| | - Young Hwa Lee
- Department of Urology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Kyo Chul Koo
- Department of Urology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Shah K, Al-Haidari A, Sun J, Kazi JU. T cell receptor (TCR) signaling in health and disease. Signal Transduct Target Ther 2021; 6:412. [PMID: 34897277 PMCID: PMC8666445 DOI: 10.1038/s41392-021-00823-w] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
Interaction of the T cell receptor (TCR) with an MHC-antigenic peptide complex results in changes at the molecular and cellular levels in T cells. The outside environmental cues are translated into various signal transduction pathways within the cell, which mediate the activation of various genes with the help of specific transcription factors. These signaling networks propagate with the help of various effector enzymes, such as kinases, phosphatases, and phospholipases. Integration of these disparate signal transduction pathways is done with the help of adaptor proteins that are non-enzymatic in function and that serve as a scaffold for various protein-protein interactions. This process aids in connecting the proximal to distal signaling pathways, thereby contributing to the full activation of T cells. This review provides a comprehensive snapshot of the various molecules involved in regulating T cell receptor signaling, covering both enzymes and adaptors, and will discuss their role in human disease.
Collapse
Affiliation(s)
- Kinjal Shah
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Amr Al-Haidari
- Clinical Genetics and Pathology, Skåne University Hospital, Region Skåne, Lund, Sweden
- Clinical Sciences Department, Surgery Research Unit, Lund University, Malmö, Sweden
| | - Jianmin Sun
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
10
|
Sun BL. Immunotherapy in treatment of metastatic prostate cancer: An approach to circumvent immunosuppressive tumor microenvironment. Prostate 2021; 81:1125-1134. [PMID: 34435699 DOI: 10.1002/pros.24213] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 01/21/2023]
Abstract
Prostate cancer is the second most common cause of cancer-related death in men in the United States and the fifth worldwide. Most prostate cancer arises as an androgen-dependent tumor but eventually progresses into castration-resistance prostate cancer, incurable by the current androgen deprivation therapy and chemotherapy. The development of immunotherapy in cancer treatment has brought an exciting era of antiprostate cancer therapy through antitumor immune responses. Prostate cancer is recognized as a poorly immunogenic tissue with immunological ignorance showing low levels of antigen-presenting process and cytotoxic T-cell activation, high levels of immune checkpoint molecules and immunosuppressive cytokines/chemokines, and recruitment of immunosuppressive cells. Immunotherapies for prostate cancer have been developed to activate the innate and adaptive immune responses, such as vaccines and adoptive CAR-T cells, or to inhibit immunosuppressive molecules, such as immune checkpoint inhibitors or antibodies. The U.S Food and Drug Administration has approved Sipuleucel-T for the treatment of asymptomatic or minimally symptomatic metastatic castrate-resistant prostate cancer (mCRPC) and immune checkpoint inhibitor pembrolizumab for the treatment of all solid tumors, including prostate cancer, with impaired mismatch repair genes/microsatellite instability; however, the current clinical outcomes still need to be improved. As various immunosuppressive mechanisms coexist and cross-interact within the tumor microenvironment, different immunotherapy approaches may have to be combined and selected in a highly personalized way. It is hoped that this rapidly evolving field of immunotherapy will achieve successful treatment for mCRPC and will be applied to a wider range of prostate cancer patients.
Collapse
Affiliation(s)
- Belinda L Sun
- Department of Pathology, Banner-University Medical Center, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|