1
|
Sechoaro K, Aucamp J, Kannigadu C, Janse van Rensburg HD, Suganuma K, N'Da DD. Investigation of Novel Isatinylhydantoin Derivatives as Potential Anti-Kinetoplastid Agents. ChemMedChem 2025; 20:e202400533. [PMID: 39344346 DOI: 10.1002/cmdc.202400533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Neglected tropical diseases are a group of infectious diseases with a high endemicity in developing countries of Africa, Asia, and the Americas. Treatment for these diseases depends solely on chemotherapy, which is associated with severe side effects, toxicity, and the development of parasitic resistance. This highlights a critical need to develop new and effective drugs to curb these diseases. As a result, a series of novel isatinylhydantoin derivatives were synthesized and evaluated for in vitro anti-kinetoplastid activity against seven human- or animal-infective Trypanosoma and two human-infective Leishmania species. The synthesized derivatives were tested for potential cytotoxicity against human, animal, and parasite host-related cell lines. The isatinylhydantoin hybrid 4 b bearing 5-chloroisatin and p-bromobenzyl moieties, showed strong trypanocidal activity against blood-stage T. congolense parasites; however, the promising in vitro trypanocidal potency of 4 b could not be translated to in vivo treatment efficacy in a preliminary animal study. Compounds 5, 2 b, and 5 b, were the most active against amastigotes of L. donovani, showing higher leishmanicidal activity than the reference drug, amphotericin B. These compounds were identified as early antileishmanicidal leads, and future investigations will focus on confirming their antileishmanial potential through in vivo efficacy evaluation as well as their exact mechanism of action.
Collapse
Affiliation(s)
- Keamogetswe Sechoaro
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen), Faculty of Health Sciences, North-West University, 11 Hoffmann Street, Potchefstroom, 2520, South Africa
| | - Janine Aucamp
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen), Faculty of Health Sciences, North-West University, 11 Hoffmann Street, Potchefstroom, 2520, South Africa
| | - Christina Kannigadu
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen), Faculty of Health Sciences, North-West University, 11 Hoffmann Street, Potchefstroom, 2520, South Africa
| | - Helena D Janse van Rensburg
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen), Faculty of Health Sciences, North-West University, 11 Hoffmann Street, Potchefstroom, 2520, South Africa
| | - Keisuke Suganuma
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido, 080-8555, Japan
| | - David D N'Da
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen), Faculty of Health Sciences, North-West University, 11 Hoffmann Street, Potchefstroom, 2520, South Africa
| |
Collapse
|
2
|
N'Da DD, Aucamp J, van Rensburg HDJ, Suganuma K. Design, synthesis, in vitro and in vivo trypanosomaticidal efficacy of novel 5-nitroindolylazines. Eur J Med Chem 2024; 280:116979. [PMID: 39471710 DOI: 10.1016/j.ejmech.2024.116979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/05/2024] [Accepted: 10/17/2024] [Indexed: 11/01/2024]
Abstract
Leishmaniasis and trypanosomiasis rank among lethal vector-borne parasitic diseases that are endemic in tropical and sub-tropical countries. There are currently no preventive vaccines against them, and once diagnosed, a handful of less effective drugs clinically accessible are the only therapeutic options offered to treat these ailments. And although curable, the eradication and elimination of these diseases are hampered by the emergence of multidrug-resistant strains of the causal pathogens. Hence, there is accrued necessity for the development of new, effective, and affordable drugs. In recent decades, several molecular scaffolds, including nitroaromatics, endoperoxides, etc., have been attempted as building blocks to generate new effective clinical antitrypanosomatid agents with low toxicity so far to no avail. In this regard, a series of nitroindolylazine derivatives was synthesised in a three-step process involving nucleophilic substitution (SN), hydrazination and Schiff base condensation reactions, and was evaluated against various Leishmania and Trypanosoma species and strains. Several promising hits portraying leishmanicidal and trypanocidal with in vitro submicromolar activities, and devoid of toxicity on mammalian cells were uncovered. Among these, nitrofurylazine 11 (Tc IC50: 0.08 ± 0.03 μM) and nitrothienylazine 13 (Tc IC50: 0.09 ± 0.01 μM) were evaluated in vivo against Trypanosoma congolense, the causative agent of nagana, which is livestock most virulent trypanosome species in mice-infected preliminary study. However, only partial efficacy was observed as all mice succumbed due to high parasitemia within 13 days post-infection during the treatment. The translational potential of antileishmanial and antichagasic hits, as well as further identification of their molecular targets, will be assessed in future research.
Collapse
Affiliation(s)
- David D N'Da
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa.
| | - Janine Aucamp
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa
| | | | - Keisuke Suganuma
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido, 080-8555, Japan
| |
Collapse
|
3
|
Torchelsen FKVDS, Mazzeti AL, Mosqueira VCF. Drugs in preclinical and early clinical development for the treatment of Chagas´s disease: the current status. Expert Opin Investig Drugs 2024; 33:575-590. [PMID: 38686546 DOI: 10.1080/13543784.2024.2349289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION Chagas disease is spreading faster than expected in different countries, and little progress has been reported in the discovery of new drugs to combat Trypanosoma cruzi infection in humans. Recent clinical trials have ended with small hope. The pathophysiology of this neglected disease and the genetic diversity of parasites are exceptionally complex. The only two drugs available to treat patients are far from being safe, and their efficacy in the chronic phase is still unsatisfactory. AREAS COVERED This review offers a comprehensive examination and critical review of data reported in the last 10 years, and it is focused on findings of clinical trials and data acquired in vivo in preclinical studies. EXPERT OPINION The in vivo investigations classically in mice and dog models are also challenging and time-consuming to attest cure for infection. Poorly standardized protocols, availability of diagnosis methods and disease progression markers, the use of different T. cruzi strains with variable benznidazole sensitivities, and animals in different acute and chronic phases of infection contribute to it. More synchronized efforts between research groups in this field are required to put in evidence new promising substances, drug combinations, repurposing strategies, and new pharmaceutical formulations to impact the therapy.
Collapse
Affiliation(s)
- Fernanda Karoline Vieira da Silva Torchelsen
- School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Brazil
- Post-Graduation Program in Pharmaceutical Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ana Lia Mazzeti
- Department of Biomedical Sciences and Health, Academic Unit of Passos, University of Minas Gerais State, Passos, Brazil
| | | |
Collapse
|
4
|
Kwakye-Nuako G, Middleton CE, McCall LI. Small molecule mediators of host-T. cruzi-environment interactions in Chagas disease. PLoS Pathog 2024; 20:e1012012. [PMID: 38457443 PMCID: PMC10923493 DOI: 10.1371/journal.ppat.1012012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024] Open
Abstract
Small molecules (less than 1,500 Da) include major biological signals that mediate host-pathogen-microbiome communication. They also include key intermediates of metabolism and critical cellular building blocks. Pathogens present with unique nutritional needs that restrict pathogen colonization or promote tissue damage. In parallel, parts of host metabolism are responsive to immune signaling and regulated by immune cascades. These interactions can trigger both adaptive and maladaptive metabolic changes in the host, with microbiome-derived signals also contributing to disease progression. In turn, targeting pathogen metabolic needs or maladaptive host metabolic changes is an important strategy to develop new treatments for infectious diseases. Trypanosoma cruzi is a single-celled eukaryotic pathogen and the causative agent of Chagas disease, a neglected tropical disease associated with cardiac and intestinal dysfunction. Here, we discuss the role of small molecules during T. cruzi infection in its vector and in the mammalian host. We integrate these findings to build a theoretical interpretation of how maladaptive metabolic changes drive Chagas disease and extrapolate on how these findings can guide drug development.
Collapse
Affiliation(s)
- Godwin Kwakye-Nuako
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Caitlyn E. Middleton
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, United States of America
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, United States of America
| |
Collapse
|
5
|
El-Nashar HAS, Sayed AM, El-Sherief HAM, Rateb ME, Akil L, Khadra I, Majrashi TA, Al-Rashood ST, Binjubair FA, El Hassab MA, Eldehna WM, Abdelmohsen UR, Mostafa NM. Metabolomic profile, anti-trypanosomal potential and molecular docking studies of Thunbergia grandifolia. J Enzyme Inhib Med Chem 2023; 38:2199950. [PMID: 37080775 PMCID: PMC10120545 DOI: 10.1080/14756366.2023.2199950] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/14/2023] [Accepted: 04/02/2023] [Indexed: 04/22/2023] Open
Abstract
Trypanosomiasis is a protozoan disease transmitted via Trypanosoma brucei. This study aimed to examine the metabolic profile and anti-trypanosomal effect of methanol extract of Thunbergia grandifolia leaves. The liquid chromatography-high resolution electrospray ionisation mass spectrometry (LC-HRESIMS) revealed the identification of fifteen compounds of iridoid, flavonoid, lignan, phenolic acid, and alkaloid classes. The extract displayed a promising inhibitory activity against T. brucei TC 221 with MIC value of 1.90 μg/mL within 72 h. A subsequent in silico analysis of the dereplicated compounds (i.e. inverse docking, molecular dynamic simulation, and absolute binding free energy) suggested both rhodesain and farnesyl diphosphate synthase as probable targets for two compounds among those dereplicated ones in the plant extract (i.e. diphyllin and avacennone B). The absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiling of diphyllin and avacennone were calculated accordingly, where both compounds showed acceptable drug-like properties. This study highlighted the antiparasitic potential of T. grandifolia leaves.
Collapse
Affiliation(s)
- Heba A. S. El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ahmed M. Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Hany A. M. El-Sherief
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Mostafa E. Rateb
- School, of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley, UK
| | - Lina Akil
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Ibrahim Khadra
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Taghreed A. Majrashi
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Sara T. Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faizah A. Binjubair
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mahmoud A. El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), Ras Sudr, Egypt
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone, New Minia City, Egypt
| | - Nada M. Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
6
|
Pathak S, Bhardwaj M, Agrawal N, Bhardwaj A. A comprehensive review on potential candidates for the treatment of chagas disease. Chem Biol Drug Des 2023; 102:587-605. [PMID: 37070386 DOI: 10.1111/cbdd.14257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/25/2023] [Accepted: 04/06/2023] [Indexed: 04/19/2023]
Abstract
Twenty different infectious disorders induced by bacteria, viruses, and parasites are categorized as neglected tropical diseases (NTDs) by WHO. The severity of chagas disease remains a major concern in endemic areas and an emerging public health hazard in nonendemic countries. Trypanosoma cruzi, the etiological agent of this NTD, is mostly transmitted by triatomine vectors and comprises a range of epidemiologically significant variants. Current chemotherapeutics are obsolete, and one of the primary reasons for treatment cessation is their poor safety and effectiveness. Due to the aforementioned challenges, researchers are now focusing on discovering alternative novel safe, and economically reachable therapies for the treatment of trypanosomiasis. Certain target-based drugs that target specific biochemical processes of the causative parasites have been described as potential antichagasic agents that possesses various types of heterocyclic scaffolds. These flexible molecules have a wide range of biological actions, and various synthesized compounds with strong activity have been documented. This review aims to discuss the available literature on synthetic anti-T. cruzi drugs that will give a food for thought to medicinal chemists thriving to design and develop such drugs. Furthermore, some of the studies discussed herein are concerned with the potential of novel drugs to block new viable sites in T. cruzi.
Collapse
Affiliation(s)
- Shilpi Pathak
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Muskan Bhardwaj
- Hospital Administration, FCAM, SGT University, Gurugram, India
| | - Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Aditya Bhardwaj
- Department of Healthcare Management, Chitkara Business School, Chitkara University, Punjab, India
| |
Collapse
|
7
|
Robledo SM, Pérez-Silanes S, Fernández-Rubio C, Poveda A, Monzote L, González VM, Alonso-Collado P, Carrión J. Neglected Zoonotic Diseases: Advances in the Development of Cell-Penetrating and Antimicrobial Peptides against Leishmaniosis and Chagas Disease. Pathogens 2023; 12:939. [PMID: 37513786 PMCID: PMC10383258 DOI: 10.3390/pathogens12070939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
In 2020, the WHO established the road map for neglected tropical diseases 2021-2030, which aims to control and eradicate 20 diseases, including leishmaniosis and Chagas disease. In addition, since 2015, the WHO has been developing a Global Action Plan on Antimicrobial Resistance. In this context, the achievement of innovative strategies as an alternative to replace conventional therapies is a first-order socio-sanitary priority, especially regarding endemic zoonoses in poor regions, such as those caused by Trypanosoma cruzi and Leishmania spp. infections. In this scenario, it is worth highlighting a group of natural peptide molecules (AMPs and CPPs) that are promising strategies for improving therapeutic efficacy against these neglected zoonoses, as they avoid the development of toxicity and resistance of conventional treatments. This review presents the novelties of these peptide molecules and their ability to cross a whole system of cell membranes as well as stimulate host immune defenses or even serve as vectors of molecules. The efforts of the biotechnological sector will make it possible to overcome the limitations of antimicrobial peptides through encapsulation and functionalization methods to obtain approval for these treatments to be used in clinical programs for the eradication of leishmaniosis and Chagas disease.
Collapse
Affiliation(s)
- Sara M Robledo
- Programa de Estudio y Control de Enfermedades Tropicales PECET, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia
| | - Silvia Pérez-Silanes
- Department of Pharmaceutical Technology and Chemistry, ISTUN Instituto de Salud Tropical, IdiSNA, Universidad de Navarra, 31008 Pamplona, Spain
| | - Celia Fernández-Rubio
- Department of Microbiology and Parasitology, ISTUN Instituto de Salud Tropical, IdiSNA, Universidad de Navarra, 31008 Pamplona, Spain
| | - Ana Poveda
- DNA Replication and Genome Instability Unit, Grupo de Investigación en Biodiversidad, Zoonosis y Salud Pública (GIBCIZ), Instituto de Investigación en Zoonosis-CIZ, Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito 170521, Ecuador
| | - Lianet Monzote
- Department of Parasitology, Institute of Tropical Medicine "Pedro Kourí", Apartado Postal No. 601, Marianao 13, La Habana 10400, Cuba
| | - Víctor M González
- Grupo de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo Km. 9.100, 28034 Madrid, Spain
| | - Paloma Alonso-Collado
- Department of Animal Health, Faculty of Veterinary Science, Complutense University of Madrid, 28040 Madrid, Spain
| | - Javier Carrión
- Department of Animal Health, Faculty of Veterinary Science, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
8
|
Gabaldón-Figueira JC, Martinez-Peinado N, Escabia E, Ros-Lucas A, Chatelain E, Scandale I, Gascon J, Pinazo MJ, Alonso-Padilla J. State-of-the-Art in the Drug Discovery Pathway for Chagas Disease: A Framework for Drug Development and Target Validation. Res Rep Trop Med 2023; 14:1-19. [PMID: 37337597 PMCID: PMC10277022 DOI: 10.2147/rrtm.s415273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/03/2023] [Indexed: 06/21/2023] Open
Abstract
Chagas disease is the most important protozoan infection in the Americas, and constitutes a significant public health concern throughout the world. Development of new medications against its etiologic agent, Trypanosoma cruzi, has been traditionally slow and difficult, lagging in comparison with diseases caused by other kinetoplastid parasites. Among the factors that explain this are the incompletely understood mechanisms of pathogenesis of T. cruzi infection and its complex set of interactions with the host in the chronic stage of the disease. These demand the performance of a variety of in vitro and in vivo assays as part of any drug development effort. In this review, we discuss recent breakthroughs in the understanding of the parasite's life cycle and their implications in the search for new chemotherapeutics. For this, we present a framework to guide drug discovery efforts against Chagas disease, considering state-of-the-art preclinical models and recently developed tools for the identification and validation of molecular targets.
Collapse
Affiliation(s)
| | - Nieves Martinez-Peinado
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
| | - Elisa Escabia
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
| | - Albert Ros-Lucas
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| | - Eric Chatelain
- Drugs for Neglected Diseases Initiative (DNDi), Geneva, Switzerland
| | - Ivan Scandale
- Drugs for Neglected Diseases Initiative (DNDi), Geneva, Switzerland
| | - Joaquim Gascon
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| | - María-Jesús Pinazo
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
- Drugs for Neglected Diseases Initiative (DNDi), Geneva, Switzerland
| | - Julio Alonso-Padilla
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| |
Collapse
|
9
|
Barnadas-Carceller B, Martinez-Peinado N, Gómez LC, Ros-Lucas A, Gabaldón-Figueira JC, Diaz-Mochon JJ, Gascon J, Molina IJ, Pineda de las Infantas y Villatoro MJ, Alonso-Padilla J. Identification of compounds with activity against Trypanosoma cruzi within a collection of synthetic nucleoside analogs. Front Cell Infect Microbiol 2023; 12:1067461. [PMID: 36710960 PMCID: PMC9880260 DOI: 10.3389/fcimb.2022.1067461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/11/2022] [Indexed: 01/14/2023] Open
Abstract
Introduction Chagas disease is caused by the protozoan parasite Trypanosoma cruzi, and it is the most important neglected tropical disease in the Americas. Two drugs are available to treat the infection, but their efficacy in the chronic stage of the disease, when most cases are diagnosed, is reduced. Their tolerability is also hindered by common adverse effects, making the development of safer and efficacious alternatives a pressing need. T. cruzi is unable to synthesize purines de novo, relying on a purine salvage pathway to acquire these from its host, making it an attractive target for the development of new drugs. Methods We evaluated the anti-parasitic activity of 23 purine analogs with different substitutions in the complementary chains of their purine rings. We sequentially screened the compounds' capacity to inhibit parasite growth, their toxicity in Vero and HepG2 cells, and their specific capacity to inhibit the development of amastigotes. We then used in-silico docking to identify their likely targets. Results Eight compounds showed specific anti-parasitic activity, with IC50 values ranging from 2.42 to 8.16 μM. Adenine phosphoribosyl transferase, and hypoxanthine-guanine phosphoribosyl transferase, are their most likely targets. Discussion Our results illustrate the potential role of the purine salvage pathway as a target route for the development of alternative treatments against T. cruzi infection, highlithing the apparent importance of specific substitutions, like the presence of benzene groups in the C8 position of the purine ring, consistently associated with a high and specific anti-parasitic activity.
Collapse
Affiliation(s)
- Berta Barnadas-Carceller
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic - University of Barcelona, Barcelona, Spain
| | - Nieves Martinez-Peinado
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic - University of Barcelona, Barcelona, Spain,Secció de Parasitologia, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Laura Córdoba Gómez
- Department of Medicinal & Organic Chemistry and Excellence Research Unit of “Chemistry Applied to Biomedicine and the Environment”, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Albert Ros-Lucas
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic - University of Barcelona, Barcelona, Spain,CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| | | | - Juan J. Diaz-Mochon
- Department of Medicinal & Organic Chemistry and Excellence Research Unit of “Chemistry Applied to Biomedicine and the Environment”, Faculty of Pharmacy, University of Granada, Granada, Spain,GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain,Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain
| | - Joaquim Gascon
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic - University of Barcelona, Barcelona, Spain,CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| | - Ignacio J. Molina
- Institute of Biopathology and Regenerative Medicine, Centre for Biomedical Research, University of Granada, Granada, Spain
| | - María José Pineda de las Infantas y Villatoro
- Department of Medicinal & Organic Chemistry and Excellence Research Unit of “Chemistry Applied to Biomedicine and the Environment”, Faculty of Pharmacy, University of Granada, Granada, Spain,*Correspondence: Julio Alonso-Padilla, ; María José Pineda de las Infantas y Villatoro,
| | - Julio Alonso-Padilla
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic - University of Barcelona, Barcelona, Spain,CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain,*Correspondence: Julio Alonso-Padilla, ; María José Pineda de las Infantas y Villatoro,
| |
Collapse
|
10
|
da Costa APL, Silva JRA, de Molfetta FA. Computational discovery of sulfonamide derivatives as potential inhibitors of the cruzain enzyme from T. cruzi by molecular docking, molecular dynamics and MM/GBSA approaches. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2120625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Ana Paula Lima da Costa
- Laboratório de Modelagem Molecular, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Brazil
| | - José Rogério A. Silva
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Brazil
| | - Fábio Alberto de Molfetta
- Laboratório de Modelagem Molecular, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|
11
|
Martinez-Peinado N, Ortiz JE, Cortes-Serra N, Pinazo MJ, Gascon J, Tapia A, Roitman G, Bastida J, Feresin GE, Alonso-Padilla J. Anti-Trypanosoma cruzi activity of alkaloids isolated from Habranthus brachyandrus (Amaryllidaceae) from Argentina. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154126. [PMID: 35489322 DOI: 10.1016/j.phymed.2022.154126] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/05/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Chagas disease, caused by the parasite Trypanosoma cruzi, affects over six million people worldwide, mainly in Latin American countries. Currently available drugs have variable efficacy in the chronic phase and significant side effects, so there is an urgent need for safer chemotherapeutic treatments. Natural products provide privileged structures that could serve as templates for the synthesis of new drugs. Among them, Amaryllidaceae plants have proved to be a potential natural source of therapeutical agents due to their rich diversity in alkaloids. PURPOSE To identify alkaloids with anti-T. cruzi activity from Habranthus brachyandrus (Baker) Sealy (Amaryllidaceae, subfamily Amaryllidoideae) collected in Argentina. METHODS An H. brachyandrus alkaloid extract was tested against T. cruzi, and its cytotoxicity profile was evaluated against two mammalian cell lines to ascertain its selectivity against the parasite and potential liver toxicity. It was also assessed by a stage-specific anti-amastigote assay and analysed by GC/MS to determine its alkaloid profile. The isolated alkaloids were also tested using the aforementioned assays. RESULTS The extract showed high and specific activity against T. cruzi. The alkaloids lycoramine, galanthindole, 8-O-demethylmaritidine, 8-O-demethylhomolycorine, nerinine, trisphaeridine, deoxytazettine, and tazettamide were identified by means of GC-MS. In addition, hippeastidine (also named aulicine), tazzetine, ismine, and 3-epimacronine were isolated. The alkaloid ismine was specifically active against the parasite and had low toxicity against HepG2 cells, but did not show anti-amastigote activity. CONCLUSION The extract had specific anti-T. cruzi activity and the isolated alkaloid ismine was partially responsible of it. These results encourage further exploration of H. brachyandrus alkaloids in search of novel starting points for Chagas disease drug development.
Collapse
Affiliation(s)
- Nieves Martinez-Peinado
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic-University of Barcelona, Barcelona 08036, Spain; CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Spain
| | - Javier E Ortiz
- Instituto de Biotecnología, Facultad de Ingeniería, Universidad Nacional de San Juan, Av. Libertador General San Martin 1109 O, San Juan, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB) CABA, Argentina
| | - Nuria Cortes-Serra
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic-University of Barcelona, Barcelona 08036, Spain; CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Spain
| | - Maria Jesus Pinazo
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic-University of Barcelona, Barcelona 08036, Spain; CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Spain
| | - Joaquim Gascon
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic-University of Barcelona, Barcelona 08036, Spain; CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Spain
| | - Alejandro Tapia
- Instituto de Biotecnología, Facultad de Ingeniería, Universidad Nacional de San Juan, Av. Libertador General San Martin 1109 O, San Juan, Argentina
| | - German Roitman
- Facultad de Turismo y Urbanismo, Universidad Nacional de San Luis, Av. del Libertador San Martín 721 (D5881DFN) Villa de Merlo, San Luis, Argentina
| | - Jaume Bastida
- Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l´Alimentació, Universitat de Barcelona, Barcelona 08028, Spain
| | - Gabriela E Feresin
- Instituto de Biotecnología, Facultad de Ingeniería, Universidad Nacional de San Juan, Av. Libertador General San Martin 1109 O, San Juan, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB) CABA, Argentina.
| | - Julio Alonso-Padilla
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic-University of Barcelona, Barcelona 08036, Spain; CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Spain.
| |
Collapse
|
12
|
Martinez-Peinado N, Lorente-Macías Á, García-Salguero A, Cortes-Serra N, Fenollar-Collado Á, Ros-Lucas A, Gascon J, Pinazo MJ, Molina IJ, Unciti-Broceta A, Díaz-Mochón JJ, Pineda de las Infantas y Villatoro MJ, Izquierdo L, Alonso-Padilla J. Novel Purine Chemotypes with Activity against Plasmodium falciparum and Trypanosoma cruzi. Pharmaceuticals (Basel) 2021; 14:ph14070638. [PMID: 34358064 PMCID: PMC8308784 DOI: 10.3390/ph14070638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 11/16/2022] Open
Abstract
Malaria and Chagas disease, caused by Plasmodium spp. and Trypanosoma cruzi parasites, remain important global health problems. Available treatments for those diseases present several limitations, such as lack of efficacy, toxic side effects, and drug resistance. Thus, new drugs are urgently needed. The discovery of new drugs may be benefited by considering the significant biological differences between hosts and parasites. One of the most striking differences is found in the purine metabolism, because most of the parasites are incapable of de novo purine biosynthesis. Herein, we have analyzed the in vitro anti-P. falciparum and anti-T. cruzi activity of a collection of 81 purine derivatives and pyrimidine analogs. We firstly used a primary screening at three fixed concentrations (100, 10, and 1 µM) and progressed those compounds that kept the growth of the parasites < 30% at 100 µM to dose–response assays. Then, we performed two different cytotoxicity assays on Vero cells and human HepG2 cells. Finally, compounds specifically active against T. cruzi were tested against intracellular amastigote forms. Purines 33 (IC50 = 19.19 µM) and 76 (IC50 = 18.27 µM) were the most potent against P. falciparum. On the other hand, 6D (IC50 = 3.78 µM) and 34 (IC50 = 4.24 µM) were identified as hit purines against T. cruzi amastigotes. Moreover, an in silico docking study revealed that P. falciparum and T. cruzi hypoxanthine guanine phosphoribosyltransferase enzymes could be the potential targets of those compounds. Our study identified two novel, purine-based chemotypes that could be further optimized to generate potent and diversified anti-parasitic drugs against both parasites.
Collapse
Affiliation(s)
- Nieves Martinez-Peinado
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain; (N.M.-P.); (A.G.-S.); (N.C.-S.); (Á.F.-C.); (A.R.-L.); (J.G.); (M.-J.P.)
| | - Álvaro Lorente-Macías
- Department of Medicinal & Organic Chemistry and Excellence Research Unit of “Chemistry Applied to Biomedicine and the Environment”, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain; (Á.L.-M.); (J.J.D.-M.)
- Institute of Biopathology and Regenerative Medicine, Centre for Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18100 Granada, Spain;
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK;
| | - Alejandro García-Salguero
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain; (N.M.-P.); (A.G.-S.); (N.C.-S.); (Á.F.-C.); (A.R.-L.); (J.G.); (M.-J.P.)
| | - Nuria Cortes-Serra
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain; (N.M.-P.); (A.G.-S.); (N.C.-S.); (Á.F.-C.); (A.R.-L.); (J.G.); (M.-J.P.)
| | - Ángel Fenollar-Collado
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain; (N.M.-P.); (A.G.-S.); (N.C.-S.); (Á.F.-C.); (A.R.-L.); (J.G.); (M.-J.P.)
| | - Albert Ros-Lucas
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain; (N.M.-P.); (A.G.-S.); (N.C.-S.); (Á.F.-C.); (A.R.-L.); (J.G.); (M.-J.P.)
| | - Joaquim Gascon
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain; (N.M.-P.); (A.G.-S.); (N.C.-S.); (Á.F.-C.); (A.R.-L.); (J.G.); (M.-J.P.)
| | - Maria-Jesus Pinazo
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain; (N.M.-P.); (A.G.-S.); (N.C.-S.); (Á.F.-C.); (A.R.-L.); (J.G.); (M.-J.P.)
| | - Ignacio J. Molina
- Institute of Biopathology and Regenerative Medicine, Centre for Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18100 Granada, Spain;
| | - Asier Unciti-Broceta
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK;
| | - Juan J. Díaz-Mochón
- Department of Medicinal & Organic Chemistry and Excellence Research Unit of “Chemistry Applied to Biomedicine and the Environment”, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain; (Á.L.-M.); (J.J.D.-M.)
| | - María J. Pineda de las Infantas y Villatoro
- Department of Medicinal & Organic Chemistry and Excellence Research Unit of “Chemistry Applied to Biomedicine and the Environment”, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain; (Á.L.-M.); (J.J.D.-M.)
- Correspondence: (M.J.P.d.l.I.y.V.); (L.I.); (J.A.-P.); Tel.: +34-958249360 (M.J.P.d.l.I.y.V.); +34-932275400 (ext. 4569) (L.I.); +34-932275400 (ext. 4569) (J.A.-P.)
| | - Luis Izquierdo
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain; (N.M.-P.); (A.G.-S.); (N.C.-S.); (Á.F.-C.); (A.R.-L.); (J.G.); (M.-J.P.)
- Correspondence: (M.J.P.d.l.I.y.V.); (L.I.); (J.A.-P.); Tel.: +34-958249360 (M.J.P.d.l.I.y.V.); +34-932275400 (ext. 4569) (L.I.); +34-932275400 (ext. 4569) (J.A.-P.)
| | - Julio Alonso-Padilla
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain; (N.M.-P.); (A.G.-S.); (N.C.-S.); (Á.F.-C.); (A.R.-L.); (J.G.); (M.-J.P.)
- Correspondence: (M.J.P.d.l.I.y.V.); (L.I.); (J.A.-P.); Tel.: +34-958249360 (M.J.P.d.l.I.y.V.); +34-932275400 (ext. 4569) (L.I.); +34-932275400 (ext. 4569) (J.A.-P.)
| |
Collapse
|
13
|
Martínez-Peinado N, Cortes-Serra N, Tallini LR, Pinazo MJ, Gascon J, Bastida J, Alonso-Padilla J. Amaryllidaceae plants: a potential natural resource for the treatment of Chagas disease. Parasit Vectors 2021; 14:337. [PMID: 34174959 PMCID: PMC8235838 DOI: 10.1186/s13071-021-04837-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/09/2021] [Indexed: 11/10/2022] Open
Abstract
Background Chagas disease is a neglected zoonosis caused by the parasite Trypanosoma cruzi. It affects over six million people, mostly in Latin America. Drugs available to treat T. cruzi infection have associated toxicity and questionable efficacy at the chronic stage. Hence, the discovery of more effective and safer drugs is an unmet medical need. For this, natural products represent a pool of unique chemical diversity that can serve as excellent templates for the synthesis of active molecules. Methods A collection of 79 extracts of Amaryllidaceae plants were screened against T. cruzi. Active extracts against the parasite were progressed through two cell toxicity assays based on Vero and HepG2 cells to determine their selectivity profile and discard those toxic to host cells. Anti-T. cruzi-specific extracts were further qualified by an anti-amastigote stage assay. Results Two extracts, respectively from Crinum erubescens and Rhodophiala andicola, were identified as highly active and specific against T. cruzi and its mammalian replicative form. Conclusions The results retrieved in this study encourage further exploration of the chemical content of these extracts in search of new anti-T. cruzi drug development starting points. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04837-9.
Collapse
Affiliation(s)
- Nieves Martínez-Peinado
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic-University of Barcelona, 08036, Barcelona, Spain
| | - Nuria Cortes-Serra
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic-University of Barcelona, 08036, Barcelona, Spain
| | - Luciana R Tallini
- Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia I Ciències de L´Alimentació, Universitat de Barcelona, 08028, Barcelona, Spain.,Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande Do Sul, Porto Alegre - RS, 90610-000, Brazil
| | - Maria-Jesus Pinazo
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic-University of Barcelona, 08036, Barcelona, Spain
| | - Joaquim Gascon
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic-University of Barcelona, 08036, Barcelona, Spain
| | - Jaume Bastida
- Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia I Ciències de L´Alimentació, Universitat de Barcelona, 08028, Barcelona, Spain.
| | - Julio Alonso-Padilla
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic-University of Barcelona, 08036, Barcelona, Spain.
| |
Collapse
|
14
|
Chan-Bacab MJ, Reyes-Estebanez MM, Camacho-Chab JC, Ortega-Morales BO. Microorganisms as a Potential Source of Molecules to Control Trypanosomatid Diseases. Molecules 2021; 26:molecules26051388. [PMID: 33806654 PMCID: PMC7962016 DOI: 10.3390/molecules26051388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 11/17/2022] Open
Abstract
Trypanosomatids are the causative agents of leishmaniasis and trypanosomiasis, which affect about 20 million people in the world’s poorest countries, leading to 95,000 deaths per year. They are often associated with malnutrition, weak immune systems, low quality housing, and population migration. They are generally recognized as neglected tropical diseases. New drugs against these parasitic protozoa are urgently needed to counteract drug resistance, toxicity, and the high cost of commercially available drugs. Microbial bioprospecting for new molecules may play a crucial role in developing a new generation of antiparasitic drugs. This article reviews the current state of the available literature on chemically defined metabolites of microbial origin that have demonstrated antitrypanosomatid activity. In this review, bacterial and fungal metabolites are presented; they originate from a range of microorganisms, including cyanobacteria, heterotrophic bacteria, and filamentous fungi. We hope to provide a useful overview for future research to identify hits that may become the lead compounds needed to accelerate the discovery of new drugs against trypanosomatids.
Collapse
|
15
|
Martinez-Peinado N, Cortes-Serra N, Sherman J, Rodriguez A, Bustamante JM, Gascon J, Pinazo MJ, Alonso-Padilla J. Identification of Trypanosoma cruzi Growth Inhibitors with Activity In Vivo within a Collection of Licensed Drugs. Microorganisms 2021; 9:microorganisms9020406. [PMID: 33669310 PMCID: PMC7920067 DOI: 10.3390/microorganisms9020406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/08/2021] [Accepted: 02/13/2021] [Indexed: 11/17/2022] Open
Abstract
Chagas disease, caused by the parasite Trypanosoma cruzi (T. cruzi), affects more than six million people worldwide, with its greatest burden in Latin America. Available treatments present frequent toxicity and variable efficacy at the chronic phase of the infection, when the disease is usually diagnosed. Hence, development of new therapeutic strategies is urgent. Repositioning of licensed drugs stands as an attractive fast-track low-cost approach for the identification of safer and more effective chemotherapies. With this purpose we screened 32 licensed drugs for different indications against T. cruzi. We used a primary in vitro assay of Vero cells infection by T. cruzi. Five drugs showed potent activity rates against it (IC50 < 4 µmol L−1), which were also specific (selectivity index >15) with respect to host cells. T. cruzi inhibitory activity of four of them was confirmed by a secondary anti-parasitic assay based on NIH-3T3 cells. Then, we assessed toxicity to human HepG2 cells and anti-amastigote specific activity of those drugs progressed. Ultimately, atovaquone-proguanil, miltefosine, and verapamil were tested in a mouse model of acute T. cruzi infection. Miltefosine performance in vitro and in vivo encourages further investigating its use against T. cruzi.
Collapse
Affiliation(s)
- Nieves Martinez-Peinado
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain; (N.M.-P.); (N.C.-S.); (J.G.)
| | - Nuria Cortes-Serra
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain; (N.M.-P.); (N.C.-S.); (J.G.)
| | - Julian Sherman
- Department of Microbiology, New York University School of Medicine, New York, NY 10010, USA; (J.S.); (A.R.)
| | - Ana Rodriguez
- Department of Microbiology, New York University School of Medicine, New York, NY 10010, USA; (J.S.); (A.R.)
| | - Juan M. Bustamante
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA;
| | - Joaquim Gascon
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain; (N.M.-P.); (N.C.-S.); (J.G.)
| | - Maria-Jesus Pinazo
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain; (N.M.-P.); (N.C.-S.); (J.G.)
- Correspondence: (M.-J.P.); (J.A.-P.); Tel.: +1-0034-932275400 (ext. 1802) (M.-J.P.); +1-0034-932275400 (ext. 4569) (J.A.-P.)
| | - Julio Alonso-Padilla
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain; (N.M.-P.); (N.C.-S.); (J.G.)
- Correspondence: (M.-J.P.); (J.A.-P.); Tel.: +1-0034-932275400 (ext. 1802) (M.-J.P.); +1-0034-932275400 (ext. 4569) (J.A.-P.)
| |
Collapse
|