1
|
Ziehe D, Marko B, Thon P, Rahmel T, Palmowski L, Nowak H, von Busch A, Wolf A, Witowski A, Vonheder J, Ellger B, Wappler F, Schwier E, Henzler D, Köhler T, Zarbock A, Ehrentraut SF, Putensen C, Frey UH, Anft M, Babel N, Adamzik M, Koos B, Bergmann L, Unterberg M, Rump K. The Aquaporin 3 Polymorphism (rs17553719) Is Associated with Sepsis Survival and Correlated with IL-33 Secretion. Int J Mol Sci 2024; 25:1400. [PMID: 38338680 PMCID: PMC10855683 DOI: 10.3390/ijms25031400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Sepsis is a common life-threatening disease caused by dysregulated immune response and metabolic acidosis which lead to organ failure. An abnormal expression of aquaporins plays an important role in organ failure. Additionally, genetic variants in aquaporins impact on the outcome in sepsis. Thus, we investigated the polymorphism (rs17553719) and expression of aquaporin-3 (AQP3) and correlated these measurements with the survival of sepsis patients. Accordingly, we collected blood samples on several days (plus clinical data) from 265 sepsis patients who stayed in different ICUs in Germany. Serum plasma, DNA, and RNA were then separated to detect the promotor genotypes of AQP3 mRNA expression of AQP3 and several cytokines. The results showed that the homozygote CC genotype exhibited a significant decrease in 30-day survival (38.9%) compared to the CT (66.15%) and TT genotypes (76.3%) (p = 0.003). Moreover, AQP3 mRNA expression was significantly higher and nearly doubled in the CC compared to the CT (p = 0.0044) and TT genotypes (p = 0.018) on the day of study inclusion. This was accompanied by an increased IL-33 concentration in the CC genotype (day 0: p = 0.0026 and day 3: p = 0.008). In summary, the C allele of the AQP3 polymorphism (rs17553719) shows an association with increased AQP3 expression and IL-33 concentration accompanied by decreased survival in patients with sepsis.
Collapse
Affiliation(s)
- Dominik Ziehe
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (D.Z.); (B.M.); (P.T.); (T.R.); (L.P.); (H.N.); (A.v.B.); (A.W.); (A.W.); (J.V.); (M.A.); (B.K.); (L.B.); (M.U.)
| | - Britta Marko
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (D.Z.); (B.M.); (P.T.); (T.R.); (L.P.); (H.N.); (A.v.B.); (A.W.); (A.W.); (J.V.); (M.A.); (B.K.); (L.B.); (M.U.)
| | - Patrick Thon
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (D.Z.); (B.M.); (P.T.); (T.R.); (L.P.); (H.N.); (A.v.B.); (A.W.); (A.W.); (J.V.); (M.A.); (B.K.); (L.B.); (M.U.)
| | - Tim Rahmel
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (D.Z.); (B.M.); (P.T.); (T.R.); (L.P.); (H.N.); (A.v.B.); (A.W.); (A.W.); (J.V.); (M.A.); (B.K.); (L.B.); (M.U.)
| | - Lars Palmowski
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (D.Z.); (B.M.); (P.T.); (T.R.); (L.P.); (H.N.); (A.v.B.); (A.W.); (A.W.); (J.V.); (M.A.); (B.K.); (L.B.); (M.U.)
| | - Hartmuth Nowak
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (D.Z.); (B.M.); (P.T.); (T.R.); (L.P.); (H.N.); (A.v.B.); (A.W.); (A.W.); (J.V.); (M.A.); (B.K.); (L.B.); (M.U.)
- Center for Artificial Intelligence, Medical Informatics and Data Science, University Hospital Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany
| | - Alexander von Busch
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (D.Z.); (B.M.); (P.T.); (T.R.); (L.P.); (H.N.); (A.v.B.); (A.W.); (A.W.); (J.V.); (M.A.); (B.K.); (L.B.); (M.U.)
| | - Alexander Wolf
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (D.Z.); (B.M.); (P.T.); (T.R.); (L.P.); (H.N.); (A.v.B.); (A.W.); (A.W.); (J.V.); (M.A.); (B.K.); (L.B.); (M.U.)
| | - Andrea Witowski
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (D.Z.); (B.M.); (P.T.); (T.R.); (L.P.); (H.N.); (A.v.B.); (A.W.); (A.W.); (J.V.); (M.A.); (B.K.); (L.B.); (M.U.)
| | - Jolene Vonheder
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (D.Z.); (B.M.); (P.T.); (T.R.); (L.P.); (H.N.); (A.v.B.); (A.W.); (A.W.); (J.V.); (M.A.); (B.K.); (L.B.); (M.U.)
| | - Björn Ellger
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Klinikum Westfalen, 44309 Dortmund, Germany;
| | - Frank Wappler
- Department of Anesthesiology and Operative Intensive Care Medicine, University of Witten/Herdecke, Cologne Merheim Medical School, 51109 Cologne, Germany;
| | - Elke Schwier
- Department of Anesthesiology, Surgical Intensive Care, Emergency and Pain Medicine, Ruhr-University Bochum, Klinikum Herford, 32049 Herford, Germany; (E.S.); (D.H.); (T.K.)
| | - Dietrich Henzler
- Department of Anesthesiology, Surgical Intensive Care, Emergency and Pain Medicine, Ruhr-University Bochum, Klinikum Herford, 32049 Herford, Germany; (E.S.); (D.H.); (T.K.)
| | - Thomas Köhler
- Department of Anesthesiology, Surgical Intensive Care, Emergency and Pain Medicine, Ruhr-University Bochum, Klinikum Herford, 32049 Herford, Germany; (E.S.); (D.H.); (T.K.)
| | - Alexander Zarbock
- Klinik für Anästhesiologie, Operative Intensivmedizin und Schmerztherapie, Universitätsklinikum Münster, 48149 Münster, Germany;
| | - Stefan Felix Ehrentraut
- Klinik für Anästhesiologie und Operative Intensivmedizin, Universitätsklinikum Bonn, 53127 Bonn, Germany; (S.F.E.); (C.P.)
| | - Christian Putensen
- Klinik für Anästhesiologie und Operative Intensivmedizin, Universitätsklinikum Bonn, 53127 Bonn, Germany; (S.F.E.); (C.P.)
| | - Ulrich Hermann Frey
- Marien Hospital Herne, Universitätsklinikum der Ruhr-Universität Bochum, 44625 Herne, Germany;
| | - Moritz Anft
- Center for Translational Medicine, Medical Clinic I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, 44625 Herne, Germany; (M.A.); (N.B.)
| | - Nina Babel
- Center for Translational Medicine, Medical Clinic I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, 44625 Herne, Germany; (M.A.); (N.B.)
| | - Michael Adamzik
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (D.Z.); (B.M.); (P.T.); (T.R.); (L.P.); (H.N.); (A.v.B.); (A.W.); (A.W.); (J.V.); (M.A.); (B.K.); (L.B.); (M.U.)
| | - Björn Koos
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (D.Z.); (B.M.); (P.T.); (T.R.); (L.P.); (H.N.); (A.v.B.); (A.W.); (A.W.); (J.V.); (M.A.); (B.K.); (L.B.); (M.U.)
| | - Lars Bergmann
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (D.Z.); (B.M.); (P.T.); (T.R.); (L.P.); (H.N.); (A.v.B.); (A.W.); (A.W.); (J.V.); (M.A.); (B.K.); (L.B.); (M.U.)
| | - Matthias Unterberg
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (D.Z.); (B.M.); (P.T.); (T.R.); (L.P.); (H.N.); (A.v.B.); (A.W.); (A.W.); (J.V.); (M.A.); (B.K.); (L.B.); (M.U.)
| | - Katharina Rump
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (D.Z.); (B.M.); (P.T.); (T.R.); (L.P.); (H.N.); (A.v.B.); (A.W.); (A.W.); (J.V.); (M.A.); (B.K.); (L.B.); (M.U.)
| |
Collapse
|
2
|
Zhang H, Wang N, Xu Y, Pei M, Zheng Y. Comparative analysis of peripheral blood immunoinflammatory landscapes in patients with acute cholangitis and its secondary septic shock using single-cell RNA sequencing. Biochem Biophys Res Commun 2023; 683:149121. [PMID: 37864923 DOI: 10.1016/j.bbrc.2023.149121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Acute cholangitis (AC) is a key pathogeny of septic shock, which has a high mortality rate. AC has significant clinical heterogeneity, but no study has analyzed the discrepancies in immunoresponsiveness between AC and its secondary septic shock. The immune inflammatory responses play a critical role in the development of septic shock. METHODS We performed single-cell RNA sequencing (scRNA-seq) to analyze the differences of immunocytes in immunoresponse and inflammation between the early stages of AC (A1, A2, and A3) and its secondary septic shock (B1, B2, and B3). RESULTS This study has identified seven cell types, including T cells, B cells, plasma cells, neutrophils, monocytes, platelets and erythrocytes. We mainly focused on neutrophils, monocytes, and T cells. Neutrophil subpopulation analysis indicated that neutrophil progenitors (proNeus) were identified in neutrophil subsets. Compared with patients suffering from AC, the gene phenotypes of proNeus (ELANE, AZU1, MPO, and PRTN3) were significantly upregulated in septic shock. The differentiation direction of neutrophil subsets in peripheral blood mononuclear cells (PBMCs) was determined; Moreover, the proNeus in septic shock presented a state of "expansion", with upregulation of neutrophil degranulation and downregulation of monocyte and T cell proliferation. Neutrophils-7 (CCL5, RPL23A, RPL13, RPS19 and RPS18) were mainly involved in the regulation of cellular functions. The neutrophils-7 subpopulation in septic shock were in a state of "exhaustion", and its biological functions showed the characteristics of weakening neutrophil migration and phagocytosis, etc., which maked infection difficult to control and aggravated the development of septic shock. Analysis of monocyte and T cell subpopulations showed that the expression genes and biological functions of subpopulations were closely related to immunoinflammatory regulation. In addition, CCL3 - CCR1, CXCL1 - CXCR2 and other ligand-receptors were highly expressed in neutrophils and monocytes, enhancing interactions between immune cells. CONCLUSION ScRNA-seq revealed significant differences in immune cells between AC and its secondary septic shock, which were primarily manifested in the cellular numbers, differentially expressed genes, functions of cellular subsets, differentiation trajectories, cell-cell interactions and so on. We identified many subsets of neutrophil, T cell and monocyte were associated with inflammation and immunosuppression induced by septic shock. These provided a reference for accurately evaluating the pathological severity of patients with AC and discovering the targets for therapy.
Collapse
Affiliation(s)
- He Zhang
- Department of Emergency, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Nan Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; Anhui Public Health Clinical Center, Hefei, China.
| | - Yuntian Xu
- Department of Emergency, The Third Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Mingchao Pei
- Department of Emergency, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Yun Zheng
- Department of Emergency ICU, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Giacconi R, Donghia R, Arborea G, Savino MT, Provinciali M, Lattanzio F, Caponio GR, Coletta S, Bianco A, Notarnicola M, Bonfiglio C, Passarino G, D’Aquila P, Bellizzi D, Pesole PL. Plasma Bacterial DNA Load as a Potential Biomarker for the Early Detection of Colorectal Cancer: A Case-Control Study. Microorganisms 2023; 11:2360. [PMID: 37764204 PMCID: PMC10537376 DOI: 10.3390/microorganisms11092360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
The gut microbiota has gained increasing attention in recent years due to its significant impact on colorectal cancer (CRC) development and progression. The recent detection of bacterial DNA load in plasma holds promise as a potential non-invasive approach for early cancer detection. The aim of this study was to examine the quantity of bacterial DNA present in the plasma of 50 patients who have CRC in comparison to 40 neoplastic disease-free patients, as well as to determine if there is a correlation between the amount of plasma bacterial DNA and various clinical parameters. Plasma bacterial DNA levels were found to be elevated in the CRC group compared to the control group. As it emerged from the logistic analysis (adjusted for age and gender), these levels were strongly associated with the risk of CRC (OR = 1.02, p < 0.001, 95% C.I.: 1.01-1.03). Moreover, an association was identified between a reduction in tumor mass and the highest tertile of plasma bacterial DNA. Our findings indicate that individuals with CRC displayed a higher plasma bacterial DNA load compared to healthy controls. This observation lends support to the theory of heightened bacterial migration from the gastrointestinal tract to the bloodstream in CRC. Furthermore, our results establish a link between this phenomenon and the size of the tumor mass.
Collapse
Affiliation(s)
- Robertina Giacconi
- Advanced Technology Center for Aging Research, IRCCS INRCA, Via Birarelli 8, 60121 Ancona, Italy; (M.P.); (F.L.)
| | - Rossella Donghia
- National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (R.D.); (G.A.); (M.T.S.); (S.C.); (A.B.); (M.N.); (C.B.)
| | - Graziana Arborea
- National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (R.D.); (G.A.); (M.T.S.); (S.C.); (A.B.); (M.N.); (C.B.)
| | - Maria Teresa Savino
- National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (R.D.); (G.A.); (M.T.S.); (S.C.); (A.B.); (M.N.); (C.B.)
| | - Mauro Provinciali
- Advanced Technology Center for Aging Research, IRCCS INRCA, Via Birarelli 8, 60121 Ancona, Italy; (M.P.); (F.L.)
| | - Fabrizia Lattanzio
- Advanced Technology Center for Aging Research, IRCCS INRCA, Via Birarelli 8, 60121 Ancona, Italy; (M.P.); (F.L.)
| | - Giusy Rita Caponio
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy;
| | - Sergio Coletta
- National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (R.D.); (G.A.); (M.T.S.); (S.C.); (A.B.); (M.N.); (C.B.)
| | - Antonia Bianco
- National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (R.D.); (G.A.); (M.T.S.); (S.C.); (A.B.); (M.N.); (C.B.)
| | - Maria Notarnicola
- National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (R.D.); (G.A.); (M.T.S.); (S.C.); (A.B.); (M.N.); (C.B.)
| | - Caterina Bonfiglio
- National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (R.D.); (G.A.); (M.T.S.); (S.C.); (A.B.); (M.N.); (C.B.)
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Rende, Italy; (G.P.); (P.D.); (D.B.)
| | - Patrizia D’Aquila
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Rende, Italy; (G.P.); (P.D.); (D.B.)
| | - Dina Bellizzi
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Rende, Italy; (G.P.); (P.D.); (D.B.)
| | - Pasqua Letizia Pesole
- National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (R.D.); (G.A.); (M.T.S.); (S.C.); (A.B.); (M.N.); (C.B.)
| |
Collapse
|
4
|
Schmidt H, Höpfer LM, Wohlgemuth L, Knapp CL, Mohamed AOK, Stukan L, Münnich F, Hüsken D, Koller AS, Stratmann AEP, Müller P, Braun CK, Fabricius D, Bode SFN, Huber-Lang M, Messerer DAC. Multimodal analysis of granulocytes, monocytes, and platelets in patients with cystic fibrosis before and after Elexacaftor-Tezacaftor-Ivacaftor treatment. Front Immunol 2023; 14:1180282. [PMID: 37457734 PMCID: PMC10347380 DOI: 10.3389/fimmu.2023.1180282] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/15/2023] [Indexed: 07/18/2023] Open
Abstract
Cystic fibrosis (CF) is a monogenetic disease caused by an impairment of the cystic fibrosis transmembrane conductance regulator (CFTR). CF affects multiple organs and is associated with acute and chronic inflammation. In 2020, Elexacaftor-Tezacaftor-Ivacaftor (ETI) was approved to enhance and restore the remaining CFTR functionality. This study investigates cellular innate immunity, with a focus on neutrophil activation and phenotype, comparing healthy volunteers with patients with CF before (T1, n = 13) and after six months (T2, n = 11) of ETI treatment. ETI treatment reduced sweat chloride (T1: 95 mmol/l (83|108) vs. T2: 32 mmol/l (25|62), p < 0.01, median, first|third quartile) and significantly improved pulmonal function (FEV1 T1: 2.66 l (1.92|3.04) vs. T2: 3.69 l (3.00|4.03), p < 0.01). Moreover, there was a significant decrease in the biomarker human epididymis protein 4 (T1: 6.2 ng/ml (4.6|6.3) vs. T2: 3.0 ng/ml (2.2|3.7), p < 0.01) and a small but significant decrease in matrix metallopeptidase 9 (T1: 45.5 ng/ml (32.5|140.1) vs. T2: 28.2 ng/ml (18.2|33.6), p < 0.05). Neutrophil phenotype (CD10, CD11b, CD62L, and CD66b) and function (radical oxygen species generation, chemotactic and phagocytic activity) remained largely unaffected by ETI treatment. Likewise, monocyte phenotype and markers of platelet activation were similar at T1 and T2. In summary, the present study confirmed a positive impact on patients with CF after ETI treatment. However, neither beneficial nor harmful effects of ETI treatment on cellular innate immunity could be detected, possibly due to the study population consisting of patients with well-controlled CF.
Collapse
Affiliation(s)
- Hanna Schmidt
- Department of Pediatric and Adolescent Medicine, University Hospital Ulm, Ulm, Germany
| | - Larissa Melina Höpfer
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Lisa Wohlgemuth
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Christiane Leonie Knapp
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | | | - Laura Stukan
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Frederik Münnich
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Dominik Hüsken
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | | | | | - Paul Müller
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Christian Karl Braun
- Department of Pediatric and Adolescent Medicine, University Hospital Ulm, Ulm, Germany
- Institute of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service and University Hospital Ulm, Ulm, Germany
| | - Dorit Fabricius
- Department of Pediatric and Adolescent Medicine, University Hospital Ulm, Ulm, Germany
| | | | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - David Alexander Christian Messerer
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
5
|
Modulation of Neutrophil Activity by Soluble Complement Cleavage Products—An In-Depth Analysis. Cells 2022; 11:cells11203297. [PMID: 36291163 PMCID: PMC9600402 DOI: 10.3390/cells11203297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022] Open
Abstract
The cellular and fluid phase-innate immune responses of many diseases predominantly involve activated neutrophil granulocytes and complement factors. However, a comparative systematic analysis of the early impact of key soluble complement cleavage products, including anaphylatoxins, on neutrophil granulocyte function is lacking. Neutrophil activity was monitored by flow cytometry regarding cellular (electro-)physiology, cellular activity, and changes in the surface expression of activation markers. The study revealed no major effects induced by C3a or C4a on neutrophil functions. By contrast, exposure to C5a or C5a des-Arg stimulated neutrophil activity as reflected in changes in membrane potential, intracellular pH, glucose uptake, and cellular size. Similarly, C5a and C5a des-Arg but no other monitored complement cleavage product enhanced phagocytosis and reactive oxygen species generation. C5a and C5a des-Arg also altered the neutrophil surface expression of several complement receptors and neutrophil activation markers, including C5aR1, CD62L, CD10, and CD11b, among others. In addition, a detailed characterization of the C5a-induced effects was performed with a time resolution of seconds. The multiparametric response of neutrophils was further analyzed by a principal component analysis, revealing CD11b, CD10, and CD16 to be key surrogates of the C5a-induced effects. Overall, we provide a comprehensive insight into the very early interactions of neutrophil granulocytes with activated complement split products and the resulting neutrophil activity. The results provide a basis for a better and, importantly, time-resolved and multiparametric understanding of neutrophil-related (patho-)physiologies.
Collapse
|
6
|
Systemic calcitonin gene-related peptide receptor antagonism decreases survival in a large animal model of polymicrobial sepsis: blinded randomised controlled laboratory trial. Br J Anaesth 2022; 128:864-873. [DOI: 10.1016/j.bja.2021.11.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022] Open
|
7
|
Citrullination in the pathology of inflammatory and autoimmune disorders: recent advances and future perspectives. Cell Mol Life Sci 2022; 79:94. [PMID: 35079870 PMCID: PMC8788905 DOI: 10.1007/s00018-022-04126-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 02/06/2023]
Abstract
Numerous
post-translational modifications (PTMs) govern the collective metabolism of a cell through altering the structure and functions of proteins. The action of the most prevalent PTMs, encompassing phosphorylation, methylation, acylations, ubiquitination and glycosylation is well documented. A less explored protein PTM, conversion of peptidylarginine to citrulline, is the subject of this review. The process of citrullination is catalysed by peptidylarginine deiminases (PADs), a family of conserved enzymes expressed in a variety of human tissues. Accumulating evidence suggest that citrullination plays a significant role in regulating cellular metabolism and gene expression by affecting a multitude of pathways and modulating the chromatin status. Here, we will discuss the biochemical nature of arginine citrullination, the enzymatic machinery behind it and also provide information on the pathological consequences of citrullination in the development of inflammatory diseases (rheumatoid arthritis, multiple sclerosis, psoriasis, systemic lupus erythematosus, periodontitis and COVID-19), cancer and thromboembolism. Finally, developments on inhibitors against protein citrullination and recent clinical trials providing a promising therapeutic approach to inflammatory disease by targeting citrullination are discussed.
Collapse
|
8
|
Stratmann AEP, Wohlgemuth L, Erber ME, Bernhard S, Hug S, Fauler M, Vidoni L, Mohamed AOK, Thomaß BD, Münnich F, Stukan L, Föhr KJ, Mannes M, Huber-Lang MS, Messerer DAC. Simultaneous Measurement of Changes in Neutrophil Granulocyte Membrane Potential, Intracellular pH, and Cell Size by Multiparametric Flow Cytometry. Biomedicines 2021; 9:1504. [PMID: 34829733 PMCID: PMC8614908 DOI: 10.3390/biomedicines9111504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 01/10/2023] Open
Abstract
Neutrophils provide rapid and efficient defense mechanisms against invading pathogens. Upon stimulation with proinflammatory mediators, including complement factors and bacterial peptides, neutrophils respond with changes in their membrane potential, intracellular pH, and cellular size. This study provides an approach to quantify these important changes simultaneously using multiparametric flow cytometry, thereby revealing a typical sequence of neutrophil activation consisting of depolarization, alkalization, and increase in cellular size. Additionally, the time resolution of the flow cytometric measurement is improved in order to allow changes that occur within seconds to be monitored, and thus to enhance the kinetic analysis of the neutrophil response. The method is appropriate for the reliable semiquantitative detection of small variations with respect to an increase, no change, and decrease in those parameters as demonstrated by the screening of various proinflammatory mediators. As a translational outlook, the findings are put into context in inflammatory conditions in vitro as well as in a clinically relevant whole blood model of endotoxemia. Taken together, the multiparametric analysis of neutrophil responsiveness regarding depolarization, alkalization, and changes in cellular size may contribute to a better understanding of neutrophils in health and disease, thus potentially yielding innovative mechanistic insights and possible novel diagnostic and/or prognostic approaches.
Collapse
Affiliation(s)
| | - Lisa Wohlgemuth
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, 89081 Ulm, Germany
| | - Maike Elisabeth Erber
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, 89081 Ulm, Germany
| | - Stefan Bernhard
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, 89081 Ulm, Germany
| | - Stefan Hug
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, 89081 Ulm, Germany
| | - Michael Fauler
- Institute of General Physiology, Ulm University, 89081 Ulm, Germany
| | - Laura Vidoni
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, 89081 Ulm, Germany
| | - Adam Omar Khalaf Mohamed
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, 89081 Ulm, Germany
| | - Bertram Dietrich Thomaß
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, 89081 Ulm, Germany
| | - Frederik Münnich
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, 89081 Ulm, Germany
| | - Laura Stukan
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, 89081 Ulm, Germany
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Ulm, 89081 Ulm, Germany
| | - Karl Josef Föhr
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Ulm, 89081 Ulm, Germany
| | - Marco Mannes
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, 89081 Ulm, Germany
| | - Markus Stefan Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, 89081 Ulm, Germany
| | - David Alexander Christian Messerer
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, 89081 Ulm, Germany
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Ulm, 89081 Ulm, Germany
| |
Collapse
|