1
|
Lin P, Gu H, Zhuang X, Wang F, Hu X. Controlled Release of Curcumin and Hypocrellin A from Electrospun Poly(l-Lactic Acid)/Silk Fibroin Nanofibers for Enhanced Cancer Cell Inhibition. ACS APPLIED BIO MATERIALS 2024; 7:5423-5436. [PMID: 39069738 DOI: 10.1021/acsabm.4c00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Nanofibers have emerged as a highly effective method for drug delivery, attributed to their remarkable porosity and ability to regulate drug release rates while minimizing toxicity and side effects. In this study, we successfully loaded the natural anticancer drugs curcumin (CUR) and hypocrellin A (HA) into pure poly(l-lactic acid) (PLLA) and PLLA-silk protein (PS) composite nanofibers through electrospinning technology. This result was confirmed through comprehensive analysis involving SEM, FTIR, XRD, DSC, TG, zeta potential, and pH stability analysis. The encapsulation efficiency of all samples exceeded 85%, demonstrating the effectiveness of the loading process. Additionally, the drug release doses were significantly higher in the composites compared to pure PLLA, owing to the enhanced crystallinity and stability of the silk proteins. Importantly, the composite nanofibers exhibited excellent pH stability in physiological and acidic environments. Furthermore, the drug-loaded composite nanofibers displayed strong inhibitory effects on cancer cells, with approximately 28% (HA) and 37% (CUR) inhibition of cell growth and differentiation within 72 h, while showing minimal impact on normal cells. This research highlights the potential for controlling drug release through the manipulation of fiber diameter and crystallinity, paving the way for wider applications of electrospun green nanomaterials in the field of medicine.
Collapse
Affiliation(s)
- Ping Lin
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, People's Republic of China
- School of Chemistry and Materials Science, Nanjing Normal University Jiangsu, Nanjing 210023, People's Republic of China
| | - Hanling Gu
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, People's Republic of China
- School of Chemistry and Materials Science, Nanjing Normal University Jiangsu, Nanjing 210023, People's Republic of China
| | - Xincheng Zhuang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, People's Republic of China
- School of Chemistry and Materials Science, Nanjing Normal University Jiangsu, Nanjing 210023, People's Republic of China
| | - Fang Wang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, People's Republic of China
- School of Chemistry and Materials Science, Nanjing Normal University Jiangsu, Nanjing 210023, People's Republic of China
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, New Jersey 08028, United States
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, New Jersey 08028, United States
| |
Collapse
|
2
|
Posada VM, Marin A, Mesa-Restrepo A, Nashed J, Allain JP. Enhancing silk fibroin structures and applications through angle-dependent Ar + plasma treatment. Int J Biol Macromol 2024; 257:128352. [PMID: 38043660 DOI: 10.1016/j.ijbiomac.2023.128352] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/26/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
This study tackles limitations of Silk Fibroin (SF), including availability of sites for modification. This is achieved by Direct Plasma Nanosynthesis (DPNS), an Ar+ bombardment method, to generate and modify nanostructures and nanoscale properties on the SF surface. SF samples were treated with DPNS at incidence angles of 45o and 60o, with specific ion dose and energy parameters (1 × 1018 ions/cm2 and 500 eV, respectively) maintained throughout the process. Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) primarily underscored transformations in SF's nitrogenous components. Specifically, treatment produced a boost in C-NH2, particularly pronounced in the 45o-treated samples, suggesting changes were more superficial than alterations to the secondary structure. The DPNS treatment gave rise to periodic nanocone structures on the SF surface, with a scale increase correlated to a higher angle of incidence. This resulted in a decrease in surface stiffness and significant changes in the motility of J774 macrophages interacting with the transformed SF. Furthermore, the SF samples treated at a 60o incidence showcased a confinement effect, moderating the macrophages' motility, morphology, and inflammatory response. The DPNS-induced alterations not only mitigate SF's limitations but also affect cellular behavior, expanding potential for SF in biomaterials.
Collapse
Affiliation(s)
- Viviana M Posada
- Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, USA.
| | - Alexandru Marin
- Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, USA; Surface Analysis Laboratory, Institute for Nuclear Research Pitesti, Mioveni 115400, Romania
| | | | - Jordan Nashed
- Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, USA
| | - Jean Paul Allain
- Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, USA; Department of Biomedical Engineering, Pennsylvania State University, USA; Lloyd & Dorothy Foehr Huck Chair in Plasma Medicine, Pennsylvania State University, USA
| |
Collapse
|
3
|
Brooks AK, Pradhan S, Yadavalli VK. Degradable Elastomeric Silk Biomaterial for Flexible Bioelectronics. ACS APPLIED BIO MATERIALS 2023; 6:4392-4402. [PMID: 37788457 DOI: 10.1021/acsabm.3c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The integration of degradable and biomimetic approaches in material and device development can facilitate the next generation of sustainable (bio) electronics. The use of functional degradable materials presents exciting opportunities for applications in healthcare, soft robotics, energy, and electronics. These include conformability to curved surfaces, matching of stiffness of tissue, and the ability to withstand mechanical deformations. Nature-derived materials such as silk fibroin (SF) provide excellent biocompatibility, resorbability, and tunable properties toward such goals. However, fibroin alone lacks the required mechanical properties and durability for processing in biointegrated electronics and dry conditions. To overcome these limitations, we report on an elastomeric photocurable composite of silk fibroin and poly(dimethylsiloxane) (PDMS). Photofibroin (containing methacryl functionalities) is doped with photoPDMS (methacryloxypropyl-terminated poly(dimethylsiloxane)) to form an elastomeric photofibroin (ePF) composite. The elastomeric silk is photocurable, allowing for microfabrication using UV photolithography. It is suitable for circuits, strain-sensing devices, and biointegrated systems. The ePF exhibits flexibility in both wet and dry conditions, enhanced mechanical strength and long-term durability, and optical transparency. It is stable at high temperatures, compatible with electronic materials, and cytocompatible while being enzymatically degradable. This work therefore highlights a path toward combining natural and synthetic materials to achieve versatile properties and demonstrates the potential of silk fibroin composites in (bio) electronics, encapsulation, and packaging.
Collapse
Affiliation(s)
- Anne Katherine Brooks
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, Virginia 23284, United States
| | - Sayantan Pradhan
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, Virginia 23284, United States
| | - Vamsi K Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, Virginia 23284, United States
| |
Collapse
|
4
|
Moldovan A, Cuc S, Prodan D, Rusu M, Popa D, Taut AC, Petean I, Bomboş D, Doukeh R, Nemes O. Development and Characterization of Polylactic Acid (PLA)-Based Nanocomposites Used for Food Packaging. Polymers (Basel) 2023; 15:2855. [PMID: 37447500 DOI: 10.3390/polym15132855] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/13/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The present study is focused on polylactic acid (PLA) blending with bio nanoadditives, such as Tonsil® (clay) and Aerosil®, to obtain nanocomposites for a new generation of food packaging. The basic composition was enhanced using Sorbitan oleate (E494) and Proviplast as plasticizers, increasing the composite samples' stability and their mechanical strength. Four mixtures were prepared: S1 with Tonsil®; S2 with Aerosil®; S3 with Aerosil® + Proviplast; and S4 with Sabosorb. They were complexly characterized by FT-IR spectroscopy, differential scanning calorimetry, mechanical tests on different temperatures, and absorption of the saline solution. FTIR shows a proper embedding of the filler component into the polymer matrix and DSC presents a good stability at the living body temperature for all prepared samples. Micro and nanostructural aspects were evidenced by SEM and AFM microscopy, revealing that S3 has the most compact and uniform filler distribution and S4 has the most irregular one. Thus, S3 evidenced the best diametral tensile strength and S4 evidenced the weakest values. All samples present the best bending strength at 18 °C and fair values at 4 °C, with the best values being obtained for the S1 sample and the worst for S4. The lack of mechanical strength of the S4 sample is compensated by its best resistance at liquid penetration, while S1 is more affected by the liquid infiltrations. Finally, results show that PLA composites are suitable for biodegradable and disposable food packages, and the desired properties could be achieved by proper adjustment of the filler proportions.
Collapse
Affiliation(s)
- Andrei Moldovan
- Department Environmental Engineering and Sustainable Development Entrepreneurship, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania
| | - Stanca Cuc
- "Raluca Ripan" Institute of Research in Chemistry, "Babes Bolyai" University, 400294 Cluj-Napoca, Romania
| | - Doina Prodan
- "Raluca Ripan" Institute of Research in Chemistry, "Babes Bolyai" University, 400294 Cluj-Napoca, Romania
| | - Mircea Rusu
- Lamar Auto Services S.R.L. Corpadea, 407038 Cluj-Napoca, Romania
| | - Dorin Popa
- Faculty of Exact Sciences and Engineering, "1 Decembrie 1918" University of Alba Iulia, 510009 Alba Iulia, Romania
| | - Adrian Catalin Taut
- Applied Electronics Department, Technical University of Cluj-Napoca, 400027 Cluj-Napoca, Romania
| | - Ioan Petean
- Faculty of Chemistry and Chemical Engineering, "Babes-Bolyai" University, 11 Arany Janos Street, 400084 Cluj-Napoca, Romania
| | - Dorin Bomboş
- S.C. Medacril S.R.L., 8 Carpați Street, 551022 Mediaş, Romania
- Faculty of Petroleum Refining and Petrochemistry, Petroleum-Gas University of Ploiesti, 39 Bucharest Blvd., 100680 Ploiesti, Romania
| | - Rami Doukeh
- Faculty of Petroleum Refining and Petrochemistry, Petroleum-Gas University of Ploiesti, 39 Bucharest Blvd., 100680 Ploiesti, Romania
| | - Ovidiu Nemes
- Department Environmental Engineering and Sustainable Development Entrepreneurship, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania
| |
Collapse
|
5
|
Chen K, Li Y, Li Y, Pan W, Tan G. Silk Fibroin Combined with Electrospinning as a Promising Strategy for Tissue Regeneration. Macromol Biosci 2023; 23:e2200380. [PMID: 36409150 DOI: 10.1002/mabi.202200380] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/14/2022] [Indexed: 11/23/2022]
Abstract
The development of tissue engineering scaffolds is of great significance for the repair and regeneration of damaged tissues and organs. Silk fibroin (SF) is a natural protein polymer with good biocompatibility, biodegradability, excellent physical and mechanical properties and processability, making it an ideal universal tissue engineering scaffold material. Nanofibers prepared by electrospinning have attracted extensive attention in the field of tissue engineering due to their excellent mechanical properties, high specific surface area, and similar morphology as to extracellular matrix (ECM). The combination of silk fibroin and electrospinning is a promising strategy for the preparation of tissue engineering scaffolds. In this review, the research progress of electrospun silk fibroin nanofibers in the regeneration of skin, vascular, bone, neural, tendons, cardiac, periodontal, ocular and other tissues is discussed in detail.
Collapse
Affiliation(s)
- Kai Chen
- Hainan Provincial Key Laboratory of R&D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, P. R. China
| | - Yonghui Li
- Hainan Provincial Key Laboratory of R&D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, P. R. China
| | - Youbin Li
- Hainan Provincial Key Laboratory of R&D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, P. R. China
| | - Weisan Pan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Guoxin Tan
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmacy, Hainan University, Haikou, 570228, P. R. China
| |
Collapse
|
6
|
Effect of Magnetized Coagulants on Wastewater Treatment: Rice Starch and Chitosan Ratios Evaluation. Polymers (Basel) 2022; 14:polym14204342. [PMID: 36297919 PMCID: PMC9611462 DOI: 10.3390/polym14204342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Coagulation with synthetic chemicals has been used to treat a wide range of industrial effluents. Herein, the unique characteristics of industrial effluents being detrimental to the environment warrants urgent resource-efficient and eco-friendly solutions. Therefore, the study investigated the use of two magnetized coagulants (chitosan magnetite (CF) and rice starch magnetite (RF)), prepared via co-precipitation in three different ratios (1:2, 1:1 and 2:1) of natural coagulants (chitosan or rice starch) and magnetite nanoparticles (F) as alternative coagulants to alum for the treatment of wastewater. A Brunauer–Emmett–Teller (BET) analyzer, an X-ray diffraction (XRD) analyzer, and energy-dispersive X-ray (EDX) spectroscopy were used to characterize the surface area, crystal structure, and elemental composition of the coagulants. The influences of settling time (10–60 min) on the reduction of turbidity, color, phosphate, and absorbance were studied. This was carried out with a jar test coupled with six beakers operated under coagulation conditions of rapid stirring (150 rpm) and gentle stirring (30 rpm). Wastewater with an initial concentration of 45.6 NTU turbidity, 315 Pt. Co color, 1.18 mg/L phosphate, 352 mg/L chemical oxygen demand (COD), and 73.4% absorbance was used. The RF with a ratio of 1:1 was found to be the best magnetized coagulant with over 80% contaminant removal and 90% absorbance. The treatability performance of RF (1:1) has clearly demonstrated that it is feasible for wastewater treatment.
Collapse
|
7
|
Promnil S, Ruksakulpiwat C, Numpaisal PO, Ruksakulpiwat Y. Electrospun Poly(lactic acid) and Silk Fibroin Based Nanofibrous Scaffold for Meniscus Tissue Engineering. Polymers (Basel) 2022; 14:polym14122435. [PMID: 35746011 PMCID: PMC9231281 DOI: 10.3390/polym14122435] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
Biopolymer based scaffolds are commonly considered as suitable materials for medical application. Poly(lactic acid) (PLA) is one of the most popular polymers that has been used as a bioscaffold, but it has poor cell adhesion and slowly degrades in an in vitro environment. In this study, silk fibroin (SF) was selected to improve cell adhesion and degradability of electrospun PLA. In order to fabricate a PLA/SF scaffold that offered both biological and mechanical properties, related parameters such as solution viscosity and SF content were studied. By varying the concentration and molecular weight of PLA, the solution viscosity significantly changed. The effect of solution viscosity on the fiber forming ability and fiber morphology was elucidated. In addition, commercial (l-lactide, d-lactide PLA) and medical grade PLA (pure PLLA) were both investigated. Mechanical properties, thermal properties, biodegradability, wettability, cell viability, and gene expression of electrospun PLA and PLA/SF based nanofibrous scaffolds were examined. The results demonstrated that medical grade PLA electrospun scaffolds offered superior mechanical property, degradability, and cellular induction for meniscus tissue regeneration. However, for commercial non-medical grade PLA used in this study, it was not recommended to be used for medical application because of its toxicity. With the addition of SF in PLA based scaffolds, the in vitro degradability and hydrophilicity were improved. PLAmed50:SF50 scaffold has the potential to be used as biomimetic meniscus scaffold for scaffold augmented suture based on mechanical properties, cell viability, gene expression, surface wettability, and in vitro degradation.
Collapse
Affiliation(s)
- Siripanyo Promnil
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (S.P.); (C.R.)
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Chaiwat Ruksakulpiwat
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (S.P.); (C.R.)
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Piya-on Numpaisal
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- School of Orthopaedics, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Correspondence: (P.-o.N.); (Y.R.); Tel.: +66-44-22-3917 (P.-o.N.); +66-44-22-3033 (Y.R.)
| | - Yupaporn Ruksakulpiwat
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (S.P.); (C.R.)
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Correspondence: (P.-o.N.); (Y.R.); Tel.: +66-44-22-3917 (P.-o.N.); +66-44-22-3033 (Y.R.)
| |
Collapse
|
8
|
Ghalei S, Douglass M, Handa H. Nitric Oxide-Releasing Nanofibrous Scaffolds Based on Silk Fibroin and Zein with Enhanced Biodegradability and Antibacterial Properties. ACS Biomater Sci Eng 2022; 8:3066-3077. [PMID: 35704780 DOI: 10.1021/acsbiomaterials.2c00103] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Clinical applications of scaffolds and implants have been associated with bacterial infection resulting in impaired tissue regeneration. Nanofibers provide a versatile structure for both antimicrobial molecule delivery and tissue engineering. In this study, the nitric oxide (NO) donor molecule S-nitrosoglutathione (GSNO) and the natural biodegradable polymer zein (ZN) were combined with silk fibroin (SF) to develop antibacterial and biodegradable nanofibrous scaffolds for tissue engineering applications. The compatibility and intermolecular interactions of SF and ZN were studied using differential scanning calorimetry and Fourier transform infrared spectroscopy. The incorporation of ZN increased the hydrophobicity of the fibers and resulted in a more controlled and prolonged NO release profile lasting for 48 h. Moreover, the degradation kinetics of the fibers was significantly improved after blending with ZN. The results of tensile testing indicated that the addition of ZN and GSNO had a positive effect on the strength and stretchability of SF fibers and did not adversely affect their mechanical properties. Finally, due to the antibacterial properties of both NO and ZN, the SF-ZN-GSNO fibers showed a synergistically high antibacterial efficacy with 91.6 ± 2.5% and 77.5 ± 3.1% reduction in viability of adhered Staphylococcus aureus and Escherichia coli after 24 h exposure, respectively. The developed NO-releasing fibers were not only antibacterial but also non-cytotoxic and successfully enhanced the proliferation and growth of fibroblast cells, which was quantitatively studied by a CCK-8 assay and visually observed through fluorescent staining. Overall, SF-ZN-GSNO fibers developed in this study were biodegradable and highly antibacterial and showed great cytocompatibility with fibroblasts, indicating their promising potential for a range of tissue engineering and medical device applications.
Collapse
Affiliation(s)
- Sama Ghalei
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30605, United States
| | - Megan Douglass
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30605, United States
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30605, United States.,Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30605, United States
| |
Collapse
|
9
|
Deng Q, Wang F, Gough CR, Hu X. Tunable microphase-regulated silk fibroin/poly (lactic acid) biocomposite materials generated from ionic liquids. Int J Biol Macromol 2022; 197:55-67. [PMID: 34952094 DOI: 10.1016/j.ijbiomac.2021.12.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/23/2021] [Accepted: 12/09/2021] [Indexed: 12/30/2022]
Abstract
One of the most effective and promising strategies to develop novel biomaterials with unique, tunable structure and physicochemical properties is by creating composite materials that combine synthetic polymers with natural proteins using ionic liquids. In this study, biodegradable poly(d,l-lactic acid) (PDLLA) was blended with silk fibroin (SF) to create biocompatible films using an ionic liquid-based binary solvent system (1-butyl-3-methylimidazolium chloride/N,N-dimethylformamide), which can maintain the molecular weights of the proteins/polymers and encourage intermolecular interactions between the molecules. The effects of varying the ratio of PLA to SF were studied using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), water contact angle testing, and cytotoxicity analysis as well as enzymatic degradation. Results showed that the composite films were homogeneously blended on the macroscopic scale and exhibited typical fully miscible polymer blend characteristics. By increasing the SF content in the composites, the amounts of β-sheets in the films were significantly increased, allowing for SF to act as a physical crosslinker to maintain the stability of the protein-polymer network. Additionally, SF significantly improved the hydrophilicity and biocompatibility of the material and promoted the self-assembly of micelle structures in the biocomposites. Different topologies in the films also provided beneficial surface morphology for cell adhesion, growth, and proliferation. Overall, this study demonstrated an effective fabrication method for a fine-tuned polymer blends combining synthetic polymer and protein for a wide variety of biomedical and green material applications.
Collapse
Affiliation(s)
- Qianqian Deng
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fang Wang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Christopher R Gough
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA.
| |
Collapse
|