1
|
Li X, Zhang Y, Wang C, Wang L, Ye Y, Xue R, Shi Y, Su Q, Zhu Y, Wang L. Drug-Loaded Biomimetic Carriers for Non-Hodgkin's Lymphoma Therapy: Advances and Perspective. ACS Biomater Sci Eng 2024; 10:723-742. [PMID: 38296812 DOI: 10.1021/acsbiomaterials.3c01480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Chemotherapy remains the mainstay of treatment for the lymphoma patient population, despite its relatively poor therapeutic results, high toxicity, and low specificity. With the advancement of biotechnology, the significance of drug-loading biomimetic materials in the medical field has become increasingly evident, attracting extensive attention from the scientific community and the pharmaceutical industry. Given that they can cater to the particular requirements of lymphoma patients, drug-loading biomimetic materials have recently become a potent and promising delivery approach for various applications. This review mainly reviews the recent advancements in the treatment of tumors with biological drug carrier-loaded drugs, outlines the mechanisms of lymphoma development and the diverse treatment modalities currently available, and discusses the merits and limitations of biological drug carriers. What is more, the practical application of biocarriers in tumors is explored by providing examples, and the possibility of loading such organisms with antilymphoma drugs for the treatment of lymphoma is conceived.
Collapse
Affiliation(s)
- Xiaoqi Li
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261000, Shandong China
- Central Laboratory, Linyi People's Hospital, Linyi 276000, Shandong China
- Linyi Key Laboratory of Nanomedicine, Linyi 276000, Shandong China
| | - Yu Zhang
- Central Laboratory, Linyi People's Hospital, Linyi 276000, Shandong China
- Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong China
| | - Chao Wang
- Department of Hematology, Linyi People's Hospital, Linyi 276000, Shandong China
| | - Liyuan Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261000, Shandong China
- Central Laboratory, Linyi People's Hospital, Linyi 276000, Shandong China
- Linyi Key Laboratory of Nanomedicine, Linyi 276000, Shandong China
| | - Yufu Ye
- Department of Hepatobiliary and Pancreatic Surgery, the First Affliliated Hospital, Zhejiang University School of Medicine, Hangzhou310000, Zhejiang China
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, School of Medicine, Hangzhou310000, Zhejiang China
| | - Renyu Xue
- Central Laboratory, Linyi People's Hospital, Linyi 276000, Shandong China
| | - Yuanwei Shi
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261000, Shandong China
- Central Laboratory, Linyi People's Hospital, Linyi 276000, Shandong China
| | - Quanping Su
- Central Laboratory, Linyi People's Hospital, Linyi 276000, Shandong China
| | - Yanxi Zhu
- Central Laboratory, Linyi People's Hospital, Linyi 276000, Shandong China
- Linyi Key Laboratory of Nanomedicine, Linyi 276000, Shandong China
- Key Laboratory for Translational Oncology, Xuzhou Medical University, Xuzhou 221000, Jiangsu China
| | - Lijuan Wang
- Central Laboratory, Linyi People's Hospital, Linyi 276000, Shandong China
- Linyi Key Laboratory of Tumor Biology, Linyi 276000, Shandong China
- Linyi Key Laboratory of Nanomedicine, Linyi 276000, Shandong China
- Key Laboratory for Translational Oncology, Xuzhou Medical University, Xuzhou 221000, Jiangsu China
| |
Collapse
|
2
|
Zhang Z, Chen Y, Guo Y, Shen H, Wang J, Chen H. RFX2 promotes tumor cell stemness through epigenetic regulation of PAF1 in spinal ependymoma. J Neurooncol 2023; 165:487-497. [PMID: 38057505 DOI: 10.1007/s11060-023-04506-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE Spinal ependymoma (SE) is a rare tumor that is most commonly low-grade and tends to recur when complete tumor resection is not feasible. We investigated the molecular mechanism induces stem cell features in SE. METHODS Immunohistochemical staining was conducted to analyze the expression of RFX2 in tumor tissues of SE patients at different stages. The expression of tumor stemness markers (Netsin and CD133) was analyzed using western blot analysis and IF, and the efficiency of sphere formation in SE cells was analyzed. The biological activities of SE cells were analyzed by EdU proliferation assay, TUNEL, wound healing, and Transwell assays. The regulatory relationship of RFX2 on PAF1 was verified by ChIP-qPCR and the dual-luciferase assay. SE cells were injected into the spinal cord of nude mice for in vivo assays. RESULTS RFX2 was higher in the tumor tissues of SE-III patients than in the tumor tissues of SE-I patients. RFX2 knockdown reduced the expression of tumor stemness markers in SE cells and inhibited the sphere formation efficiency. Moreover, RFX2 knockdown ameliorated the malignant progression of SE in nude mice, as manifested by prolonged survival and alleviated SE tumor infiltration. RFX2 bound to the PAF1 promoter to induce its transcription. Overexpression of PAF1 overturned the effects of RFX2 knockdown on stem cell features and biological activities of SE cells, thereby reducing survival in mice. CONCLUSIONS RFX2 activates PAF1 transcription, which promotes tumor stemness of SE cells and leads to the malignant progression of SE.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Yusheng Chen
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Yang Guo
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Hanwei Shen
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Jiangtao Wang
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Hang Chen
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China.
| |
Collapse
|
3
|
Inagaki T, Wang KH, Kumar A, Izumiya C, Miura H, Komaki S, Davis RR, Tepper CG, Katano H, Shimoda M, Izumiya Y. KSHV vIL-6 enhances inflammatory responses by epigenetic reprogramming. PLoS Pathog 2023; 19:e1011771. [PMID: 37934757 PMCID: PMC10656005 DOI: 10.1371/journal.ppat.1011771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/17/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) inflammatory cytokine syndrome (KICS) is a newly described chronic inflammatory disease condition caused by KSHV infection and is characterized by high KSHV viral load and sustained elevations of serum KSHV-encoded IL-6 (vIL-6) and human IL-6 (hIL-6). KICS has significant immortality and greater risks of other complications, including malignancies. Although prolonged inflammatory vIL-6 exposure by persistent KSHV infection is expected to have key roles in subsequent disease development, the biological effects of prolonged vIL-6 exposure remain elusive. Using thiol(SH)-linked alkylation for the metabolic (SLAM) sequencing and Cleavage Under Target & Release Using Nuclease analysis (CUT&RUN), we studied the effect of prolonged vIL-6 exposure in chromatin landscape and resulting cytokine production. The studies showed that prolonged vIL-6 exposure increased Bromodomain containing 4 (BRD4) and histone H3 lysine 27 acetylation co-occupancies on chromatin, and the recruitment sites were frequently co-localized with poised RNA polymerase II with associated enzymes. Increased BRD4 recruitment on promoters was associated with increased and prolonged NF-κB p65 binding after the lipopolysaccharide stimulation. The p65 binding resulted in quicker and sustained transcription bursts from the promoters; this mechanism increased total amounts of hIL-6 and IL-10 in tissue culture. Pretreatment with the BRD4 inhibitors, OTX015 and MZ1, eliminated the enhanced inflammatory cytokine production. These findings suggest that persistent vIL-6 exposure may establish a chromatin landscape favorable for the reactivation of inflammatory responses in monocytes. This epigenetic memory may explain the greater risk of chronic inflammatory disease development in KSHV-infected individuals.
Collapse
Affiliation(s)
- Tomoki Inagaki
- Department of Dermatology, School of Medicine, the University of California Davis (UC Davis), Sacramento, California, United States of America
| | - Kang-Hsin Wang
- Department of Dermatology, School of Medicine, the University of California Davis (UC Davis), Sacramento, California, United States of America
| | - Ashish Kumar
- Department of Dermatology, School of Medicine, the University of California Davis (UC Davis), Sacramento, California, United States of America
| | - Chie Izumiya
- Department of Dermatology, School of Medicine, the University of California Davis (UC Davis), Sacramento, California, United States of America
| | - Hiroki Miura
- Department of Dermatology, School of Medicine, the University of California Davis (UC Davis), Sacramento, California, United States of America
| | - Somayeh Komaki
- Department of Dermatology, School of Medicine, the University of California Davis (UC Davis), Sacramento, California, United States of America
| | - Ryan R. Davis
- Department of Pathology and Laboratory Medicine, School of Medicine, UC Davis, Sacramento, California, United States of America
| | - Clifford G. Tepper
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, California, United States of America
| | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Michiko Shimoda
- Department of Dermatology, School of Medicine, the University of California Davis (UC Davis), Sacramento, California, United States of America
| | - Yoshihiro Izumiya
- Department of Dermatology, School of Medicine, the University of California Davis (UC Davis), Sacramento, California, United States of America
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, California, United States of America
| |
Collapse
|
4
|
Goldstein M. Targeting H3K27me3 loss in pediatric brain tumors - a perspective on epigenetically guided cancer therapy. Oncotarget 2023; 14:444-447. [PMID: 37171381 PMCID: PMC10178451 DOI: 10.18632/oncotarget.28427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Indexed: 05/13/2023] Open
Affiliation(s)
- Michael Goldstein
- Correspondence to:Michael Goldstein, Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA email
| |
Collapse
|
5
|
Hwang EI, Hanson D, Filbin MG, Mack SC. Why haven't we solved intracranial pediatric ependymoma? Current questions and barriers to treatment advances. Neoplasia 2023; 39:100895. [PMID: 36944298 PMCID: PMC10036929 DOI: 10.1016/j.neo.2023.100895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/22/2023]
Abstract
Pediatric intracranial ependymoma has seen a recent exponential expansion of biological findings, rapidly dividing the diagnosis into several subgroups, each with specific molecular and clinical characteristics. While such subdivision may complicate clinical conclusions from historical trials, this knowledge also provides an opportunity for interrogating the major clinical and biological questions preventing near-term translation into effective therapy for children with ependymoma. In this article, we briefly review some of the most critical clinical questions facing both patient management and the construct of future trials in childhood ependymoma, as well as explore some of the current barriers to efficient translation of preclinical discovery to the clinic.
Collapse
|
6
|
Gaál Z. Targeted Epigenetic Interventions in Cancer with an Emphasis on Pediatric Malignancies. Biomolecules 2022; 13:61. [PMID: 36671446 PMCID: PMC9855367 DOI: 10.3390/biom13010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Over the past two decades, novel hallmarks of cancer have been described, including the altered epigenetic landscape of malignant diseases. In addition to the methylation and hyd-roxymethylation of DNA, numerous novel forms of histone modifications and nucleosome remodeling have been discovered, giving rise to a wide variety of targeted therapeutic interventions. DNA hypomethylating drugs, histone deacetylase inhibitors and agents targeting histone methylation machinery are of distinguished clinical significance. The major focus of this review is placed on targeted epigenetic interventions in the most common pediatric malignancies, including acute leukemias, brain and kidney tumors, neuroblastoma and soft tissue sarcomas. Upcoming novel challenges include specificity and potential undesirable side effects. Different epigenetic patterns of pediatric and adult cancers should be noted. Biological significance of epigenetic alterations highly depends on the tissue microenvironment and widespread interactions. An individualized treatment approach requires detailed genetic, epigenetic and metabolomic evaluation of cancer. Advances in molecular technologies and clinical translation may contribute to the development of novel pediatric anticancer treatment strategies, aiming for improved survival and better patient quality of life.
Collapse
Affiliation(s)
- Zsuzsanna Gaál
- Department of Pediatric Hematology-Oncology, Institute of Pediatrics, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
7
|
Special Issue “Tumors of the Nervous System: New Insights into Signaling, Genetics and Therapeutic Targeting”. Int J Mol Sci 2022; 23:ijms23158700. [PMID: 35955830 PMCID: PMC9368825 DOI: 10.3390/ijms23158700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/03/2022] [Indexed: 12/04/2022] Open
|
8
|
Bromodomain and Extra-Terminal Protein Inhibitors: Biologic Insights and Therapeutic Potential in Pediatric Brain Tumors. Pharmaceuticals (Basel) 2022; 15:ph15060665. [PMID: 35745584 PMCID: PMC9227239 DOI: 10.3390/ph15060665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023] Open
Abstract
Pediatric brain tumors have surpassed leukemia as the leading cause of cancer-related death in children. Several landmark studies from the last two decades have shown that many pediatric brain tumors are driven by epigenetic dysregulation within specific developmental contexts. One of the major determinants of epigenetic control is the histone code, which is orchestrated by a number of enzymes categorized as writers, erasers, and readers. Bromodomain and extra-terminal (BET) proteins are reader proteins that bind to acetylated lysines in histone tails and play a crucial role in regulating gene transcription. BET inhibitors have shown efficacy in a wide range of cancers, and a number have progressed to clinical phase testing. Here, we review the evidence for BET inhibitors in pediatric brain tumor experimental models, as well as their translational potential.
Collapse
|
9
|
Epigenetic mechanisms in paediatric brain tumours: regulators lose control. Biochem Soc Trans 2022; 50:167-185. [PMID: 35076654 DOI: 10.1042/bst20201227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/28/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022]
Abstract
Epigenetic mechanisms are essential to regulate gene expression during normal development. However, they are often disrupted in pathological conditions including tumours, where they contribute to their formation and maintenance through altered gene expression. In recent years, next generation genomic techniques has allowed a remarkable advancement of our knowledge of the genetic and molecular landscape of paediatric brain tumours and have highlighted epigenetic deregulation as a common hallmark in their pathogenesis. This review describes the main epigenetic dysregulations found in paediatric brain tumours, including at DNA methylation and histone modifications level, in the activity of chromatin-modifying enzymes and in the expression of non-coding RNAs. How these altered processes influence tumour biology and how they can be leveraged to dissect the molecular heterogeneity of these tumours and contribute to their classification is also addressed. Finally, the availability and value of preclinical models as well as the current clinical trials exploring targeting key epigenetic mediators in paediatric brain tumours are discussed.
Collapse
|
10
|
Cell-of-Origin and Genetic, Epigenetic, and Microenvironmental Factors Contribute to the Intra-Tumoral Heterogeneity of Pediatric Intracranial Ependymoma. Cancers (Basel) 2021; 13:cancers13236100. [PMID: 34885210 PMCID: PMC8657076 DOI: 10.3390/cancers13236100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Intra-tumoral heterogeneity (ITH) is a complex multifaceted phenomenon that posits major challenges for the clinical management of cancer patients. Genetic, epigenetic, and microenvironmental factors are concurrent drivers of diversity among the distinct populations of cancer cells. ITH may also be installed by cancer stem cells (CSCs), that foster unidirectional hierarchy of cellular phenotypes or, alternatively, shift dynamically between distinct cellular states. Ependymoma (EPN), a molecularly heterogeneous group of tumors, shows a specific spatiotemporal distribution that suggests a link between ependymomagenesis and alterations of the biological processes involved in embryonic brain development. In children, EPN most often arises intra-cranially and is associated with an adverse outcome. Emerging evidence shows that EPN displays large intra-patient heterogeneity. In this review, after touching on EPN inter-tumoral heterogeneity, we focus on the sources of ITH in pediatric intra-cranial EPN in the framework of the CSC paradigm. We also examine how single-cell technology has shed new light on the complexity and developmental origins of EPN and the potential impact that this understanding may have on the therapeutic strategies against this deadly pediatric malignancy.
Collapse
|
11
|
Drumond-Bock AL, Bieniasz M. The role of distinct BRD4 isoforms and their contribution to high-grade serous ovarian carcinoma pathogenesis. Mol Cancer 2021; 20:145. [PMID: 34758842 PMCID: PMC8579545 DOI: 10.1186/s12943-021-01424-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/11/2021] [Indexed: 12/13/2022] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) is the most aggressive type of ovarian cancer, often diagnosed at advanced stages. Molecularly, HGSOC shows high degree of genomic instability associated with large number of genetic alterations. BRD4 is the 4th most amplified gene in HGSOC, which correlates with poor patients' prognosis. BRD4 is constitutively expressed and generates two proteins, BRD4 long (BRD4-L) and BRD4 short (BRD4-S). Both isoforms contain bromodomains that bind to lysine-acetylated histones. Amongst other functions, BRD4 participates in chromatin organization, acetylation of histones, transcriptional control and DNA damage repair. In cancer patients with amplified BRD4, the increased activity of BRD4 is associated with higher expression of oncogenes, such as MYC, NOTCH3 and NRG1. BRD4-driven oncogenes promote increased tumor cells proliferation, genetic instability, epithelial-mesenchymal transition, metastasis and chemoresistance. Ablation of BRD4 activity can be successfully achieved with bromodomain inhibitors (BETi) and degraders, and it has been applied in pre-clinical and clinical settings. Inhibition of BRD4 function has an effective anti-cancer effect, reducing tumor growth whether ablated by single agents or in combination with other drugs. When combined with standard chemotherapy, BETi are capable of sensitizing highly resistant ovarian cancer cell lines to platinum drugs. Despite the evidence that BRD4 amplification in ovarian cancer contributes to poor patient prognosis, little is known about the specific mechanisms by which BRD4 drives tumor progression. In addition, newly emerging data revealed that BRD4 isoforms exhibit contradicting functions in cancer. Therefore, it is paramount to expand studies elucidating distinct roles of BRD4-L and BRD4-S in HGSOC, which has important implications on development of therapeutic approaches targeting BRD4.
Collapse
Affiliation(s)
- Ana Luiza Drumond-Bock
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
| | - Magdalena Bieniasz
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| |
Collapse
|
12
|
Zaytseva M, Papusha L, Novichkova G, Druy A. Molecular Stratification of Childhood Ependymomas as a Basis for Personalized Diagnostics and Treatment. Cancers (Basel) 2021; 13:cancers13194954. [PMID: 34638438 PMCID: PMC8507860 DOI: 10.3390/cancers13194954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 01/07/2023] Open
Abstract
Ependymomas are among the most enigmatic tumors of the central nervous system, posing enormous challenges for pathologists and clinicians. Despite the efforts made, the treatment options are still limited to surgical resection and radiation therapy, while none of conventional chemotherapies is beneficial. While being histologically similar, ependymomas show considerable clinical and molecular diversity. Their histopathological evaluation alone is not sufficient for reliable diagnostics, prognosis, and choice of treatment strategy. The importance of integrated diagnosis for ependymomas is underscored in the recommendations of Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy. These updated recommendations were adopted and implemented by WHO experts. This minireview highlights recent advances in comprehensive molecular-genetic characterization of ependymomas. Strong emphasis is made on the use of molecular approaches for verification and specification of histological diagnoses, as well as identification of prognostic markers for ependymomas in children.
Collapse
Affiliation(s)
- Margarita Zaytseva
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia; (L.P.); (G.N.); (A.D.)
- Correspondence:
| | - Ludmila Papusha
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia; (L.P.); (G.N.); (A.D.)
| | - Galina Novichkova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia; (L.P.); (G.N.); (A.D.)
| | - Alexander Druy
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia; (L.P.); (G.N.); (A.D.)
- Research Institute of Medical Cell Technologies, 620026 Yekaterinburg, Russia
| |
Collapse
|