1
|
Jia X, Wei C, Tian N, Yan H, Wang H. 4D-QSAR and MIA-QSAR Studies of Aminobenzimidazole Derivatives as Fourth-generation EGFR Inhibitors. Med Chem 2024; 20:140-152. [PMID: 37957859 DOI: 10.2174/0115734064258994231106052633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 09/15/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND The epidermal growth factor receptor (EGFR) protein has been intensively studied as a therapeutic target for non-small cell lung cancer (NSCLC). The aminobenzimidazole derivatives as the fourth-generation EGFR inhibitors have achieved promising results and overcame EGFR mutations at C797S, del19 and T790M in NSCLC. OBJECTIVE In order to understand the quantitative structure-activity relationship (QSAR) of aminobenzimidazole derivatives as EGFRdel19 T790M C797S inhibitors, the four-dimensional QSAR (4D-QSAR) and multivariate image analysis (MIA-QSAR) have been performed on the data of 45 known aminobenzimidazole derivatives. METHODS The 4D-QSAR descriptors were acquired by calculating the association energies between probes and aligned conformational ensemble profiles (CEP), and the regression models were established by partial least squares (PLS). In order to further understand and verify the 4D-QSAR model, MIA-QSAR was constructed by using chemical structure pictures to generate descriptors and PLS regression. Furthermore, the molecular docking and averaged noncovalent interactions (aNCI) analysis were also performed to further understand the interactions between ligands and the EGFR targets, which was in good agreement with the 4D-QSAR model. RESULTS The established 4D-QSAR and MIA-QSAR models have strong stability and good external prediction ability. CONCLUSION These results will provide theoretical guidance for the research and development of aminobenzimidazole derivatives as new EGFRdel19 T790M C797S inhibitors.
Collapse
Affiliation(s)
- Xuegong Jia
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China
- Beijing Tide Pharmaceutical Co., Ltd, Beijing, 100176, China
| | - Chaochun Wei
- Faculty of environment and life, Beijing University of Technology, Beijing, 100124, China
| | - Nana Tian
- Beijing Tide Pharmaceutical Co., Ltd, Beijing, 100176, China
| | - Hong Yan
- Faculty of environment and life, Beijing University of Technology, Beijing, 100124, China
| | - Hongjun Wang
- Beijing Tide Pharmaceutical Co., Ltd, Beijing, 100176, China
| |
Collapse
|
2
|
Wang C, Wang X, Zhang D, Sun X, Wu Y, Wang J, Li Q, Jiang G. The macrophage polarization by miRNAs and its potential role in the treatment of tumor and inflammation (Review). Oncol Rep 2023; 50:190. [PMID: 37711048 PMCID: PMC10523439 DOI: 10.3892/or.2023.8627] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/18/2023] [Indexed: 09/16/2023] Open
Abstract
The characteristics of monocyte/macrophage lineage are diversity and plasticity, mainly manifested by M1 and M2 subtypes in the body tissues, and playing different roles in the immunity. In the polarization process of macrophages, the classic molecular mechanism is related to sequential transcription factors. Whether in tumor or inflammatory local microenvironment, the pathological factors of the local microenvironment often affect the polarization of M1 and M2 macrophages, and participate in the occurrence and development of these pathological processes. In recent years, a growing number of research results demonstrated that non‑coding RNA (ncRNA) also participates in the polarization process of macrophages, in addition to traditional cytokines and transcriptional regulation signal pathway molecules. Among numerous ncRNAs, microRNAs (miRNAs) have attracted more attention from scholars both domestically and internationally, and significant progress has been made in basic and clinical research. Therefore, for improved understanding of the molecular mechanism of miRNAs in macrophage polarization and analysis of the potential value of this regulatory pathway in tumor and inflammatory intervention therapy, a comprehensive review of the progress of relevant literature research was conducted and some viewpoints and perspectives were proposed.
Collapse
Affiliation(s)
- Chaozhe Wang
- Department of Immunology, College of Basic Medicine, Binzhou Medical University, Yantai, Shandong 2640032, P.R. China
| | - Xidi Wang
- Department of Laboratory Medicine, Zhangqiu People's Hospital, Jinan, Shandong 250200, P.R. China
| | - Danfeng Zhang
- Department of Laboratory Medicine, Lixia People's Hospital, Jinan, Shandong 250013, P.R. China
| | - Xiaolin Sun
- Department of Laboratory Medicine, Zibo First Hospital, Zibo, Shandong 255200, P.R. China
| | - Yunhua Wu
- Department of Immunology, College of Basic Medicine, Binzhou Medical University, Yantai, Shandong 2640032, P.R. China
| | - Jing Wang
- Department of Immunology, Shandong Yinfeng Academy of Life Science, Jinan, Shandong 250013, P.R. China
| | - Qing Li
- Department of Laboratory Medicine, Zibo First Hospital, Zibo, Shandong 255200, P.R. China
| | - Guosheng Jiang
- Department of Immunology, College of Basic Medicine, Binzhou Medical University, Yantai, Shandong 2640032, P.R. China
- Department of Laboratory Medicine, Zibo First Hospital, Zibo, Shandong 255200, P.R. China
| |
Collapse
|
3
|
Choudhary N, Bawari S, Burcher JT, Sinha D, Tewari D, Bishayee A. Targeting Cell Signaling Pathways in Lung Cancer by Bioactive Phytocompounds. Cancers (Basel) 2023; 15:3980. [PMID: 37568796 PMCID: PMC10417502 DOI: 10.3390/cancers15153980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Lung cancer is a heterogeneous group of malignancies with high incidence worldwide. It is the most frequently occurring cancer in men and the second most common in women. Due to its frequent diagnosis and variable response to treatment, lung cancer was reported as the top cause of cancer-related deaths worldwide in 2020. Many aberrant signaling cascades are implicated in the pathogenesis of lung cancer, including those involved in apoptosis (B cell lymphoma protein, Bcl-2-associated X protein, first apoptosis signal ligand), growth inhibition (tumor suppressor protein or gene and serine/threonine kinase 11), and growth promotion (epidermal growth factor receptor/proto-oncogenes/phosphatidylinositol-3 kinase). Accordingly, these pathways and their signaling molecules have become promising targets for chemopreventive and chemotherapeutic agents. Recent research provides compelling evidence for the use of plant-based compounds, known collectively as phytochemicals, as anticancer agents. This review discusses major contributing signaling pathways involved in the pathophysiology of lung cancer, as well as currently available treatments and prospective drug candidates. The anticancer potential of naturally occurring bioactive compounds in the context of lung cancer is also discussed, with critical analysis of their mechanistic actions presented by preclinical and clinical studies.
Collapse
Affiliation(s)
- Neeraj Choudhary
- Department of Pharmacognosy, GNA School of Pharmacy, GNA University, Phagwara 144 401, India
| | - Sweta Bawari
- Amity Institute of Pharmacy, Amity University, Noida 201 301, India
| | - Jack T. Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Dona Sinha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, India
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110 017, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
4
|
Abubakar SD, Takaki M, Haeno H. Computational modeling of locoregional recurrence with spatial structure identifies tissue-specific carcinogenic profiles. Front Oncol 2023; 13:1116210. [PMID: 37091178 PMCID: PMC10117647 DOI: 10.3389/fonc.2023.1116210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
IntroductionLocal and regional recurrence after surgical intervention is a significant problem in cancer management. The multistage theory of carcinogenesis precisely places the presence of histologically normal but mutated premalignant lesions surrounding the tumor - field cancerization, as a significant cause of cancer recurrence. The relationship between tissue dynamics, cancer initiation and cancer recurrence in multistage carcinogenesis is not well known.MethodsThis study constructs a computational model for cancer initiation and recurrence by combining the Moran and branching processes in which cells requires 3 or more mutations to become malignant. In addition, a spatial structure-setting is included in the model to account for positional relativity in cell turnover towards malignant transformation. The model consists of a population of normal cells with no mutation; several populations of premalignant cells with varying number of mutations and a population of malignant cells. The model computes a stage of cancer detection and surgery to eliminate malignant cells but spares premalignant cells and then estimates the time for malignant cells to re-emerge.ResultsWe report the cellular conditions that give rise to different patterns of cancer initiation and the conditions favoring a shorter cancer recurrence by analyzing premalignant cell types at the time of surgery. In addition, the model is fitted to disease-free clinical data of 8,957 patients in 27 different cancer types; From this fitting, we estimate the turnover rate per month, relative fitness of premalignant cells, growth rate and death rate of cancer cells in each cancer type.DiscussionOur study provides insights into how to identify patients who are likely to have a shorter recurrence and where to target the therapeutic intervention.
Collapse
Affiliation(s)
| | - Mitsuaki Takaki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Hiroshi Haeno
- Research Institute for Biomedical Science, Tokyo University of Science, Noda, Japan
- *Correspondence: Hiroshi Haeno,
| |
Collapse
|
5
|
Kim J, Kim H, Lee MS, Lee H, Kim YJ, Lee WY, Yun SH, Kim HC, Hong HK, Hannenhalli S, Cho YB, Park D, Choi SS. Transcriptomes of the tumor-adjacent normal tissues are more informative than tumors in predicting recurrence in colorectal cancer patients. J Transl Med 2023; 21:209. [PMID: 36941605 PMCID: PMC10029176 DOI: 10.1186/s12967-023-04053-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/10/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Previous investigations of transcriptomic signatures of cancer patient survival and post-therapy relapse have focused on tumor tissue. In contrast, here we show that in colorectal cancer (CRC) transcriptomes derived from normal tissues adjacent to tumors (NATs) are better predictors of relapse. RESULTS Using the transcriptomes of paired tumor and NAT specimens from 80 Korean CRC patients retrospectively determined to be in recurrence or nonrecurrence states, we found that, when comparing recurrent with nonrecurrent samples, NATs exhibit a greater number of differentially expressed genes (DEGs) than tumors. Training two prognostic elastic net-based machine learning models-NAT-based and tumor-based in our Samsung Medical Center (SMC) cohort, we found that NAT-based model performed better in predicting the survival when the model was applied to the tumor-derived transcriptomes of an independent cohort of 450 COAD patients in TCGA. Furthermore, compositions of tumor-infiltrating immune cells in NATs were found to have better prognostic capability than in tumors. We also confirmed through Cox regression analysis that in both SMC-CRC as well as in TCGA-COAD cohorts, a greater proportion of genes exhibited significant hazard ratio when NAT-derived transcriptome was used compared to when tumor-derived transcriptome was used. CONCLUSIONS Taken together, our results strongly suggest that NAT-derived transcriptomes and immune cell composition of CRC are better predictors of patient survival and tumor recurrence than the primary tumor.
Collapse
Affiliation(s)
- Jinho Kim
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, 24341, Korea
| | - Hyunjung Kim
- Precision Medicine Center, Future Innovation Research Division, Seoul National University Bundang Hospital, Seongnam, 13620, Korea
| | - Min-Seok Lee
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, 24341, Korea
| | - Heetak Lee
- Precision Medicine Center, Future Innovation Research Division, Seoul National University Bundang Hospital, Seongnam, 13620, Korea
- Center for Genome Engineering, Institute for Basic Science, 55, Expo-ro, Yuseng-gu, Daejeon, 34126, Korea
| | - Yeon Jeong Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Korea
| | - Woo Yong Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Seong Hyeon Yun
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Hee Cheol Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Hye Kyung Hong
- Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, Korea
| | - Sridhar Hannenhalli
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, Bethesda, 20814, MD, USA
| | - Yong Beom Cho
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Korea.
| | | | - Sun Shim Choi
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, 24341, Korea.
| |
Collapse
|
6
|
Zhou Y, Wang G, Cai J, Du Y, Li H, Duan L, Zhao G, Huang Y. Exosomal transfer of miR-195-5p restrains lung adenocarcinoma progression. Exp Cell Res 2023; 424:113485. [PMID: 36657657 DOI: 10.1016/j.yexcr.2023.113485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
Exosome is an important way for tumor cells to communicate with other cells and plays an important role in tumor progression. Previous studies revealed that miR-195-5p acts as a tumor suppressor in lung cancer. However, the role and molecular mechanism of exosomal transferred miR-195-5p in lung adenocarcinoma (LAC) remains unknown. Here, we found that miR-195-5p expression in circulating exosomes of LAC patients was lower than that of healthy controls. Meanwhile, the expression of exosomal miR-195-5p from normal bronchial epithelial cell line BEAS-2B cells was significantly higher than that of lung cancer cell lines. The exosome labeling assay confirmed that BEAS-2B cells-derived exosomes could be captured by lung cancer cells. Furthermore, exosomal miR-195-5p derived from BEAS-2B cells remarkably inhibited the proliferation, migration, invasion of lung cancer cells, and tumor growth in vivo. In addition, exosomal miR-195-5p from BEAS-2B cells also suppressed the tube-forming ability of vascular endothelial cells. Moreover, we verified that miR-195-5p decreased apelin (APLN) expression to inactivate the Wnt signaling pathway, thereby inhibiting tumor invasiveness and angiogenesis. In conclusion, our research shows that exosomal miR-195-5p from normal bronchial epithelial cells hinders the progression of LAC, suggesting that regulation of exosomal miR-195-5p provides a novel strategy for LAC treatment.
Collapse
Affiliation(s)
- Yongchun Zhou
- Molecular Diagnostic Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, China
| | - Gaowei Wang
- Medical Department, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, China
| | - Jingjing Cai
- Molecular Diagnostic Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, China
| | - Yaqian Du
- Molecular Diagnostic Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, China
| | - Hongsheng Li
- Molecular Diagnostic Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, China
| | - Lincan Duan
- Department of Thoracic Surgery II, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, China
| | - Guangqiang Zhao
- Department of Thoracic Surgery I, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, China
| | - Yunchao Huang
- Department of Thoracic Surgery I, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, China.
| |
Collapse
|
7
|
Identification of Potential microRNA Panels for Male Non-Small Cell Lung Cancer Identification Using Microarray Datasets and Bioinformatics Methods. J Pers Med 2022; 12:jpm12122056. [PMID: 36556276 PMCID: PMC9780989 DOI: 10.3390/jpm12122056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Background: Non-small cell lung cancer (NSCLC) is still one of the types of cancer with the highest death rates. MicroRNAs (miRNAs) play essential roles in NSCLC development. This study evaluates miRNA expression patterns and specific mechanisms in male patients with NSCLC. Methods: We report an integrated microarray analysis of miRNAs for eight matched samples of males with NSCLC compared to the study of public datasets of males with NSCLC from TCGA, followed by qRT-PCR validation. Results: For the TCGA dataset, we identified 385 overexpressed and 75 underexpressed miRNAs. Our cohort identified 54 overexpressed and 77 underexpressed miRNAs, considering a fold-change (FC) of ±1.5 and p < 0.05 as the cutoff value. The common miRNA signature consisted of eight overexpressed and nine underexpressed miRNAs. Validation was performed using qRT-PCR on the tissue samples for miR-183-3p and miR-34c-5p and on plasma samples for miR-34c-5p. We also created mRNA-miRNA regulatory networks to identify critical molecules, revealing NSCLC signaling pathways related to underexpressed and overexpressed transcripts. The genes targeted by these transcripts were correlated with overall survival. Conclusions: miRNAs and some of their target genes could play essential roles in investigating the mechanisms involved in NSCLC evolution and provide opportunities to identify potential therapeutic targets.
Collapse
|
8
|
Xu Y, Chen J, Shao R, Ruan Z, Jiang B, Lou H. Development and validation of a new LC–MS/MS method for the determination of mefatinib in human plasma and its first application in pharmacokinetic studies. J Anal Sci Technol 2022. [DOI: 10.1186/s40543-022-00350-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
AbstractMefatinib (MET306) is a novel second-generation epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) designed to address the highly unmet clinical need of gefitinib-induced resistance and irreversibly bind to mutated tyrosine kinase domain of EGFR and human epidermal growth factor receptor 2 (HER2). In this study, a liquid chromatography–tandem mass spectrometry method was established and validated for determining MET306 in non-small cell lung cancer patients and a backpropagation artificial neural network was developed and constructed to predict the pharmacokinetic process. The mobile phase was water containing 5 mM ammonium acetate and acetonitrile at a flow rate of 0.3 mL min−1, within a 4.5 min run time. MET306 was separated on a Hypersil Gold-C18 at 40 °C and subjected to mass analysis using positive electrospray ionization. A total of 524 data were used as development groups and 145 data were used as testing groups. The final established Northern Goshawk Optimization-Backpropagation Artificial Neural Network (NGO-BPANN) model consisted of one input layer with 6 neurons, 1 hidden layer with 10 nodes, and 1 output layer with one node processed by MATLAB2021a.The calibration range of MET306 was 0.5–200 ng mL−1 with the correlation coefficient r ≥ 0.99. Accuracies ranged from 97.20 to 110.80% and the inter- and intra-assay precision were less than 15%. The ranges of extraction recoveries were 104.95% to 112.09% for analyte and internal standard and there was no significant matrix effect. The storage stability under different conditions was in accordance with the bioanalytical guidelines. The time-concentration profiles of the measured and predicted concentrations of MET306 by NGO-BPANN agree well. An NGO-BPANN model was developed to predict the plasma concentration and pharmacokinetic parameters of MET306 in the first time.
Collapse
|
9
|
Rusu I, Pirlog R, Chiroi P, Nutu A, Puia VR, Fetti AC, Rusu DR, Berindan-Neagoe I, Al Hajjar N. The Implications of Noncoding RNAs in the Evolution and Progression of Nonalcoholic Fatty Liver Disease (NAFLD)-Related HCC. Int J Mol Sci 2022; 23:12370. [PMID: 36293225 PMCID: PMC9603983 DOI: 10.3390/ijms232012370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent liver pathology worldwide. Meanwhile, liver cancer represents the sixth most common malignancy, with hepatocellular carcinoma (HCC) as the primary, most prevalent subtype. Due to the rising incidence of metabolic disorders, NAFLD has become one of the main contributing factors to HCC development. However, although NAFLD might account for about a fourth of HCC cases, there is currently a significant gap in HCC surveillance protocols regarding noncirrhotic NAFLD patients, so the majority of NAFLD-related HCC cases were diagnosed in late stages when survival chances are minimal. However, in the past decade, the focus in cancer genomics has shifted towards the noncoding part of the genome, especially on the microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), which have proved to be involved in the regulation of several malignant processes. This review aims to summarize the current knowledge regarding some of the main dysregulated, noncoding RNAs (ncRNAs) and their implications for NAFLD and HCC development. A central focus of the review is on miRNA and lncRNAs that can influence the progression of NAFLD towards HCC and how they can be used as potential screening tools and future therapeutic targets.
Collapse
Affiliation(s)
- Ioana Rusu
- Department of Pathology, Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
- 3rd Department of General Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400186 Cluj-Napoca, Romania
| | - Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Paul Chiroi
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Andreea Nutu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Vlad Radu Puia
- 3rd Department of General Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400186 Cluj-Napoca, Romania
- Department of Surgery, Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Alin Cornel Fetti
- 3rd Department of General Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400186 Cluj-Napoca, Romania
- Department of Surgery, Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Daniel Radu Rusu
- Department of Pathology, Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Nadim Al Hajjar
- 3rd Department of General Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400186 Cluj-Napoca, Romania
- Department of Surgery, Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| |
Collapse
|
10
|
Fioravanti A, Giordano A, Dotta F, Pirtoli L. Crosstalk between MicroRNA and Oxidative Stress in Physiology and Pathology 2.0. Int J Mol Sci 2022; 23:ijms23126831. [PMID: 35743274 PMCID: PMC9223739 DOI: 10.3390/ijms23126831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023] Open
Affiliation(s)
- Antonella Fioravanti
- Rheumatology Unit, Department of Medicine, Surgery and Neuroscience, Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, 53100 Siena, Italy
- Correspondence: ; Tel.: +39-0577233345
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (A.G.); (L.P.)
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Le Scotte, 53100 Siena, Italy;
| | - Luigi Pirtoli
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (A.G.); (L.P.)
| |
Collapse
|
11
|
Jiang P, Li X. Regulatory Mechanism of lncRNAs in M1/M2 Macrophages Polarization in the Diseases of Different Etiology. Front Immunol 2022; 13:835932. [PMID: 35145526 PMCID: PMC8822266 DOI: 10.3389/fimmu.2022.835932] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/10/2022] [Indexed: 01/27/2023] Open
Abstract
Precise expression and regulation of genes in the immune system is important for organisms to produce strong immunity towards pathogens and limit autoimmunity. In recent years, an increasing number of studies has shown that long noncoding RNAs (lncRNAs) are closely related to immune function and can participate in regulating immune responses by regulating immune cell differentiation, development, and function. As immune cells, the polarization response of macrophages (Mφs) plays an important role in immune function and inflammation. LncRNAs can regulate the phenotypic polarization of Mφs to M1 or M2 through various mechanisms; promote pro-inflammatory or anti-inflammatory effects; and participate in the pathogenesis of cancers, inflammatory diseases, infections, metabolic diseases, and autoimmune diseases. In addition, it is important to explore the regulatory mechanisms of lncRNAs on the dynamic transition between different Mφs phenotypes. Thus, the regulatory role of lncRNAs in the polarization of Mφs and their mechanism are discussed in this review.
Collapse
Affiliation(s)
- Ping Jiang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaopeng Li
- Department of Neurology, Rizhao Hospital of Traditional Chinese Medicine, Rizhao, China
- Integrated Traditional Chinese and Western Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Xiaopeng Li,
| |
Collapse
|
12
|
Ahmad A. Epigenetic regulation of immunosuppressive tumor-associated macrophages through dysregulated microRNAs. Semin Cell Dev Biol 2021; 124:26-33. [PMID: 34556420 DOI: 10.1016/j.semcdb.2021.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/02/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023]
Abstract
Macrophages are immune cells that play different roles under different physiological conditions. They are present in all tissues where they primarily protect from bacteria and pathogens in addition to assisting in tissue repair. During tumor progression, macrophages can exert contrasting effects based on the M1 vs. M2 polarization. The M2 macrophages support tumor growth through mechanisms that help suppress immune responses and/or circumvent immune-surveillance. A number of such mechanisms such as production of IL-10 and arginase, and expression of PD-L1, V-domain Ig suppressor of T cell activation and B7 family molecule B7-H4 are now believed central to the immunosuppressive effects of tumor-associated macrophages (TAMs). Emerging data has identified epigenetic regulation of these immunosuppressive mechanisms by small non-coding RNAs, the microRNAs (miRNAs). This review discusses the available literature on the subject, including the exosomes mediated transfer of miRNAs between cancer cells and the macrophages within the tumor microenvironment. A number of miRNAs are now believed to be involved in TAMs' production of IL-10 and expression of PD-L1 while the information on such regulation of other immunosuppressive mechanisms is slowly emerging. A better understanding of epigenetic regulation of macrophages-mediated immunosuppressive effect can help identify novel targets for therapy and aid the design of future studies aimed at sensitizing tumors to immune responses.
Collapse
Affiliation(s)
- Aamir Ahmad
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
13
|
Kishore A, Petrek M. Roles of Macrophage Polarization and Macrophage-Derived miRNAs in Pulmonary Fibrosis. Front Immunol 2021; 12:678457. [PMID: 34489932 PMCID: PMC8417529 DOI: 10.3389/fimmu.2021.678457] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/29/2021] [Indexed: 12/24/2022] Open
Abstract
This mini-review summarizes the current evidence for the role of macrophage activation and polarization in inflammation and immune response pertinent to interstitial lung disease, specifically pulmonary fibrosis. In the fibrosing lung, the production and function of inflammatory and fibrogenic mediators involved in the disease development have been reported to be regulated by the effects of polarized M1/M2 macrophage populations. The M1 and M2 macrophage phenotypes were suggested to correspond with the pro-inflammatory and pro-fibrogenic signatures, respectively. These responses towards tissue injury followed by the development and progression of lung fibrosis are further regulated by macrophage-derived microRNAs (miRNAs). Besides cellular miRNAs, extracellular exosomal-miRNAs derived from M2 macrophages have also been proposed to promote the progression of pulmonary fibrosis. In a future perspective, harnessing the noncoding miRNAs with a key role in the macrophage polarization is, therefore, suggested as a promising therapeutic strategy for this debilitating disease.
Collapse
Affiliation(s)
- Amit Kishore
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia.,Accuscript Consultancy, Ludhiana, India
| | - Martin Petrek
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia.,Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia.,Departments of Experimental Medicine, and Immunology, University Hospital Olomouc, Olomouc, Czechia
| |
Collapse
|