1
|
Rot AE, Hrovatin M, Bokalj B, Lavrih E, Turk B. Cysteine cathepsins: From diagnosis to targeted therapy of cancer. Biochimie 2024; 226:10-28. [PMID: 39245316 DOI: 10.1016/j.biochi.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Cysteine cathepsins are a fascinating group of proteolytic enzymes that play diverse and crucial roles in numerous biological processes, both in health and disease. Understanding these proteases is essential for uncovering novel insights into the underlying mechanisms of a wide range of disorders, such as cancer. Cysteine cathepsins influence cancer biology by participating in processes such as extracellular matrix degradation, angiogenesis, immune evasion, and apoptosis. In this comprehensive review, we explore foundational research that illuminates the diverse and intricate roles of cysteine cathepsins as diagnostic markers and therapeutic targets for cancer. This review aims to provide valuable insights into the clinical relevance of cysteine cathepsins and explore their capacity to advance personalised and targeted medical interventions in oncology.
Collapse
Affiliation(s)
- Ana Ercegovič Rot
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Matija Hrovatin
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Bor Bokalj
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Ernestina Lavrih
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Boris Turk
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Lockwood TD. Coordination chemistry suggests that independently observed benefits of metformin and Zn 2+ against COVID-19 are not independent. Biometals 2024; 37:983-1022. [PMID: 38578560 PMCID: PMC11255062 DOI: 10.1007/s10534-024-00590-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/12/2024] [Indexed: 04/06/2024]
Abstract
Independent trials indicate that either oral Zn2+ or metformin can separately improve COVID-19 outcomes by approximately 40%. Coordination chemistry predicts a mechanistic relationship and therapeutic synergy. Zn2+ deficit is a known risk factor for both COVID-19 and non-infectious inflammation. Most dietary Zn2+ is not absorbed. Metformin is a naked ligand that presumably increases intestinal Zn2+ bioavailability and active absorption by cation transporters known to transport metformin. Intracellular Zn2+ provides a natural buffer of many protease reactions; the variable "set point" is determined by Zn2+ regulation or availability. A Zn2+-interactive protease network is suggested here. The two viral cysteine proteases are therapeutic targets against COVID-19. Viral and many host proteases are submaximally inhibited by exchangeable cell Zn2+. Inhibition of cysteine proteases can improve COVID-19 outcomes and non-infectious inflammation. Metformin reportedly enhances the natural moderating effect of Zn2+ on bioassayed proteome degradation. Firstly, the dissociable metformin-Zn2+ complex could be actively transported by intestinal cation transporters; thereby creating artificial pathways of absorption and increased body Zn2+ content. Secondly, metformin Zn2+ coordination can create a non-natural protease inhibitor independent of cell Zn2+ content. Moderation of peptidolytic reactions by either or both mechanisms could slow (a) viral multiplication (b) viral invasion and (c) the pathogenic host inflammatory response. These combined actions could allow development of acquired immunity to clear the infection before life-threatening inflammation. Nirmatrelvir (Paxlovid®) opposes COVID-19 by selective inhibition the viral main protease by a Zn2+-independent mechanism. Pending safety evaluation, predictable synergistic benefits of metformin and Zn2+, and perhaps metformin/Zn2+/Paxlovid® co-administration should be investigated.
Collapse
Affiliation(s)
- Thomas D Lockwood
- Department Pharmacology and Toxicology, School of Medicine, Wright State University, Dayton, OH, 45435, USA.
| |
Collapse
|
3
|
Lingwood C. Is cholesterol both the lock and key to abnormal transmembrane signals in Autism Spectrum Disorder? Lipids Health Dis 2024; 23:114. [PMID: 38643132 PMCID: PMC11032007 DOI: 10.1186/s12944-024-02075-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/08/2024] [Indexed: 04/22/2024] Open
Abstract
Disturbances in cholesterol homeostasis have been associated with ASD. Lipid rafts are central in many transmembrane signaling pathways (including mTOR) and changes in raft cholesterol content affect their order function. Cholesterol levels are controlled by several mechanisms, including endoplasmic reticulum associated degradation (ERAD) of the rate limiting HMGCoA reductase. A new approach to increase cholesterol via temporary ERAD blockade using a benign bacterial toxin-derived competitor for the ERAD translocon is suggested.A new lock and key model for cholesterol/lipid raft dependent signaling is proposed in which the rafts provide both the afferent and efferent 'tumblers' across the membrane to allow 'lock and key' receptor transmembrane signals.
Collapse
Affiliation(s)
- Clifford Lingwood
- Division of Molecular Medicine, Research Institute, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
- Departments of Biochemistry and Laboratory Medicine & Pathobiology, University of Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
4
|
Dedavid E Silva LA, Parizi LF, Molossi FA, Driemeier D, da Silva Vaz Junior I. Rhipicephalus microplus thyropin-like protein: Structural and immunologic analyzes. Vet Parasitol 2024; 327:110136. [PMID: 38290194 DOI: 10.1016/j.vetpar.2024.110136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
Tick saliva has a pivotal function in parasitism. It has pharmacological and immunomodulatory properties, with several proteins reported in its composition. Thyroglobulin type-1 domain protease inhibitor (thyropin)-like proteins are found in tick saliva, but their function, properties and structures are poorly characterized. It has been reported that thyropins are capable of inhibiting cysteine peptidases present in antigen-presenting cells. To elucidate the role of thyropin-like proteins in ticks, we conducted in silico analysis and cloned an open reading frame from a thyropin-like protein found in Rhipicephalus microplus. The recombinant protein was successfully expressed, followed by immunological characterization and a vaccine trial against Rhipicephalus sanguineus in rabbits. Several differences are observed between thyropin-like proteins from hard and soft ticks, especially the number of thyroglobulin domains and predicted glycosylation pattern. Thyropin-like proteins also differ between postriata and metastriata ticks, the latter having a coil-domain at the C-terminal region and high number of predicted glycosylation sites. Overall, the data suggested divergence in thyropin-like proteins functions among ticks. The recombinant thyropin-like protein is immunogenic and the antibodies against it are able to recognize the native protein in tick saliva and tissues. While the recombinant protein does not elicit a protective response against R. sanguineus infestation, its characterization paves the way for further investigations aimed at determining the precise function of this protein in tick physiology.
Collapse
Affiliation(s)
- Lucas Andre Dedavid E Silva
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Prédio 43421, Porto Alegre 91501-970, RS, Brazil
| | - Luís Fernando Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Prédio 43421, Porto Alegre 91501-970, RS, Brazil
| | - Franciéli Adriane Molossi
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9090, Porto Alegre 91540-000, RS, Brazil
| | - David Driemeier
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9090, Porto Alegre 91540-000, RS, Brazil
| | - Itabajara da Silva Vaz Junior
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Prédio 43421, Porto Alegre 91501-970, RS, Brazil; Instituto Nacional de Ciência e Tecnologia - Entomologia Molecular, Rio de Janeiro, RJ, Brazil; Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9090, Porto Alegre 91540-000, RS, Brazil.
| |
Collapse
|
5
|
dos Santos Nascimento IJ, Santana Gomes JN, de Oliveira Viana J, de Medeiros e Silva YMS, Barbosa EG, de Moura RO. The Power of Molecular Dynamics Simulations and Their Applications to Discover Cysteine Protease Inhibitors. Mini Rev Med Chem 2024; 24:1125-1146. [PMID: 37680157 PMCID: PMC11337241 DOI: 10.2174/1389557523666230901152257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/15/2023] [Accepted: 07/18/2023] [Indexed: 09/09/2023]
Abstract
A large family of enzymes with the function of hydrolyzing peptide bonds, called peptidases or cysteine proteases (CPs), are divided into three categories according to the peptide chain involved. CPs catalyze the hydrolysis of amide, ester, thiol ester, and thioester peptide bonds. They can be divided into several groups, such as papain-like (CA), viral chymotrypsin-like CPs (CB), papainlike endopeptidases of RNA viruses (CC), legumain-type caspases (CD), and showing active residues of His, Glu/Asp, Gln, Cys (CE). The catalytic mechanism of CPs is the essential cysteine residue present in the active site. These mechanisms are often studied through computational methods that provide new information about the catalytic mechanism and identify inhibitors. The role of computational methods during drug design and development stages is increasing. Methods in Computer-Aided Drug Design (CADD) accelerate the discovery process, increase the chances of selecting more promising molecules for experimental studies, and can identify critical mechanisms involved in the pathophysiology and molecular pathways of action. Molecular dynamics (MD) simulations are essential in any drug discovery program due to their high capacity for simulating a physiological environment capable of unveiling significant inhibition mechanisms of new compounds against target proteins, especially CPs. Here, a brief approach will be shown on MD simulations and how the studies were applied to identify inhibitors or critical information against cysteine protease from several microorganisms, such as Trypanosoma cruzi (cruzain), Trypanosoma brucei (rhodesain), Plasmodium spp. (falcipain), and SARS-CoV-2 (Mpro). We hope the readers will gain new insights and use our study as a guide for potential compound identifications using MD simulations.
Collapse
Affiliation(s)
- Igor José dos Santos Nascimento
- Department of Pharmacy, Cesmac University Center, Maceió, 57051-160, Brazil
- Department of Pharmacy, Drug Development and Synthesis Laboratory, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Post-graduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
| | - Joilly Nilce Santana Gomes
- Department of Pharmacy, Drug Development and Synthesis Laboratory, State University of Paraíba, Campina Grande, 58429-500, Brazil
| | - Jéssika de Oliveira Viana
- Post-graduate Program in Bioinformatics, Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Yvnni Maria Sales de Medeiros e Silva
- Department of Pharmacy, Drug Development and Synthesis Laboratory, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Post-graduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
| | - Euzébio Guimarães Barbosa
- Post-graduate Program in Bioinformatics, Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte, Natal, Brazil
- Post-graduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Ricardo Olimpio de Moura
- Department of Pharmacy, Drug Development and Synthesis Laboratory, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Post-graduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
| |
Collapse
|
6
|
Stoka V, Vasiljeva O, Nakanishi H, Turk V. The Role of Cysteine Protease Cathepsins B, H, C, and X/Z in Neurodegenerative Diseases and Cancer. Int J Mol Sci 2023; 24:15613. [PMID: 37958596 PMCID: PMC10650516 DOI: 10.3390/ijms242115613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
Papain-like cysteine proteases are composed of 11 human cysteine cathepsins, originally located in the lysosomes. They exhibit broad specificity and act as endopeptidases and/or exopeptidases. Among them, only cathepsins B, H, C, and X/Z exhibit exopeptidase activity. Recently, cysteine cathepsins have been found to be present outside the lysosomes and often participate in various pathological processes. Hence, they have been considered key signalling molecules. Their potentially hazardous proteolytic activities are tightly regulated. This review aims to discuss recent advances in understanding the structural aspects of these four cathepsins, mechanisms of their zymogen activation, regulation of their activities, and functional aspects of these enzymes in neurodegeneration and cancer. Neurodegenerative effects have been evaluated, particularly in Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, and neuropsychiatric disorders. Cysteine cathepsins also participate in tumour progression and metastasis through the overexpression and secretion of proteases, which trigger extracellular matrix degradation. To our knowledge, this is the first review to provide an in-depth analysis regarding the roles of cysteine cathepsins B, H, C, and X in neurodegenerative diseases and cancer. Further advances in understanding the functions of cysteine cathepsins in these conditions will result in the development of novel, targeted therapeutic strategies.
Collapse
Affiliation(s)
- Veronika Stoka
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia;
- Jožef Stefan International Postgraduate School, SI-1000 Ljubljana, Slovenia
| | - Olga Vasiljeva
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia;
- CytomX Therapeutics, Inc., South San Francisco, CA 94080, USA
| | - Hiroshi Nakanishi
- Department of Pharmacology, Faculty of Pharmacy, Yasuda Women’s University, Hiroshima 731-0153, Japan;
| | - Vito Turk
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia;
- Jožef Stefan International Postgraduate School, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
7
|
Tušar L, Loboda J, Impens F, Sosnowski P, Van Quickelberghe E, Vidmar R, Demol H, Sedeyn K, Saelens X, Vizovišek M, Mihelič M, Fonović M, Horvat J, Kosec G, Turk B, Gevaert K, Turk D. Proteomic data and structure analysis combined reveal interplay of structural rigidity and flexibility on selectivity of cysteine cathepsins. Commun Biol 2023; 6:450. [PMID: 37095140 PMCID: PMC10124925 DOI: 10.1038/s42003-023-04772-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/28/2023] [Indexed: 04/26/2023] Open
Abstract
Addressing the elusive specificity of cysteine cathepsins, which in contrast to caspases and trypsin-like proteases lack strict specificity determining P1 pocket, calls for innovative approaches. Proteomic analysis of cell lysates with human cathepsins K, V, B, L, S, and F identified 30,000 cleavage sites, which we analyzed by software platform SAPS-ESI (Statistical Approach to Peptidyl Substrate-Enzyme Specific Interactions). SAPS-ESI is used to generate clusters and training sets for support vector machine learning. Cleavage site predictions on the SARS-CoV-2 S protein, confirmed experimentally, expose the most probable first cut under physiological conditions and suggested furin-like behavior of cathepsins. Crystal structure analysis of representative peptides in complex with cathepsin V reveals rigid and flexible sites consistent with analysis of proteomics data by SAPS-ESI that correspond to positions with heterogeneous and homogeneous distribution of residues. Thereby support for design of selective cleavable linkers of drug conjugates and drug discovery studies is provided.
Collapse
Affiliation(s)
- Livija Tušar
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova cesta 39, 1000, Ljubljana, Slovenia
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Jure Loboda
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova cesta 39, 1000, Ljubljana, Slovenia
- The Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology and UGent Department of Biomolecular Medicine, Technologiepark-Zwijnaarde 75, 9052, Ghent, Belgium
| | - Piotr Sosnowski
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Emmy Van Quickelberghe
- VIB-UGent Center for Medical Biotechnology and UGent Department of Biomolecular Medicine, Technologiepark-Zwijnaarde 75, 9052, Ghent, Belgium
| | - Robert Vidmar
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Hans Demol
- VIB-UGent Center for Medical Biotechnology and UGent Department of Biomolecular Medicine, Technologiepark-Zwijnaarde 75, 9052, Ghent, Belgium
| | - Koen Sedeyn
- VIB-UGent Center for Medical Biotechnology and, Department for Biochemistry and Microbiology, Ghent University, 9052, Ghent, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology and, Department for Biochemistry and Microbiology, Ghent University, 9052, Ghent, Belgium
| | - Matej Vizovišek
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Marko Mihelič
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Marko Fonović
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Jaka Horvat
- Acies Bio d.o.o., Tehnološki park 21, 1000, Ljubljana, Slovenia
| | - Gregor Kosec
- Acies Bio d.o.o., Tehnološki park 21, 1000, Ljubljana, Slovenia
| | - Boris Turk
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova cesta 39, 1000, Ljubljana, Slovenia
- Faculty of Chemistry, University of Ljubljana, Večna pot 113, SI-1000, Ljubljana, Slovenia
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology and UGent Department of Biomolecular Medicine, Technologiepark-Zwijnaarde 75, 9052, Ghent, Belgium.
| | - Dušan Turk
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova cesta 39, 1000, Ljubljana, Slovenia.
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova cesta 39, 1000, Ljubljana, Slovenia.
| |
Collapse
|
8
|
Pessoa VA, Soares LBN, Silva GL, Vasconcelos AS, Silva JF, Fariña JI, Oliveira-Junior SD, Sales-Campos C, Chevreuil LR. Production of mycelial biomass, proteases and protease inhibitors by Ganoderma lucidum under different submerged fermentation conditions. BRAZ J BIOL 2023; 83:e270316. [PMID: 37162094 DOI: 10.1590/1519-6984.270316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/01/2023] [Indexed: 05/11/2023] Open
Abstract
Ganoderma lucidum is a medicinal mushroom widely recognized as a source of biomolecules with pharmacological properties, however, little is known about the factors that influence the synthesis of bioactive proteins by this fungus when cultivated under submerged fermentation. The objective of this work was to evaluate the production of mycelial biomass and intracellular proteases and protease inhibitors by G. lucidum cultivated under different submerged fermentation conditions. The cultivation was carried out in a medium composed of glucose (10 or 20 g.L-1), soy peptone (2.5 or 5 g.L-1) and yeast extract (5 g.L-1), with incubation under agitation (120 rpm) and non-agitation, totaling 8 experimental conditions. Biomass production was determined from the dry weight, while glucose consumption was estimated by quantification of reducing sugars. The proteins were extracted in NaCl (0.15 M), and the protein extracts were submitted to protein quantification by the Bradford method, total proteolytic activity using azocasein, caseinolytic and fibrinolytic activity in Petri dishes, activity of serine (trypsin and chymotrypsin) and cysteine (papain) protease inhibitors. Cultivation in agitated condition showed higher biomass production with a maximum value of 7 g.L-1, in addition to higher activities of trypsin, chymotrypsin and papain inhibitors, with 154 IU.mg-1, 153 IU.mg-1 e 343 IU.mg-1 of protein, respectively. The non-agitated condition showed a greater potential for obtaining proteins, total proteases, caseinolytic and fibrinolytic enzymes, with maximum values of 433 mg.g-1 of extract, 71 U.mL-1 of extract, 63.62 mm2 and 50.27 mm2, respectively. Thus, a medium composed of soy peptone, yest extract and glucose in a 1:2:4 proportion is recommended, under agitation to produce protease inhibitors, and the non-agitated condition when the target is, mainly caseinolytic and fibrinolytic enzymes.
Collapse
Affiliation(s)
- V A Pessoa
- Instituto Nacional de Pesquisas da Amazônia - INPA, Edible Fungi Cultivation Laboratory, Manaus, AM, Brasil
- Universidade Federal do Amazonas - UFAM, Postgraduate Program in Biotechnology - PPGBIOTEC, Manaus, AM, Brasil
| | - L B N Soares
- Instituto Nacional de Pesquisas da Amazônia - INPA, Edible Fungi Cultivation Laboratory, Manaus, AM, Brasil
- Universidade do Estado do Amazonas - UEA, Postgraduate Program in Biodiversity and Biotechnology - PPGBIONORTE, Manaus, AM, Brasil
| | - G L Silva
- Instituto Nacional de Pesquisas da Amazônia - INPA, Edible Fungi Cultivation Laboratory, Manaus, AM, Brasil
| | - A S Vasconcelos
- Instituto Nacional de Pesquisas da Amazônia - INPA, Edible Fungi Cultivation Laboratory, Manaus, AM, Brasil
| | - J F Silva
- Instituto Nacional de Pesquisas da Amazônia - INPA, Edible Fungi Cultivation Laboratory, Manaus, AM, Brasil
| | - J I Fariña
- Planta Piloto de Procesos Industriales Microbiológicos - PROIMI-CONICET, San Miguel de Tucumán, Argentina
| | - S D Oliveira-Junior
- Instituto Nacional de Pesquisas da Amazônia - INPA, Edible Fungi Cultivation Laboratory, Manaus, AM, Brasil
| | - C Sales-Campos
- Instituto Nacional de Pesquisas da Amazônia - INPA, Edible Fungi Cultivation Laboratory, Manaus, AM, Brasil
- Universidade Federal do Amazonas - UFAM, Postgraduate Program in Biotechnology - PPGBIOTEC, Manaus, AM, Brasil
- Universidade do Estado do Amazonas - UEA, Postgraduate Program in Biodiversity and Biotechnology - PPGBIONORTE, Manaus, AM, Brasil
| | - L R Chevreuil
- Instituto Nacional de Pesquisas da Amazônia - INPA, Edible Fungi Cultivation Laboratory, Manaus, AM, Brasil
| |
Collapse
|
9
|
Lecaille F, Chazeirat T, Saidi A, Lalmanach G. Cathepsin V: Molecular characteristics and significance in health and disease. Mol Aspects Med 2022; 88:101086. [PMID: 35305807 DOI: 10.1016/j.mam.2022.101086] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 12/31/2022]
Abstract
Human cysteine cathepsins form a family of eleven proteases (B, C, F, H, K, L, O, S, V, W, X/Z) that play important roles in a considerable number of biological and pathophysiological processes. Among them, cathepsin V, also known as cathepsin L2, is a lysosomal enzyme, which is mainly expressed in cornea, thymus, heart, brain, and skin. Cathepsin V is a multifunctional endopeptidase that is involved in both the release of antigenic peptides and the maturation of MHC class II molecules and participates in the turnover of elastin fibrils as well in the cleavage of intra- and extra-cellular substrates. Moreover, there is increasing evidence that cathepsin V may contribute to the progression of diverse diseases, due to the dysregulation of its expression and/or its activity. For instance, increased expression of cathepsin V is closely correlated with malignancies (breast cancer, squamous cell carcinoma, or colorectal cancer) as well vascular disorders (atherosclerosis, aortic aneurysm, hypertension) being the most prominent examples. This review aims to shed light on current knowledge on molecular aspects of cathepsin V (genomic organization, protein structure, substrate specificity), its regulation by protein and non-protein inhibitors as well to summarize its expression (tissue and cellular distribution). Then the core biological and pathophysiological roles of cathepsin V will be depicted, raising the question of its interest as a valuable target that can open up pioneering therapeutic avenues.
Collapse
Affiliation(s)
- Fabien Lecaille
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes protéolytiques dans l'inflammation", Tours, France.
| | - Thibault Chazeirat
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes protéolytiques dans l'inflammation", Tours, France
| | - Ahlame Saidi
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes protéolytiques dans l'inflammation", Tours, France
| | - Gilles Lalmanach
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes protéolytiques dans l'inflammation", Tours, France.
| |
Collapse
|
10
|
Proteases and Their Potential Role as Biomarkers and Drug Targets in Dry Eye Disease and Ocular Surface Dysfunction. Int J Mol Sci 2022; 23:ijms23179795. [PMID: 36077189 PMCID: PMC9456293 DOI: 10.3390/ijms23179795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Dry eye disease (DED) is a multifactorial disorder that leads to ocular discomfort, visual disturbance, and tear film instability. DED is accompanied by an increase in tear osmolarity and ocular surface inflammation. The diagnosis and treatment of DED still present significant challenges. Therefore, novel biomarkers and treatments are of great interest. Proteases are present in different tissues on the ocular surface. In a healthy eye, proteases are highly regulated. However, dysregulation occurs in various pathologies, including DED. With this review, we provide an overview of the implications of different families of proteases in the development and severity of DED, along with studies involving protease inhibitors as potential therapeutic tools. Even though further research is needed, this review aims to give suggestions for identifying novel biomarkers and developing new protease inhibitors.
Collapse
|
11
|
Roy M, Rawat A, Kaushik S, Jyoti A, Srivastava VK. Endogenous cysteine protease inhibitors in upmost pathogenic parasitic protozoa. Microbiol Res 2022; 261:127061. [DOI: 10.1016/j.micres.2022.127061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
|
12
|
Jasni N, Saidin S, Arifin N, Azman DK, Shin LN, Othman N. A Review: Natural and Synthetic Compounds Targeting Entamoeba histolytica and Its Biological Membrane. MEMBRANES 2022; 12:membranes12040396. [PMID: 35448367 PMCID: PMC9024486 DOI: 10.3390/membranes12040396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/23/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022]
Abstract
Amoebiasis is the third most common parasitic cause of morbidity and mortality, particularly in countries with poor hygienic settings in central and south America, Africa, and India. This disease is caused by a protozoan parasite, namely Entamoeba histolytica, which infects approximately 50 million people worldwide, resulting in 70,000 deaths every year. Since the 1960s, E. histolytica infection has been successfully treated with metronidazole. However, there are drawbacks to metronidazole therapy: the side effects, duration of treatment, and need for additional drugs to prevent transmission. Previous interdisciplinary studies, including biophysics, bioinformatics, chemistry, and, more recently, lipidomics studies, have increased biomembranes’ publicity. The biological membranes are comprised of a mixture of membrane and cytosolic proteins. They work hand in hand mainly at the membrane part. They act as dedicated platforms for a whole range of cellular processes, such as cell proliferation, adhesion, migration, and intracellular trafficking, thus are appealing targets for drug treatment. Therefore, this review aims to observe the updated trend of the research regarding the biological membranes of E. histolytica from 2015 to 2021, which may help further research regarding the drug targeting the biological membrane.
Collapse
Affiliation(s)
- Nurhana Jasni
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor 11800, Malaysia; (N.J.); (N.A.); (D.K.A.); (L.N.S.)
| | - Syazwan Saidin
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia;
| | - Norsyahida Arifin
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor 11800, Malaysia; (N.J.); (N.A.); (D.K.A.); (L.N.S.)
| | - Daruliza Kernain Azman
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor 11800, Malaysia; (N.J.); (N.A.); (D.K.A.); (L.N.S.)
| | - Lai Ngit Shin
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor 11800, Malaysia; (N.J.); (N.A.); (D.K.A.); (L.N.S.)
| | - Nurulhasanah Othman
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor 11800, Malaysia; (N.J.); (N.A.); (D.K.A.); (L.N.S.)
- Correspondence:
| |
Collapse
|
13
|
Manoilov KY, Ghosh A, Almo SC, Verkhusha VV. Structural and Functional Characterization of a Biliverdin-Binding Near-Infrared Fluorescent Protein From the Serpin Superfamily. J Mol Biol 2021; 434:167359. [PMID: 34798132 DOI: 10.1016/j.jmb.2021.167359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022]
Abstract
Biliverdin-binding serpins (BBSs) are proteins that are responsible for coloration in amphibians and fluoresce in the near-infrared (NIR) spectral region. Here we produced the first functional recombinant BBS of the polka-dot treefrog Boana punctata (BpBBS), assembled with its biliverdin (BV) chromophore, and report its biochemical and photochemical characterization. We determined the crystal structure of BpBBS at 2.05 Å resolution, which demonstrated its structural homology to the mammalian protease inhibitor alpha-1-antitrypsin. BV interaction with BpBBS was studied and it was found that the N-terminal polypeptide (residues 19-50) plays a critical role in the BV binding. By comparing BpBBS with the available NIR fluorescent proteins and expressing it in mammalian cells, we demonstrated its potential as a NIR imaging probe. These results provide insight into the non-inhibitory function of serpins, provide a basis for improving their performance in mammalian cells, and suggest possible paths for the development of BBS-based fluorescent probes.
Collapse
Affiliation(s)
- Kyrylo Yu Manoilov
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Agnidipta Ghosh
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA. https://twitter.com/@AgniGh0sh
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Vladislav V Verkhusha
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Medicum, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland; Science Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi 354340, Russia.
| |
Collapse
|
14
|
Cystatin M/E (Cystatin 6): A Janus-Faced Cysteine Protease Inhibitor with Both Tumor-Suppressing and Tumor-Promoting Functions. Cancers (Basel) 2021; 13:cancers13081877. [PMID: 33919854 PMCID: PMC8070812 DOI: 10.3390/cancers13081877] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 01/08/2023] Open
Abstract
Alongside its contribution in maintaining skin homeostasis and its probable involvement in fetal and placental development, cystatin M/E (also known as cystatin 6) was first described as a tumor suppressor of breast cancer. This review aims to provide an update on cystatin M/E with particular attention paid to its role during tumorigenesis. Cystatin M/E, which is related to type 2 cystatins, displays the unique property of being a dual tight-binding inhibitor of both legumain (also known as asparagine endopeptidase) and cysteine cathepsins L, V and B, while its expression level is epigenetically regulated via the methylation of the CST6 promoter region. The tumor-suppressing role of cystatin M/E was further reported in melanoma, cervical, brain, prostate, gastric and renal cancers, and cystatin M/E was proposed as a biomarker of prognostic significance. Contrariwise, cystatin M/E could have an antagonistic function, acting as a tumor promoter (e.g., oral, pancreatic cancer, thyroid and hepatocellular carcinoma). Taking into account these apparently divergent functions, there is an urgent need to decipher the molecular and cellular regulatory mechanisms of the expression and activity of cystatin M/E associated with the safeguarding homeostasis of the proteolytic balance as well as its imbalance in cancer.
Collapse
|