1
|
Li L, Yao H, Mo R, Xu L, Chen P, Chen Y, Hu JJ, Xie W, Song XJ. Blocking proteinase-activated receptor 2 signaling relieves pain, suppresses nerve sprouting, improves tissue repair, and enhances analgesic effect of B vitamins in rats with Achilles tendon injury. Pain 2024; 165:2055-2067. [PMID: 38598349 DOI: 10.1097/j.pain.0000000000003229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 02/02/2024] [Indexed: 04/12/2024]
Abstract
ABSTRACT Tendon injury produces intractable pain and disability in movement, but the medications for analgesia and restoring functional integrity of tendon are still limited. In this study, we report that proteinase-activated receptor 2 (PAR2) activation in dorsal root ganglion (DRG) neurons contributes to chronic pain and tendon histopathological changes produced by Achilles tendon partial transection injury (TTI). Tendon partial transection injury increases the expression of PAR2 protein in both somata of DRG neurons and their peripheral terminals within the injured Achilles tendon. Activation of PAR2 promotes the primary sensory neuron plasticity by activating downstream cAMP-PKA pathway, phosphorylation of PKC, CaMKII, and CREB. Blocking PAR2 signaling by PAR2 small-interference RNA or antagonistic peptide PIP delays the onset of TTI-induced pain, reverses the ongoing pain, as well as inhibits sensory nerve sprouting, and promotes structural remodeling of the injured tendon. Vitamin B complex (VBC), containing thiamine (B1), pyridoxine (B6), and cyanocobalamin (B12), is effective to ameliorate TTI-induced pain, inhibit ectopic nerve sprouting, and accelerate tendon repair, through suppressing PAR2 activation. These findings reveal a critical role of PAR2 signaling in the development of chronic pain and histopathological alterations of injured tendon following Achilles tendon injury. This study suggests that the pharmaceuticals targeting PAR2, such as VBC, may be an effective approach for the treatment of tendon injury-induced pain and promoting tendon repair.
Collapse
Affiliation(s)
- Lihui Li
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- SUSTech Center for Pain Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Hongyu Yao
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- SUSTech Center for Pain Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Rufan Mo
- SUSTech Center for Pain Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Lihong Xu
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Peng Chen
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- SUSTech Center for Pain Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yuchen Chen
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jiang-Jian Hu
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- SUSTech Center for Pain Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Wei Xie
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, Nanjing, China
| | - Xue-Jun Song
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- SUSTech Center for Pain Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
2
|
Spicarova D, Nerandzic V, Muzik D, Pontearso M, Bhattacharyya A, Nagy I, Palecek J. Inhibition of synaptic transmission by anandamide precursor 20:4-NAPE is mediated by TRPV1 receptors under inflammatory conditions. Front Mol Neurosci 2023; 16:1188503. [PMID: 37426071 PMCID: PMC10325575 DOI: 10.3389/fnmol.2023.1188503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/24/2023] [Indexed: 07/11/2023] Open
Abstract
Transient receptor potential ion channel, vanilloid subfamily, type 1 (TRPV1) cation channel, and cannabinoid receptor 1 (CB1) are essential in the modulation of nociceptive signaling in the spinal cord dorsal horn that underlies different pathological pain states. TRPV1 and CB1 receptors share the endogenous agonist anandamide (AEA), produced from N-arachidonoylphosphatidylethanolamine (20:4-NAPE). We investigated the effect of the anandamide precursor 20:4-NAPE on synaptic activity in naive and inflammatory conditions. Patch-clamp recordings of miniature excitatory postsynaptic currents (mEPSCs) from superficial dorsal horn neurons in rat acute spinal cord slices were used. Peripheral inflammation was induced by subcutaneous injection of carrageenan. Under naive conditions, mEPSCs frequency (0.96 ± 0.11 Hz) was significantly decreased after 20 μM 20:4-NAPE application (55.3 ± 7.4%). This 20:4-NAPE-induced inhibition was blocked by anandamide-synthesizing enzyme N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD) inhibitor LEI-401. In addition, the inhibition was prevented by the CB1 receptor antagonist PF 514273 (0.2 μM) but not by the TRPV1 receptor antagonist SB 366791 (10 μM). Under inflammatory conditions, 20:4-NAPE (20 μM) also exhibited a significant inhibitory effect (74.5 ± 8.9%) on the mEPSCs frequency that was prevented by the TRPV1 receptor antagonist SB 366791 but not by PF 514273 application. Our results show that 20:4-NAPE application has a significant modulatory effect on spinal cord nociceptive signaling that is mediated by both TRPV1 and CB1 presynaptic receptors, whereas peripheral inflammation changes the underlying mechanism. The switch between TRPV1 and CB1 receptor activation by the AEA precursor 20:4-NAPE during inflammation may play an important role in nociceptive processing, hence the development of pathological pain.
Collapse
Affiliation(s)
- Diana Spicarova
- Laboratory of Pain Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Vladimir Nerandzic
- Laboratory of Pain Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - David Muzik
- Laboratory of Pain Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Monica Pontearso
- Laboratory of Pain Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Anirban Bhattacharyya
- Laboratory of Pain Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Istvan Nagy
- Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Faculty of Medicine, Chelsea and Westminster Hospital, London, United Kingdom
- Department of Physiology, University of Debrecen, Debrecen, Hungary
| | - Jiri Palecek
- Laboratory of Pain Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
3
|
Guo P, Zhang Q, Nan S, Wang H, Ma N, Kiani FA, Ding M, Chen J. Electroacupuncture Relieves Visceral Hypersensitivity via Balancing PAR2 and PAR4 in the Descending Pain Modulatory System of Goats. Brain Sci 2023; 13:922. [PMID: 37371401 DOI: 10.3390/brainsci13060922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Electroacupuncture (EA) is an efficient treatment for visceral hypersensitivity (VH). However, the mechanism underlying VH remains obscure. This study aimed to examine the effect of EA at Housanli acupoint on PAR2 and PAR4 expression in the periaqueductal gray (PAG), rostral ventromedial medulla (RVM), and spinal cord dorsal horn (SCDH) axes, as well as on expression of the proinflammatory cytokines IL-1β and TNF-α, COX-2 enzyme, c-Fos, and the neuropeptides CGRP and SP in the same areas of the descending pain modulatory system. To induce VH in male goats, a 2,4,6-trinitrobenzene-sulfonic acid (TNBS)-ethanol solution was administered to the ileal wall. The visceromotor response (VMR) and nociceptive response at different colorectal distension pressures were measured to evaluate VH. Goats in the TNBS group displayed significantly increased VMR and nociceptive response scores, and elevated protein and mRNA levels of PAR2 and PAR4 in the descending pain modulatory system compared to those in the control group. EA alleviated VMR and nociceptive responses, decreased the protein and mRNA expression levels of PAR2, and elevated those of PAR4 in the descending pain modulatory system. EA may relieve VH by reducing PAR2 expression and increasing PAR4 expression in the descending pain modulatory system.
Collapse
Affiliation(s)
- Panpan Guo
- College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Qiulin Zhang
- College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Sha Nan
- College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Haolong Wang
- College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Ning Ma
- College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Faisal Ayub Kiani
- College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
- Department of Clinical Sciences, Faculty of Veterinary Sciences, Bahauddin Zakariyah University, Multan 60000, Pakistan
| | - Mingxing Ding
- College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Jianguo Chen
- College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| |
Collapse
|
4
|
In Kim H, Lee GB, Song DE, Sanjel B, Lee WJ, Shim WS. FSLLRY-NH 2, a protease-activated receptor 2 (PAR2) antagonist, activates mas-related G protein-coupled receptor C11 (MrgprC11) to induce scratching behaviors in mice. Life Sci 2023; 325:121786. [PMID: 37201698 DOI: 10.1016/j.lfs.2023.121786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/04/2023] [Accepted: 05/14/2023] [Indexed: 05/20/2023]
Abstract
AIMS Protease-activated receptor 2 (PAR2), a type of G protein-coupled receptor (GPCR), plays a significant role in pathophysiological conditions such as inflammation. A synthetic peptide SLIGRL-NH2 (SLIGRL) can activate PAR2, while FSLLRY-NH2 (FSLLRY) is an antagonist. A previous study showed that SLIGRL activates both PAR2 and mas-related G protein-coupled receptor C11 (MrgprC11), a different type of GPCR expressed in sensory neurons. However, the impact of FSLLRY on MrgprC11 and its human ortholog MRGPRX1 was not verified. Hence, the present study aims to verify the effect of FSLLRY on MrgprC11 and MRGPRX1. METHODS The calcium imaging technique was applied to determine the effect of FSLLRY in HEK293T cells expressing MrgprC11/MRGPRX1 or dorsal root ganglia (DRG) neurons. Scratching behavior was also investigated in wild-type and PAR2 knockout mice after injecting FSLLRY. KEY FINDINGS It was surprisingly discovered that FSLLRY specifically activates MrgprC11 in a dose-dependent manner, but not other MRGPR subtypes. Furthermore, FSLLRY also moderately activated MRGPRX1. FSLLRY stimulates downstream pathways including Gαq/11, phospholipase C, IP3 receptor, and TRPC ion channels to evoke an increase in the intracellular calcium levels. The molecular docking analysis predicted that FSLLRY interacts with the orthosteric binding pocket of MrgprC11 and MRGPRX1. Finally, FSLLRY activated primary cultures of mouse sensory neurons, and induced scratching behaviors in mice. SIGNIFICANCE The present study has revealed that FSLLRY is capable of triggering itch sensation through activation of MrgprC11. This finding highlights the importance of considering the unexpected activation of MRGPRs in future therapeutic approaches aimed at the inhibition of PAR2.
Collapse
Affiliation(s)
- Hye In Kim
- College of Pharmacy, Gachon University, Hambangmoe-ro 191, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Gi Baek Lee
- College of Pharmacy, Gachon University, Hambangmoe-ro 191, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Da Eun Song
- College of Pharmacy, Gachon University, Hambangmoe-ro 191, Yeonsu-gu, Incheon 21936, Republic of Korea; Gachon Institute of Pharmaceutical Sciences, Hambangmoe-ro 191, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Babina Sanjel
- College of Pharmacy, Gachon University, Hambangmoe-ro 191, Yeonsu-gu, Incheon 21936, Republic of Korea; Gachon Institute of Pharmaceutical Sciences, Hambangmoe-ro 191, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Wook-Joo Lee
- College of Pharmacy, Gachon University, Hambangmoe-ro 191, Yeonsu-gu, Incheon 21936, Republic of Korea; Gachon Institute of Pharmaceutical Sciences, Hambangmoe-ro 191, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Won-Sik Shim
- College of Pharmacy, Gachon University, Hambangmoe-ro 191, Yeonsu-gu, Incheon 21936, Republic of Korea; Gachon Institute of Pharmaceutical Sciences, Hambangmoe-ro 191, Yeonsu-gu, Incheon 21936, Republic of Korea.
| |
Collapse
|
5
|
Uchytilova E, Spicarova D, Palecek J. Hypersensitivity Induced by Intrathecal Bradykinin Administration Is Enhanced by N-oleoyldopamine (OLDA) and Prevented by TRPV1 Antagonist. Int J Mol Sci 2021; 22:3712. [PMID: 33918267 PMCID: PMC8038144 DOI: 10.3390/ijms22073712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1) channels contribute to the development of several chronic pain states and represent a possible therapeutic target in many painful disease treatment. Proinflammatory mediator bradykinin (BK) sensitizes TRPV1, whereas noxious peripheral stimulation increases BK level in the spinal cord. Here, we investigated the involvement of spinal TRPV1 in thermal and mechanical hypersensitivity, evoked by intrathecal (i.t.) administration of BK and an endogenous agonist of TRPV1, N-oleoyldopamine (OLDA), using behavioral tests and i.t. catheter implantation, and administration of BK-induced transient thermal and mechanical hyperalgesia and mechanical allodynia. All these hypersensitive states were enhanced by co-administration of a low dose of OLDA (0.42 µg i.t.), which was ineffective only under the control conditions. Intrathecal pretreatment with TRPV1 selective antagonist SB366791 prevented hypersensitivity induced by i.t. co-administration of BK and OLDA. Our results demonstrate that both thermal and mechanical hypersensitivity evoked by co-administration of BK and OLDA is mediated by the activation of spinal TRPV1 channels.
Collapse
Affiliation(s)
- Eva Uchytilova
- Laboratory of Pain Research, Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic;
- Department of Anaesthesiology, Resuscitation and Critical Care, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 14021 Prague, Czech Republic
| | - Diana Spicarova
- Laboratory of Pain Research, Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic;
| | - Jiri Palecek
- Laboratory of Pain Research, Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic;
| |
Collapse
|