1
|
Kosaka K, Takayama N, Paul SK, Kanashiro MA, Oshima M, Fukuyo M, Rahmutulla B, Tajiri I, Mukai M, Kubota Y, Akita S, Furuyama N, Kaneda A, Iwama A, Eto K, Mitsukawa N. iPSC-derived megakaryocytes and platelets accelerate wound healing and angiogenesis. Stem Cell Res Ther 2024; 15:364. [PMID: 39402677 PMCID: PMC11477011 DOI: 10.1186/s13287-024-03966-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Platelet-rich plasma (PRP), which is prepared by concentrating platelets in autologous blood, shows efficacy in chronic skin wounds via multiple growth factors. However, it exhibits heterogeneity across patients, leading to unstable therapeutic efficacy. Human induced pluripotent stem cell (iPSC)-derived megakaryocytes and platelets (iMPs) are capable of providing a stable supply, holding promise as materials for novel platelet concentrate-based therapies. In this context, we evaluated the effect of iMPs on wound healing and validated lyophilization for clinical applications. METHODS The growth factors released by activated iMPs were measured. The effect of the administration of iMPs on human fibroblasts and human umbilical vein endothelial cells (HUVECs) was investigated in vitro. iMPs were applied to dorsal skin defects of diabetic mice to assess the wound closure rate and quantify collagen deposition and angiogenesis. Following the storage of freeze-dried iMPs (FD-iMPs) for three months, the stability of growth factors and their efficacy in animal models were determined. RESULT Multiple growth factors that promote wound healing were detected in activated iMPs. iMPs specifically released FGF2 and exhibited a superior enhancement of HUVEC proliferation compared to PRP. Moreover, an RNA-seq analysis revealed that iMPs induce polarization to stalk cells and enhance ANGPTL4 gene expression in HUVECs. Animal studies demonstrated that iMPs promoted wound closure and angiogenesis in chronic wounds caused by diabetes. We also confirmed the long-term stability of growth factors in FD-iMPs and their comparable effects to those of original iMPs in the animal model. CONCLUSION Our study demonstrates that iMPs promote angiogenesis and wound healing through the activation of vascular endothelial cells. iMPs exhibited more effectiveness than PRP, an effect attributed to the exclusive presence of specific factors including FGF2. Lyophilization enabled the long-term maintenance of the composition of the growth factors and efficacy of the iMPs, therefore contributing to stable supply for clinical application. These findings suggest that iMPs provide a novel treatment for chronic wounds.
Collapse
Affiliation(s)
- Kentaro Kosaka
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan.
| | - Naoya Takayama
- Department of Regenerative Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Sudip Kumar Paul
- Department of Regenerative Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | | | - Motohiko Oshima
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Ikuko Tajiri
- Department of Orthopedic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Michiaki Mukai
- Department of Orthopedic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yoshitaka Kubota
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Shinsuke Akita
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | | | - Atsushi Kaneda
- Department of Molecular Oncology, Chiba University Graduate School of Medicine, Chiba, Japan
- Health and Disease Omics Center, Chiba University, Chiba, Japan
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Koji Eto
- Department of Regenerative Medicine, Chiba University Graduate School of Medicine, Chiba, Japan.
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.
| | - Nobuyuki Mitsukawa
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan.
| |
Collapse
|
2
|
Ma S, Hu Y, Xu W, Xiong W, Xu X, Hou Y, Wang Y, Chen P, Yang W, Lu H, Zhao Y. Insulin-like growth factor-2 mRNA-binding protein 2 facilitates post-ischemic angiogenesis by increasing the stability of fibroblast growth factor 2 mRNA and its protein expression. Heliyon 2024; 10:e37364. [PMID: 39296104 PMCID: PMC11409114 DOI: 10.1016/j.heliyon.2024.e37364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
Background Post-ischemic angiogenesis is crucial for reestablishing blood flow in conditions such as peripheral artery disease (PAD). The role of insulin-like growth factor-2 mRNA-binding protein 2 (IGF2BP2) in post-transcriptional RNA metabolism and its involvement in post-ischemic angiogenesis remains unclear. Methods Using a human GEO database and a hind-limb ischemia (HLI) mouse model, the predominant isoform IGF2BP2 in ischemic gastrocnemius tissue was identified. Adeno-associated virus with the Tie1 promoter induced IGF2BP2 overexpression in the HLI model, evaluating the expression of vascular structural proteins (CD31 and α-SMA) and blood flow recovery after HLI. In vitro experiments with human umbilical vein endothelial cells (HUVECs) demonstrated that lentivirus-mediated IGF2BP2 overexpression upregulates cell proliferation, migration, and tube formation. GeneCards, RNAct databases, and subsequent reverse transcription quantitative polymerase chain reaction (RT-qPCR) predicted IGF2BP2 interactions with fibroblast growth factor 2 (FGF2) mRNA, and actinomycin D treatment, binding site predictions and CLIP-seq data further confirmed this interaction. Furthermore, western blotting, enzyme-linked immunosorbent assay, and RNA immunoprecipitation followed by RT-qPCR were performed to validate IGF2BP2's interaction with FGF2 mRNA and to assess its role in stabilizing FGF2 mRNA, as well as its impact on FGF2 protein expression. Results HLI reduced IGF2BP2 expression in the gastrocnemius tissue, which gradually increased during blood flow recovery. IGF2BP2 overexpression in HLI mice accelerated blood flow recovery and increased capillary and small artery densities. The overexpression of IGF2BP2 in HUVECs stimulated proliferation, migration, and tube formation by interacting with FGF2 mRNA to increase its stability. This interaction resulted in increased levels of FGF2 protein and secretion, ultimately promoting angiogenesis. Conclusions IGF2BP2 contributes to blood flow restoration post-ischemia in vivo and promotes angiogenesis in HUVECs by enhancing FGF2 mRNA stability and FGF2 protein expression and secretion. These findings underscore IGF2BP2's therapeutic potential in ischemic conditions, such as PAD.
Collapse
Affiliation(s)
- Shuai Ma
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| | - Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 200032, Shanghai, China
| | - Wangguo Xu
- Department of Cardiology, Yongchuan Hospital of Chongqing Medical University, 402160, Chongqing, China
| | - Weidong Xiong
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| | - Xinyu Xu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| | - Yajie Hou
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| | - Ying Wang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| | - Panke Chen
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| | - Wenbi Yang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 200032, Shanghai, China
| | - Yongchao Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| |
Collapse
|
3
|
Kang K, Wang DP, Lv QL, Chen F. VEGF-A ameliorates ischemia hippocampal neural injury via regulating autophagy and Akt/CREB signaling in a rat model of chronic cerebral hypoperfusion. J Stroke Cerebrovasc Dis 2023; 32:107367. [PMID: 37734181 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107367] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
OBJECTIVE Chronic cerebral hypoperfusion (CCH) can cause a series of pathophysiological processes, including neuronal autophagy and apoptosis. VEGF-A has been reported to affect angiogenesis and neurogenesis in many CNS diseases. However, its effects on neuronal autophagy and apoptosis, as well as the underlying mechanisms in CCH remain unclear. METHODS To address these issues, the CCH model was established by permanent bilateral common carotid artery occlusion (2VO). Rats were sacrificed at different stages of CCH. Hippocampal morphological and ultrastructural changes were detected using HE staining and electron microscopy. The immunoreactivities of microtubule-associated protein 1 light chain 3 (LC3) and phospho-cAMP response element binding protein (p-CREB) were examined by immunofluorescence staining. The neuronal apoptosis was detected via TUNEL staining. The levels of LC3-II, Beclin-1, Akt, p-Akt, CREB, p-CREB, Caspase-3, and Bad were accessed by Western blotting. Furthermore, mouse hippocampal HT22 neurons received the oxygen and glucose deprivation (OGD) treatment, VEGF-A treatment, and GSK690693 (an Akt inhibitor) treatment, respectively. RESULTS LC3-II protein started to increase at 3 days of CCH, peaked at 4 weeks of CCH, then decreased. CCH increased the levels of LC3-II, Caspase-3, and Bad, and decreased the levels of p-Akt, CREB, and p-CREB, which were reversed by VEGF-A treatment. VEGF-A also improved CCH-induced neuronal ultrastructural injuries and apoptosis in the hippocampus in vitro. In HT22, the anti-apoptosis and pro-phosphorylation of VEGF-A were reversed by GSK690693. CONCLUSION Present results provide a novel neuroprotective effect of VEGF-A in CCH that is related to the inhibition of neuronal autophagy and activation of the Akt/CREB signaling, suggesting a potential therapeutic strategy for ischemic brain damage.
Collapse
Affiliation(s)
- Kai Kang
- School of Public Health, Fudan University, Shanghai 200032, China; Department of Research and Surveillance Evaluation, Shanghai Municipal Center for Health Promotion, Shanghai 200040, China
| | - Da-Peng Wang
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Shanghai, China
| | - Qiao-Li Lv
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Jiangxi 330029, China.
| | - Feng Chen
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Khanna A, Oropeza BP, Huang NF. Engineering Spatiotemporal Control in Vascularized Tissues. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9100555. [PMID: 36290523 PMCID: PMC9598830 DOI: 10.3390/bioengineering9100555] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
A major challenge in engineering scalable three-dimensional tissues is the generation of a functional and developed microvascular network for adequate perfusion of oxygen and growth factors. Current biological approaches to creating vascularized tissues include the use of vascular cells, soluble factors, and instructive biomaterials. Angiogenesis and the subsequent generation of a functional vascular bed within engineered tissues has gained attention and is actively being studied through combinations of physical and chemical signals, specifically through the presentation of topographical growth factor signals. The spatiotemporal control of angiogenic signals can generate vascular networks in large and dense engineered tissues. This review highlights the developments and studies in the spatiotemporal control of these biological approaches through the coordinated orchestration of angiogenic factors, differentiation of vascular cells, and microfabrication of complex vascular networks. Fabrication strategies to achieve spatiotemporal control of vascularization involves the incorporation or encapsulation of growth factors, topographical engineering approaches, and 3D bioprinting techniques. In this article, we highlight the vascularization of engineered tissues, with a focus on vascularized cardiac patches that are clinically scalable for myocardial repair. Finally, we discuss the present challenges for successful clinical translation of engineered tissues and biomaterials.
Collapse
Affiliation(s)
| | - Beu P. Oropeza
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
- Center for Tissue Regeneration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Ngan F. Huang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
- Center for Tissue Regeneration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Correspondence:
| |
Collapse
|
5
|
Fu W, Liu S, Jiao J, Xie Z, Huang X, Lu Y, Liu H, Hu S, Zuo E, Kou N, Ma G. Wear Resistance and Biocompatibility of Co-Cr Dental Alloys Fabricated with CAST and SLM Techniques. MATERIALS 2022; 15:ma15093263. [PMID: 35591597 PMCID: PMC9104588 DOI: 10.3390/ma15093263] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 12/15/2022]
Abstract
Cobalt–chromium (Co-Cr) alloys have been widely used as dental-restoration materials for many years. This study sought to investigate whether selective laser melting (SLM) is a more appropriate process than traditional casting (CAST) for fabricating dental Co-Cr alloys. Metallurgical microscopy, X-ray photoelectron spectroscopy (XPS), Vickers hardness and nanoindentation tests, and friction and wear tests were used to evaluate the microstructure, surface compositions, mechanical properties, and wear resistance, respectively. Additionally, the biocompatibilities and cell adhesion of the alloys were evaluated with L-929 fibroblasts via CCK-8 assay, Live/Dead staining, flow cytometric analysis, scanning electron microscopy (SEM) observation and real-time PCR (RT-PCR) assay. The XPS results showed that the two alloys were all mainly comprised of Co, Cr, and O. The hardness in the CAST group equaled 7.15 ± 0.48 GPa, while in the SLM group, it equaled 9.06 ± 0.49 GPa. The friction coefficient of SLM alloys remained at approximately 0.46, but the CAST specimens fluctuated significantly. SLM alloys exhibited shallower wear scars and less wear debris compared with CAST alloys, simultaneously. Additionally, there were higher survival and expression of cell-adhesion-related genes on SLM alloys of L-929 cells, which meant that the deleterious effect on L-929 cells was significantly reduced compared with that for the CAST alloys. Overall, the wear resistances and biocompatibilities of the Co-Cr dental alloys were dramatically affected by the fabrication technique. The SLM technique is advantageous over the CAST technique for fabricating Co-Cr dental alloys.
Collapse
Affiliation(s)
- Wenqi Fu
- Department of Oral Prosthodontics, School of Stomatology, Dalian Medical University, Lvshun South Road, Dalian 116044, China; (W.F.); (S.L.); (J.J.); (Y.L.); (H.L.); (S.H.); (E.Z.)
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, China
| | - Shuang Liu
- Department of Oral Prosthodontics, School of Stomatology, Dalian Medical University, Lvshun South Road, Dalian 116044, China; (W.F.); (S.L.); (J.J.); (Y.L.); (H.L.); (S.H.); (E.Z.)
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, China
| | - Jun Jiao
- Department of Oral Prosthodontics, School of Stomatology, Dalian Medical University, Lvshun South Road, Dalian 116044, China; (W.F.); (S.L.); (J.J.); (Y.L.); (H.L.); (S.H.); (E.Z.)
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, China
| | - Zhiwen Xie
- School of Mechanical Engineering and Automation, University of Science and Technology Liaoning, Anshan 114051, China; (Z.X.); (X.H.)
| | - Xinfang Huang
- School of Mechanical Engineering and Automation, University of Science and Technology Liaoning, Anshan 114051, China; (Z.X.); (X.H.)
| | - Yun Lu
- Department of Oral Prosthodontics, School of Stomatology, Dalian Medical University, Lvshun South Road, Dalian 116044, China; (W.F.); (S.L.); (J.J.); (Y.L.); (H.L.); (S.H.); (E.Z.)
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, China
| | - Huiying Liu
- Department of Oral Prosthodontics, School of Stomatology, Dalian Medical University, Lvshun South Road, Dalian 116044, China; (W.F.); (S.L.); (J.J.); (Y.L.); (H.L.); (S.H.); (E.Z.)
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, China
| | - Shuhai Hu
- Department of Oral Prosthodontics, School of Stomatology, Dalian Medical University, Lvshun South Road, Dalian 116044, China; (W.F.); (S.L.); (J.J.); (Y.L.); (H.L.); (S.H.); (E.Z.)
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, China
| | - Enjun Zuo
- Department of Oral Prosthodontics, School of Stomatology, Dalian Medical University, Lvshun South Road, Dalian 116044, China; (W.F.); (S.L.); (J.J.); (Y.L.); (H.L.); (S.H.); (E.Z.)
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, China
| | - Ni Kou
- Department of Oral Prosthodontics, School of Stomatology, Dalian Medical University, Lvshun South Road, Dalian 116044, China; (W.F.); (S.L.); (J.J.); (Y.L.); (H.L.); (S.H.); (E.Z.)
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, China
- Correspondence: (N.K.); (G.M.)
| | - Guowu Ma
- Department of Oral Prosthodontics, School of Stomatology, Dalian Medical University, Lvshun South Road, Dalian 116044, China; (W.F.); (S.L.); (J.J.); (Y.L.); (H.L.); (S.H.); (E.Z.)
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, China
- Correspondence: (N.K.); (G.M.)
| |
Collapse
|
6
|
Adrian E, Treľová D, Filová E, Kumorek M, Lobaz V, Poreba R, Janoušková O, Pop-Georgievski O, Lacík I, Kubies D. Complexation of CXCL12, FGF-2 and VEGF with Heparin Modulates the Protein Release from Alginate Microbeads. Int J Mol Sci 2021; 22:11666. [PMID: 34769095 PMCID: PMC8583835 DOI: 10.3390/ijms222111666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/19/2022] Open
Abstract
Long-term delivery of growth factors and immunomodulatory agents is highly required to support the integrity of tissue in engineering constructs, e.g., formation of vasculature, and to minimize immune response in a recipient. However, for proteins with a net positive charge at the physiological pH, controlled delivery from negatively charged alginate (Alg) platforms is challenging due to electrostatic interactions that can hamper the protein release. In order to regulate such interactions between proteins and the Alg matrix, we propose to complex proteins of interest in this study - CXCL12, FGF-2, VEGF - with polyanionic heparin prior to their encapsulation into Alg microbeads of high content of α-L-guluronic acid units (high-G). This strategy effectively reduced protein interactions with Alg (as shown by model ITC and SPR experiments) and, depending on the protein type, afforded control over the protein release for at least one month. The released proteins retained their in vitro bioactivity: CXCL12 stimulated the migration of Jurkat cells, and FGF-2 and VEGF induced proliferation and maturation of HUVECs. The presence of heparin also intensified protein biological efficiency. The proposed approach for encapsulation of proteins with a positive net charge into high-G Alg hydrogels is promising for controlled long-term protein delivery under in vivo conditions.
Collapse
Affiliation(s)
- Edyta Adrian
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq.2, 162 06 Prague, Czech Republic; (E.A.); (M.K.); (V.L.); (R.P.); (O.J.); (O.P.-G.)
- Department of Chemical Engineering, University of Chemistry and Technology, Technicka 5, 166 28 Prague, Czech Republic
| | - Dušana Treľová
- Polymer Institute of the Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia; (D.T.); (I.L.)
| | - Elena Filová
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic;
| | - Marta Kumorek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq.2, 162 06 Prague, Czech Republic; (E.A.); (M.K.); (V.L.); (R.P.); (O.J.); (O.P.-G.)
| | - Volodymyr Lobaz
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq.2, 162 06 Prague, Czech Republic; (E.A.); (M.K.); (V.L.); (R.P.); (O.J.); (O.P.-G.)
| | - Rafal Poreba
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq.2, 162 06 Prague, Czech Republic; (E.A.); (M.K.); (V.L.); (R.P.); (O.J.); (O.P.-G.)
| | - Olga Janoušková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq.2, 162 06 Prague, Czech Republic; (E.A.); (M.K.); (V.L.); (R.P.); (O.J.); (O.P.-G.)
| | - Ognen Pop-Georgievski
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq.2, 162 06 Prague, Czech Republic; (E.A.); (M.K.); (V.L.); (R.P.); (O.J.); (O.P.-G.)
| | - Igor Lacík
- Polymer Institute of the Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia; (D.T.); (I.L.)
- Centre for Advanced Materials Application of the Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava, Slovakia
| | - Dana Kubies
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq.2, 162 06 Prague, Czech Republic; (E.A.); (M.K.); (V.L.); (R.P.); (O.J.); (O.P.-G.)
| |
Collapse
|