1
|
Zhou H, Xu J, Pan L. Functions of the Muscleblind-like protein family and their role in disease. Cell Commun Signal 2025; 23:97. [PMID: 39966885 PMCID: PMC11837677 DOI: 10.1186/s12964-025-02102-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/08/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
Conserved proteins are characterized by their functions remaining nearly constant throughout evolutionary history, both vertically through time and horizontally across species. In this review, we focus on a class of conserved proteins known as the Muscleblind-like (MBNL) family. As RNA-binding proteins, MBNL family members interact with pre-mRNAs through evolutionarily conserved tandem zinc finger domains and play critical roles in various RNA metabolic processes, including alternative splicing, mRNA stability, trafficking, regulation of subcellular localization, and alternative polyadenylation. Dysregulation of MBNL proteins can lead to severe consequences. Initially, research primarily associated MBNL proteins with myotonic dystrophy. However, recent studies have revealed their involvement in a broad spectrum of physiological and pathological processes, such as embryonic tissue differentiation and circulatory disorders. Furthermore, the emerging role of MBNL proteins in cancer sheds light on a novel aspect of these evolutionarily ancient proteins. This review provides a comprehensive overview of the MBNL family, emphasizing its structure, the mechanisms underlying its biological functions, and its roles in various diseases.Subject terms: Muscleblind-like-like protein, RNA-binding proteins, Alternative splicing, Tumor, Myotonic dystrophy.
Collapse
Affiliation(s)
- Hui Zhou
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiachi Xu
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China.
| | - Liusheng Pan
- Department of anesthesiology, Yuexi Hospital of the Sixth Affiliated Hospital, Sun Yat-sen University, Xinyi, China.
| |
Collapse
|
2
|
Das P, Becker R, Vergarajauregui S, Engel FB. NE-MTOC Formation in Skeletal Muscle Is Mbnl2-Dependent and Occurs in a Sequential and Gradual Manner. Cells 2025; 14:237. [PMID: 39996710 PMCID: PMC11853192 DOI: 10.3390/cells14040237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/20/2024] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
Non-centrosomal microtubule-organizing centers (ncMTOCs) are important for the function of differentiated cells. Yet, ncMTOCs are poorly understood. Previously, several components of the nuclear envelope (NE)-MTOC have been identified. However, the temporal localization of MTOC proteins and Golgi to the NE and factors controlling the switch from a centrosomal MTOC to a ncMTOC remain elusive. Here, we utilized the in vitro differentiation of C2C12 mouse myoblasts as a model system to study NE-MTOC formation. We find based on longitudinal co-immunofluorescence staining analyses that MTOC proteins are recruited in a sequential and gradual manner to the NE. AKAP9 localizes with the Golgi to the NE after the recruitment of MTOC proteins. Moreover, siRNA-mediated depletion experiments revealed that Mbnl2 is required for proper NE-MTOC formation by regulating the expression levels of AKAP6β. Finally, Mbnl2 depletion affects Pcnt isoform expression. Taken together, our results shed light on how mammals post-transcriptionally control the switch from a centrosomal MTOC to an NE-MTOC and identify Mbnl2 as a novel modulator of ncMTOCs in skeletal muscle cells.
Collapse
|
3
|
Lv L, Yuan K, Li J, Lu J, Zhao Q, Wang H, Chen Q, Dong X, Sheng S, Liu M, Shi Y, Jiang H, Dong Z. PiRNA CFAPIR inhibits cardiac fibrosis by regulating the muscleblind-like protein MBNL2. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167456. [PMID: 39122223 DOI: 10.1016/j.bbadis.2024.167456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/09/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Myocardial fibroblasts transform into myofibroblasts during the progression of cardiac fibrosis, together with excessive cardiac fibroblast proliferation. Hence, the prevention and treatment of cardiac fibrosis are significant factors for inhibiting the development of heart failure. P-element Induced WImpy testis-interacting RNAs (PiRNA) are widely expressed in the heart, but their involvement in cardiac fibrosis has not yet been confirmed. We identified differentially expressed PiRNAs using Arraystar PiRNA expression profiling in Angiotensin II models of cardiac fibrosis in vivo and in vitro. We then explored cardiac-fibrosis-associated PiRNA-related proteins, RNA-protein interactomes, immunoprecipitation, and pulldown. We detected fibrosis markers and pathway-related proteins using immunofluorescence, qRT-PCR, and Western blot. We uncovered cardiac fibrosis associated PiRNA (CFAPIR) that was obviously dysregulated during cardiac fibrosis, whereas its overexpression reversed fibrosis in vivo and in vitro. Mechanistically, CFAPIR competitively bound muscleblind like protein 2 (MBNL2) and the cyclin-dependent kinase inhibitor P21 to regulate the TGF-β1/SMAD3 signaling pathway.
Collapse
Affiliation(s)
- Lin Lv
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Experimental Animal Center, First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Keying Yuan
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Jiahao Li
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Jing Lu
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Qi Zhao
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Hongyan Wang
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Qiuyu Chen
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Xinyu Dong
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Siqi Sheng
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Mingyu Liu
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Yuanqi Shi
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, First Affiliated Hospital of Harbin Medical University, Harbin 150081, China.
| | - Hongquan Jiang
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin 150081, China.
| | - Zengxiang Dong
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, First Affiliated Hospital of Harbin Medical University, Harbin 150081, China; NHC Key Laboratory of Cell Transplantation, First Affiliated Hospital of Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
4
|
Lu J, Zhao Q, Wang L, Li J, Wang H, Lv L, Yuan M, Chen Q, Zhang Z, Luo D, Sheng S, Yuan K, Liu G, Liu M, Shi Y, Guo Y, Dong Z. MBNL2 promotes aging-related cardiac fibrosis via inhibited SUMOylation of Krüppel-like factor4. iScience 2024; 27:110163. [PMID: 38974966 PMCID: PMC11226984 DOI: 10.1016/j.isci.2024.110163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/20/2023] [Revised: 02/06/2024] [Accepted: 05/29/2024] [Indexed: 07/09/2024] Open
Abstract
Aging-related cardiac fibrosis represents the principal pathological progression in cardiovascular aging. The Muscleblind-like splicing regulator 2 (MBNL2) has been unequivocally established as being associated with cardiovascular diseases. Nevertheless, its role in aging-related cardiac fibrosis remains unexplored. This investigation revealed an elevation of MBNL2 levels in the aged heart and senescent cardiac fibroblasts. Notably, the inhibition of MBNL2 demonstrated a capacity to mitigate H2O2-induced myofibroblast transformation and aging-related cardiac fibrosis. Further mechanistic exploration unveiled that aging heightened the expression of SENP1 and impeded the SUMO1 binding with KLF4, and SUMOylation of KLF4 effectively increased by the inhibition of MBNL2. Additionally, the inhibition of TGF-β1/SMAD3 signaling attenuated the impact of over-expression of MBNL2 in inducing senescence and cardiac fibrosis. MBNL2, by orchestrating SUMOylation of KLF4, upregulating the TGF-β1/SMAD3 signaling pathway, emerges as a significant promoter of aging-related cardiac fibrosis. This discovery identifies a novel regulatory target for managing aging-related cardiac fibrosis.
Collapse
Affiliation(s)
- Jing Lu
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin 150001, China
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin150001, China
| | - Qi Zhao
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin 150001, China
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin150001, China
| | - Lu Wang
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin150001, China
| | - Jiahao Li
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin 150001, China
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin150001, China
| | - Hongyan Wang
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin 150001, China
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin150001, China
| | - Lin Lv
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin 150001, China
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin150001, China
- Experimental Animal Center, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin 150001, China
| | - Meng Yuan
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin 150001, China
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin150001, China
| | - Qiuyu Chen
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin150001, China
| | - Zixin Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Health Care Road, Nangang District, Harbin 150081, China
| | - Dankun Luo
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin 150001, China
| | - Siqi Sheng
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin150001, China
| | - Keying Yuan
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin 150001, China
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin150001, China
| | - Guannan Liu
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin 150001, China
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin150001, China
| | - Mingyu Liu
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin150001, China
| | - Yuanqi Shi
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin150001, China
| | - Yuanyuan Guo
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin150001, China
- Department of Cardiology, Department of Geriatrics, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin 150001, China
| | - Zengxiang Dong
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin150001, China
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin 150001, China
| |
Collapse
|
5
|
Lu W, Yang Z, Wang M, Li S, Bi H, Yang X. Identification and verification of AK4 as a protective immune-related biomarker in adipose-derived stem cells and breast cancer. Heliyon 2024; 10:e27357. [PMID: 38560200 PMCID: PMC10980947 DOI: 10.1016/j.heliyon.2024.e27357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/13/2023] [Revised: 02/05/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Background Breast cancer (BC) remains the most common cancer among women, and novel post-surgical reconstruction techniques, including autologous fat transplantation, have emerged. While Adipose-derived stem cells (ADSCs) are known to impact the viability of fat grafts, their influence on breast cancer progression remains unclear. This study aims to elucidate the genetic interplay between ADSCs and breast cancer, focusing on potential therapeutic targets. Methods Using the GEO and TCGA databases, we pinpointed differentially expressed (DE) mRNAs, miRNAs, lncRNAs, and pseudogenes of ADSCs and BC. We performed functional enrichment analysis and constructed protein-protein interaction (PPI), RNA binding protein (RBP)-pseudogene-mRNA, and lncRNA-miRNA-transcription factor (TF)-gene networks. Our study delved into the correlation of AK4 expression with 33 different malignancies and examined its impact on prognostic outcomes across a pan-cancer cohort. Additionally, we scrutinized immune infiltration, microsatellite instability, and tumor mutational burden, and conducted single-cell analysis to further understand the implications of AK4 expression. We identified novel sample subtypes based on hub genes using the ConsensusClusterPlus package and examined their association with immune infiltration. The random forest algorithm was used to screen DE mRNAs between subtypes to validate the powerful prognostic prediction ability of the artificial neural network. Results Our analysis identified 395 DE mRNAs, 3 DE miRNAs, 84 DE lncRNAs, and 26 DE pseudogenes associated with ADSCs and BC. Of these, 173 mRNAs were commonly regulated in both ADSCs and breast cancer, and 222 exhibited differential regulation. The PPI, RBP-pseudogene-mRNA, and lncRNA-miRNA-TF-gene networks suggested AK4 as a key regulator. Our findings support AK4 as a promising immune-related therapeutic target for a wide range of malignancies. We identified 14 characteristic genes based on the AK4-related cluster using the random forest algorithm. Our artificial neural network yielded excellent diagnostic performance in the testing cohort with AUC values of 0.994, 0.973, and 0.995, indicating its ability to distinguish between breast cancer and non-breast cancer cases. Conclusions Our research sheds light on the dual role of ADSCs in BC at the genetic level and identifies AK4 as a key protective mRNA in breast cancer. We found that AK4 significantly predicts cancer prognosis and immunotherapy, indicating its potential as a therapeutic target.
Collapse
Affiliation(s)
- Wei Lu
- Department of Hemangioma and Vascular Malformation, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China
| | - Zhenyu Yang
- Department of Hemangioma and Vascular Malformation, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China
| | - Mengjie Wang
- Department of Hemangioma and Vascular Malformation, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China
| | - Shiqi Li
- Chinese Academy of Medical Sciences & Peking Union Medical College, 4+4 M.D. Program, Beijing, 100144, China
| | - Hui Bi
- Department of Internal Medicine, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China
| | - Xiaonan Yang
- Department of Hemangioma and Vascular Malformation, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China
| |
Collapse
|
6
|
Su J, Wei Q, Ma K, Wang Y, Hu W, Meng H, Li Q, Zhang Y, Zhang W, Li H, Fu X, Zhang C. P-MSC-derived extracellular vesicles facilitate diabetic wound healing via miR-145-5p/ CDKN1A-mediated functional improvements of high glucose-induced senescent fibroblasts. BURNS & TRAUMA 2023; 11:tkad010. [PMID: 37860579 PMCID: PMC10583213 DOI: 10.1093/burnst/tkad010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 07/14/2022] [Revised: 01/01/2023] [Accepted: 02/14/2023] [Indexed: 10/21/2023]
Abstract
Background Persistent hyperglycaemia in diabetes causes functional abnormalities of human dermal fibroblasts (HDFs), partially leading to delayed skin wound healing. Extracellular vesicles (EVs) containing multiple pro-healing microRNAs (miRNAs) have been shown to exert therapeutic effects on diabetic wound healing. The present study aimed to observe the effects of EVs derived from placental mesenchymal stem cells (P-MSC-EVs) on diabetic wound healing and high glucose (HG)-induced senescent fibroblasts and to explore the underlying mechanisms. Methods P-MSC-EVs were isolated by differential ultracentrifugation and locally injected into the full-thickness skin wounds of diabetic mice, to observe the beneficial effects on wound healing in vivo by measuring wound closure rates and histological analysis. Next, a series of assays were conducted to evaluate the effects of low (2.28 x 1010 particles/ml) and high (4.56 x 1010 particles/ml) concentrations of P-MSC-EVs on the senescence, proliferation, migration, and apoptosis of HG-induced senescent HDFs in vitro. Then, miRNA microarrays and real-time quantitative PCR (RT-qPCR) were carried out to detect the differentially expressed miRNAs in HDFs after EVs treatment. Specific RNA inhibitors, miRNA mimics, and small interfering RNA (siRNA) were used to evaluate the role of a candidate miRNA and its target genes in P-MSC-EV-induced improvements in the function of HG-induced senescent HDFs. Results Local injection of P-MSC-EVs into diabetic wounds accelerated wound closure and reduced scar widths, with better-organized collagen deposition and decreased p16INK4a expression. In vitro, P-MSC-EVs enhanced the antisenescence, proliferation, migration, and antiapoptotic abilities of HG-induced senescent fibroblasts in a dose-dependent manner. MiR-145-5p was found to be highly enriched in P-MSC-EVs. MiR-145-5p inhibitors effectively attenuated the P-MSC-EV-induced functional improvements of senescent fibroblasts. MiR-145-5p mimics simulated the effects of P-MSC-EVs on functional improvements of fibroblasts by suppressing the expression of cyclin-dependent kinase inhibitor 1A and activating the extracellular signal regulated kinase (Erk)/protein kinase B (Akt) signaling pathway. Furthermore, local application of miR-145-5p agomir mimicked the effects of P-MSC-EVs on wound healing. Conclusions These results suggest that P-MSC-EVs accelerate diabetic wound healing by improving the function of senescent fibroblasts through the transfer of miR-145-5p, which targets cyclin-dependent kinase inhibitor 1A to activate the Erk/Akt signaling pathway. P-MSC-EVs are promising therapeutic candidates for diabetic wound treatment.
Collapse
Affiliation(s)
- Jianlong Su
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing 100048, China
- School of Medicine, NanKai University, 94 Weijin Road, Nankai District, Tianjin 300071, China
| | - Qian Wei
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing 100048, China
| | - Kui Ma
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fucheng Road, Haidian District, Beijing 100048, China
| | - Yaxi Wang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing 100048, China
| | - Wenzhi Hu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing 100048, China
| | - Hao Meng
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing 100048, China
| | - Qiankun Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing 100048, China
| | - Yuehou Zhang
- Burn and Plastic Surgery, Zhongda Hospital Affiliated Southeast University, Dingjiaqiao 87, Gulou District, Nanjing 210009, China
| | - Wenhua Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing 100048, China
| | - Haihong Li
- Department of Wound Repair, Institute of Wound Repair and Regeneration Medicine, Southern University of Science and Technology Hospital, Southern University of Science and Technology School of Medicine, 6019 Xililiuxian Road, Nanshan District, Shenzhen 518055, China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing 100048, China
- School of Medicine, NanKai University, 94 Weijin Road, Nankai District, Tianjin 300071, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fucheng Road, Haidian District, Beijing 100048, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, 51 Fucheng Road, Haidian District, Beijing 100048, China
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fucheng Road, Haidian District, Beijing 100048, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, 51 Fucheng Road, Haidian District, Beijing 100048, China
| |
Collapse
|
7
|
Xian N, Bai R, Guo J, Luo R, Lei H, Wang B, Zheng Y. Bioinformatics analysis to reveal the potential comorbidity mechanism in psoriasis and nonalcoholic steatohepatitis. Skin Res Technol 2023; 29:e13457. [PMID: 37753698 PMCID: PMC10474328 DOI: 10.1111/srt.13457] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/27/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023]
Abstract
PURPOSE An increasing amount of evidence suggests that psoriasis and nonalcoholic steatohepatitis (NASH) may occur simultaneously, whereas the underlying mechanisms remain unclear. Our research aims to explore the potential comorbidity mechanism in psoriasis and nonalcoholic steatohepatitis. MATERIALS AND METHODS The expression profiles of psoriasis (GSE30999, GSE13355) and NASH (GSE24807, GSE17470) were downloaded from GEO datasets. Next, common differently expressed genes (DEGs) of psoriasis and NASH were investigated. Then, GO and KEGG enrichment, protein interaction network (PPI) construction, and hub gene identification for DEGs were performed. Finally, immune cells expression, target genes predicted by common miRNAs, and transcription factors interaction analysis for hub genes were carried out. RESULTS Twenty DEGs were identified in totally. GO analysis revealed response to the virus was the most enriched term, and hepatitis C and coronavirus disease-COVID-19 infection-associated pathways were mainly enriched in KEGG. A total of eight hub genes were collected, including IFIT1, IFIT3, OAS1, HPGDS, IFI27, IFI44, CXCL10, IRF9, and 11 TFs were predicted. Then, neutrophils and monocytes were identified as immune cells that express the most hub genes. Moreover, five common miRNAs for psoriasis and NASH and one common miRNAs (hsa-miR-1305)-mRNAs (CHL1, MBNL2) network were presented. CONCLUSION CHL1 and MBNL2 may participate in the process of psoriasis and NASH via regulating hsa-miR-1305, and together with eight hub genes may be potential therapeutic targets for future treatment for the co-occurrence of these two diseases. This comprehensive bioinformatic analysis provides new insights on molecular pathogenesis and identification of potential therapeutic targets for the co-occurrence of them.
Collapse
Affiliation(s)
- Ningyi Xian
- Department of Dermatologythe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Ruimin Bai
- Department of Dermatologythe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Jiaqi Guo
- Department of Dermatologythe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Ruiting Luo
- Department of Dermatologythe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Hao Lei
- Department of Dermatologythe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Bingqing Wang
- Department of Dermatologythe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Yan Zheng
- Department of Dermatologythe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| |
Collapse
|
8
|
Murphy JJ, Surendranath K, Kanagaraj R. RNA-Binding Proteins and Their Emerging Roles in Cancer: Beyond the Tip of the Iceberg. Int J Mol Sci 2023; 24:ijms24119612. [PMID: 37298567 DOI: 10.3390/ijms24119612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
RNA-binding proteins (RBPs) represent a large family of proteins with an extensive array of roles that contribute to coordinating and directing multiple functions in RNA metabolism and transcription [...].
Collapse
Affiliation(s)
- John J Murphy
- Genome Engineering Laboratory, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK
| | - Kalpana Surendranath
- Genome Engineering Laboratory, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK
| | - Radhakrishnan Kanagaraj
- Genome Engineering Laboratory, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK
- School of Life Sciences, University of Bedfordshire, Park Square, Luton LU1 3JU, UK
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai 600119, India
| |
Collapse
|
9
|
He C, Li Y, Chen ZY, Huang CK. Crosstalk of renal cell carcinoma cells and tumor-associated macrophages aggravates tumor progression by modulating muscleblind-like protein 2/B-cell lymphoma 2/beclin 1-mediated autophagy. Cytotherapy 2023; 25:298-309. [PMID: 36244911 DOI: 10.1016/j.jcyt.2022.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/20/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND AIMS M2-polarized tumor-associated macrophages contribute to the development of multiple human cancers, including renal cell carcinoma (RCC). However, the crosstalk mechanism between M2 macrophages and RCC remains unclear. METHODS The authors constructed a co-culture system of M2 macrophages differentiated from THP-1 and RCC cells. Microscopic examination and quantitative real‑time polymerase chain reaction (qRT-PCR) validated the morphology and types of macrophages. The proliferation, migration and invasion of RCC cells were assessed by Cell Counting Kit 8 (Dojindo Molecular Technologies, Inc, Santa Clara, CA, USA) and Transwell assay (Corning, Corning, NY, USA). Messenger RNA (mRNA) and protein expression of target molecules was detected by qRT‑PCR and western blotting. Expression of Ki-67, E-cadherin and N-cadherin was measured by immunofluorescence staining or immunohistochemistry. Molecular interaction was evaluated by RNA pull-down, RNA immunoprecipitation and co-immunoprecipitation. A xenograft model was established to determine tumor growth in vivo. RESULTS RCC cells triggered the activation of M2 macrophages. Functionally, M2-polarized macrophages facilitated the growth, migration, invasion and epithelial-mesenchymal transition of RCC cells by suppressing autophagy, whereas rapamycin, an activator of autophagy, significantly counteracted the tumor-promoting effects of M2 macrophages. Mechanistically, M2 macrophage-derived C-C motif chemokine 2 (CCL2) enhanced modulation of muscleblind-like protein 2 (MBNL2) expression. MBNL2 raised the stability of B-cell lymphoma 2 (Bcl-2) by directly binding to Bcl-2 mRNA, which endowed RCC cells with malignant properties via inhibition of beclin 1-dependent autophagy. CONCLUSIONS RCC-induced M2-polarized macrophages secrete CCL2 to promote the growth and metastasis of RCC cells via inhibition of MBNL2/Bcl-2/beclin 1-mediated autophagy, which provide a novel perspective for the development of a therapeutic strategy for -RCC.
Collapse
Affiliation(s)
- Cheng He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yang Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Zhi-Yong Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Chang-Kun Huang
- Department of Urology, The Second Xiangya Hospital, Central South University, 410011 Changsha, Hunan China..
| |
Collapse
|
10
|
Liu J, Zhang H, Xia P, Zhu Y, Xu K, Liu Z, Yuan Y. Genome stability‑related lncRNA ZFPM2‑AS1 promotes tumor progression via miR‑3065‑5p/XRCC4 in hepatocellular carcinoma. Int J Oncol 2023; 62:19. [PMID: 36524359 PMCID: PMC9812252 DOI: 10.3892/ijo.2022.5467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/03/2022] [Accepted: 11/11/2022] [Indexed: 12/15/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have a certain link to genomic stability (GS). However, the regulatory relationship of lncRNAs and GS has not been thoroughly investigated in hepatocellular carcinoma (HCC). In the present study, samples were retrieved from The Cancer Genome Atlas with somatic mutations and lncRNA expression data. Cox regression analysis was used to identify independent prognostic factors. The RNA levels were determined by reverse transcription‑quantitative PCR and protein levels were detected by western blot analysis. Cell Counting Kit‑8 and colony‑formation assays were used to assess cell viability. Cell migration was measured by wound‑healing and Transwell assays. Cell apoptosis and cell‑cycle progression were evaluated by flow cytometry. GS was detected by alkaline comet and chromosomal aberration assays. A xenograft model and lung metastasis model were used to assess the role of zinc finger protein, FOG family member 2 antisense 1 (ZFPM2‑AS1) in tumor growth in vivo. The molecular mechanisms underlying the biological functions of ZFPM2‑AS1 were investigated through bioinformatics prediction, RNA pull‑down and luciferase reporter assays. A total of 85 genomic instability‑related lncRNAs were identified and a prognostic model was developed. The prognostic model exhibited good predictive power (area under the receiver operating characteristic curve, 0.786). ZFPM2‑AS1 was significantly upregulated in tumor tissues (P<0.001) and it promoted DNA damage repair (P<0.01) and tumor progression in vitro and in vivo. Luciferase reporter assays demonstrated that miR‑3065‑5p was able to bind directly with ZFPM2‑AS1 and X‑ray repair cross complementing 4 (XRCC4). ZFPM2‑AS1 upregulated XRCC4 expression by acting as a sponge (P<0.001). In the present study, a prognostic model for HCC was developed and validated, and one lncRNA of its components was experimentally investigated. ZFPM2‑AS1 regulates XRCC4 by sponging miR‑3065‑5p to promote GS and HCC progression.
Collapse
Affiliation(s)
- Jie Liu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary and Pancreatic Diseases of Hubei Province, Wuhan, Hubei 430071, P.R. China
| | - Hao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary and Pancreatic Diseases of Hubei Province, Wuhan, Hubei 430071, P.R. China
| | - Peng Xia
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary and Pancreatic Diseases of Hubei Province, Wuhan, Hubei 430071, P.R. China
| | - Yimin Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary and Pancreatic Diseases of Hubei Province, Wuhan, Hubei 430071, P.R. China
| | - Kequan Xu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary and Pancreatic Diseases of Hubei Province, Wuhan, Hubei 430071, P.R. China
| | - Zhisu Liu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary and Pancreatic Diseases of Hubei Province, Wuhan, Hubei 430071, P.R. China
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary and Pancreatic Diseases of Hubei Province, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
11
|
Wei P, Dong M, Bi Y, Chen S, Huang W, Li T, Liu B, Fu X, Yang Y. Identification and validation of a signature based on macrophage cell marker genes to predict recurrent miscarriage by integrated analysis of single-cell and bulk RNA-sequencing. Front Immunol 2022; 13:1053819. [PMID: 36439123 PMCID: PMC9692009 DOI: 10.3389/fimmu.2022.1053819] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/26/2022] [Accepted: 10/24/2022] [Indexed: 09/12/2023] Open
Abstract
Recurrent miscarriage (RM) is a chronic, heterogeneous autoimmune disease that has serious social and personal consequences. No valid and reliable diagnostic markers or therapeutic targets for RM have been identified. Macrophages impact the innate immune system and can be used as diagnostic and prognostic markers for many diseases. We first collected 16 decidua and villi tissue samples from 5 normal patients and 3 RM patients for single-cell RNA sequencing data analysis and identified 1293 macrophage marker genes. We then screened a recurrent miscarriage cohort (GSE165004) for 186 macrophage-associated marker genes that were significantly differentially expressed between RM patients and the normal pregnancy endometrial tissues, and performed a functional enrichment analysis of differentially expressed genes. We then identified seven core genes (ACTR2, CD2AP, MBNL2, NCSTN, PUM1, RPN2, and TBC1D12) from the above differentially expressed gene group that are closely related to RM using the LASSO, Random Forest and SVM-RFE algorithms. We also used GSE26787 and our own collection of clinical specimens to further evaluate the diagnostic value of the target genes. A nomogram was constructed of the expression levels of these seven target genes to predict RM, and the ROC and calibration curves showed that our nomogram had a high diagnostic value for RM. These results suggest that ACTR2 and NCSTN may be potential targets for preventative RM treatments.
Collapse
Affiliation(s)
- Peiru Wei
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, China
- The Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, China
| | - Mingyou Dong
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- The Key Laboratory of Molecular Pathology (For Hepatobiliary Diseases) of Guangxi, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yin Bi
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, China
- The Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, China
| | - Saiqiong Chen
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Weiyu Huang
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, China
- The Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, China
| | - Ting Li
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, China
- The Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, China
| | - Bo Liu
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoqian Fu
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yihua Yang
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, China
- The Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, China
| |
Collapse
|
12
|
Novel DNA Damage-Related Subtypes Characterization Identifies Uterine Corpus Endometrial Carcinoma (UCEC) Based on Machine Learning. JOURNAL OF ONCOLOGY 2022; 2022:3588117. [PMID: 36072975 PMCID: PMC9441400 DOI: 10.1155/2022/3588117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 06/21/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
Objective. Accumulating evidence suggests that DNA damage is associated with numerous gynecological illnesses, particularly advanced uterine corpus endometrial carcinoma (UCEC), illustrating the involvement of the DNA damage pathway in the advancement of UCEC. This research aimed to discover a robust subtype with the potential to contribute to the scientific treatment of UCEC. Methods. In this work, the expression patterns of prognostic DNA damage-related genes were curated, and consensus clustering analyses were undertaken to determine DNA damage subtypes in patients with UCEC in the TCGA cohort. Two DNA damage-related subtypes were identified for further investigation. Differentially expressed genes (DEGs) analysis, gene ontology analysis, mutation analysis, and immune cell infraction analysis were performed to find the molecular mechanism behind it. Finally, the polymerase chain reaction (PCR) was conducted to verify the correlation of the hub genes. Results. In total, 545 patients with UCEC were tested for two distinct DNA damage subtypes. The clinical prognosis was poorer among patients with DNA damage subtype 2 than those in subtype 1. The DEGs analysis and PPI analysis showed that ASMP, BUB1, CENPF, MAD2L1, NCAPG, SGO2, and TOP2A were expressed higher in UCEC tissues than in the normal tissues. Immune cell infraction analysis showed that hub genes were associated with the tumor microenvironment (TME). Conclusion. Altogether, our research identified two distinct DNA damage subtypes that are complicated and heterogeneous. A better knowledge of the characteristics of the TME may be gained by quantitative measurement of DNA damage subtypes in individual patients, which can also lead to the development of more successful treatment regimens.
Collapse
|
13
|
Lin G, Li J, Cai J, Zhang H, Xin Q, Wang N, Xie W, Zhang Y, Xu N. RNA-binding Protein MBNL2 regulates Cancer Cell Metastasis through MiR-182-MBNL2-AKT Pathway. J Cancer 2021; 12:6715-6726. [PMID: 34659561 PMCID: PMC8518006 DOI: 10.7150/jca.62816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/16/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
The aberrant expression of RNA-binding proteins (RBPs) plays important roles in the occurrence and progression of cancer. MBNL2 is a member of the RNA binding protein MBNL family that is widely expressed in mammalian cells. We report here that MBNL2 is downregulated in breast, lung and liver cancer tissues, the promoter methylation levels of MBNL2 are higher in cancer tissues than normal tissues. The enrichment analysis of MBNL2 correlated genes indicates the potential function of MBNL2 on cancer progression. MBNL2 regulates cancer cell migration and invasion by modulating PI3K/AKT-mediated epithelial-mesenchymal transition. PI3K/AKT inhibitor overcomes the promotive effect of shMBNL2 on metastasis. The expression of MBNL2 is directly targeted by miR-182. miR-182 is upregulated in breast, lung and liver cancers and has good potential for cancer diagnosis. miR-182 promotes cancer cell migration and invasion by inhibiting the expression of MBNL2. Re-introduction of exogenous MBNL2 reverses the promotive effect of miR-182 on metastasis. Collectively, these findings suggest that MBNL2 plays a tumor suppressive function through miR-182-MBNL2-AKT-EMT signaling pathways.
Collapse
Affiliation(s)
- Guanglan Lin
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.,Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jiao Li
- Department of Neurology, Wuhan Hankou Hospital, Wuhan 430010, China
| | - Jin Cai
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.,Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Haowei Zhang
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.,Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qilei Xin
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.,Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ningchao Wang
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.,Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Weidong Xie
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.,Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yaou Zhang
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.,Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Naihan Xu
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.,Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
14
|
Nasiri-Aghdam M, Garcia-Garduño TC, Jave-Suárez LF. CELF Family Proteins in Cancer: Highlights on the RNA-Binding Protein/Noncoding RNA Regulatory Axis. Int J Mol Sci 2021; 22:11056. [PMID: 34681716 PMCID: PMC8537729 DOI: 10.3390/ijms222011056] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/15/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 12/17/2022] Open
Abstract
Post-transcriptional modifications to coding and non-coding RNAs are unquestionably a pivotal way in which human mRNA and protein diversity can influence the different phases of a transcript's life cycle. CELF (CUGBP Elav-like family) proteins are RBPs (RNA-binding proteins) with pleiotropic capabilities in RNA processing. Their responsibilities extend from alternative splicing and transcript editing in the nucleus to mRNA stability, and translation into the cytoplasm. In this way, CELF family members have been connected to global alterations in cancer proliferation and invasion, leading to their identification as potential tumor suppressors or even oncogenes. Notably, genetic variants, alternative splicing, phosphorylation, acetylation, subcellular distribution, competition with other RBPs, and ultimately lncRNAs, miRNAs, and circRNAs all impact CELF regulation. Discoveries have emerged about the control of CELF functions, particularly via noncoding RNAs, and CELF proteins have been identified as competing, antagonizing, and regulating agents of noncoding RNA biogenesis. On the other hand, CELFs are an intriguing example through which to broaden our understanding of the RBP/noncoding RNA regulatory axis. Balancing these complex pathways in cancer is undeniably pivotal and deserves further research. This review outlines some mechanisms of CELF protein regulation and their functional consequences in cancer physiology.
Collapse
Affiliation(s)
- Maryam Nasiri-Aghdam
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico;
- Doctorado en Genética Humana, Departamento de Biología Molecular y Genómica, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Texali C. Garcia-Garduño
- Doctorado en Genética Humana, Departamento de Biología Molecular y Genómica, Universidad de Guadalajara, Guadalajara 44340, Mexico;
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Luis Felipe Jave-Suárez
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico;
| |
Collapse
|