1
|
Takasawa T, Matsui T, Watanabe G, Kodera Y. Molecular dynamics simulations reveal differences in the conformational stability of FtsZs derived from Staphylococcus aureus and Bacillus subtilis. Sci Rep 2024; 14:16043. [PMID: 38992051 PMCID: PMC11239868 DOI: 10.1038/s41598-024-66763-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
FtsZ is highly conserved among bacteria and plays an essential role in bacterial cell division. The tense conformation of FtsZ bound to GTP assembles into a straight filament via head-to-tail associations, and then the upper subunit of FtsZ hydrolyzes GTP bound to the lower FtsZ subunit. The subunit with GDP bound disassembles accompanied by a conformational change in the subunit from the tense to relaxed conformation. Although crystal structures of FtsZ derived from several bacterial species have been determined, the conformational change from the relaxed to tense conformation has only been observed in Staphylococcus aureus FtsZ (SaFtsZ). Recent cryo-electron microscopy analyses revealed the three-dimensional reconstruction of the protofilament, in which tense molecules assemble via head-to-tail associations. However, the lower resolution of the protofilament suggested that the flexibility of the FtsZ protomers between the relaxed and tense conformations caused them to form in less-strict alignments. Furthermore, this flexibility may also prevent FtsZs other than SaFtsZ from crystalizing in the tense conformation, suggesting that the flexibility of bacterial FtsZs differs. In this study, molecular dynamics simulations were performed using SaFtsZ and Bacillus subtilis FtsZ in several situations, which suggested that different features of the FtsZs affect their conformational stability.
Collapse
Affiliation(s)
- Taichi Takasawa
- Department of Physics, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Takashi Matsui
- Department of Physics, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa, 252-0373, Japan.
- Center for Disease Proteomics, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa, 252-0373, Japan.
| | - Go Watanabe
- Department of Data Science, School of Frontier Engineering, Kitasato University, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa, 252-0373, Japan.
- Kanagawa Institute of Industrial Science and Technology (KISTEC), 705-1 Shimoimaizumi, Ebina, Kanagawa, 243-0435, Japan.
| | - Yoshio Kodera
- Department of Physics, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa, 252-0373, Japan
- Center for Disease Proteomics, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa, 252-0373, Japan
| |
Collapse
|
2
|
Ando T, Fukuda S, Ngo KX, Flechsig H. High-Speed Atomic Force Microscopy for Filming Protein Molecules in Dynamic Action. Annu Rev Biophys 2024; 53:19-39. [PMID: 38060998 DOI: 10.1146/annurev-biophys-030722-113353] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Structural biology is currently undergoing a transformation into dynamic structural biology, which reveals the dynamic structure of proteins during their functional activity to better elucidate how they function. Among the various approaches in dynamic structural biology, high-speed atomic force microscopy (HS-AFM) is unique in the ability to film individual molecules in dynamic action, although only topographical information is acquirable. This review provides a guide to the use of HS-AFM for biomolecular imaging and showcases several examples, as well as providing information on up-to-date progress in HS-AFM technology. Finally, we discuss the future prospects of HS-AFM in the context of dynamic structural biology in the upcoming era.
Collapse
Affiliation(s)
- Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan;
| | - Shingo Fukuda
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan;
| | - Kien X Ngo
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan;
| | - Holger Flechsig
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan;
| |
Collapse
|
3
|
Lamanna MM, Maurelli AT. What Is Motion? Recent Advances in the Study of Molecular Movement Patterns of the Peptidoglycan Synthesis Machines. J Bacteriol 2022; 204:e0059821. [PMID: 34928180 PMCID: PMC9017339 DOI: 10.1128/jb.00598-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
How proteins move through space and time is a fundamental question in biology. While great strides have been made toward a mechanistic understanding of protein movement, many questions remain. We discuss the biological implications of motion in the context of the peptidoglycan (PG) synthesis machines. We reviewed systems in several bacteria, including Escherichia coli, Bacillus subtilis, and Streptococcus pneumoniae, and present a comprehensive view of our current knowledge regarding movement dynamics. Discrepancies are also addressed because "one size does not fit all". For bacteria to divide, new PG is synthesized and incorporated into the growing cell wall by complex multiprotein nanomachines consisting of PG synthases (transglycosylases [TG] and/or transpeptidases [TP]) as well as a variety of regulators and cytoskeletal factors. Advances in imaging capabilities and labeling methods have revealed that these machines are not static but rather circumferentially transit the cell via directed motion perpendicular to the long axis of model rod-shaped bacteria such as E. coli and B. subtilis. The enzymatic activity of the TG:TPs drives motion in some species while motion is mediated by FtsZ treadmilling in others. In addition, both directed and diffusive motion of the PG synthases have been observed using single-particle tracking technology. Here, we examined the biological role of diffusion regarding transit. Lastly, findings regarding the monofunctional transglycosylases (RodA and FtsW) as well as the Class A PG synthases are discussed. This minireview serves to showcase recent advances, broach mechanistic unknowns, and stimulate future areas of study.
Collapse
Affiliation(s)
- Melissa Mae Lamanna
- Department of Environmental & Global Health and Emerging Pathogens Institute, University of Floridagrid.15276.37, Gainesville, Florida, USA
| | - Anthony T. Maurelli
- Department of Environmental & Global Health and Emerging Pathogens Institute, University of Floridagrid.15276.37, Gainesville, Florida, USA
| |
Collapse
|
4
|
Antistaphylococcal Activity of the FtsZ Inhibitor C109. Pathogens 2021; 10:pathogens10070886. [PMID: 34358036 PMCID: PMC8308607 DOI: 10.3390/pathogens10070886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 01/22/2023] Open
Abstract
Staphylococcus aureus infections represent a great concern due to their versatility and involvement in different types of diseases. The shortage of available clinical options, especially to treat multiresistant strains, makes the discovery of new effective compounds essential. Here we describe the activity of the previously described cell division inhibitor C109 against methicillin-sensitive and -resistant S. aureus strains. Antibiofilm activity was assessed using microtiter plates, confocal microscopy, and in an in vitro biofilm wound model. The ability of C109 to block FtsZ GTPase activity and polymerization was tested in vitro. Altogether, the results show that the FtsZ inhibitor C109 has activity against a wide range of S. aureus strains and support its use as an antistaphylococcal compound.
Collapse
|