1
|
Yamaguchi M, Suzuki T, Kidokoro H, Iwata KI, Fukuda Y, Haruta K, Torii Y, Ito Y, Kawada JI. Proteomic Analysis Reveals Novel Plasma Biomarkers for Neurological Complications in Patients With Congenital Cytomegalovirus Infection. J Pediatric Infect Dis Soc 2023; 12:525-533. [PMID: 37738566 DOI: 10.1093/jpids/piad074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND Congenital cytomegalovirus (cCMV) infection is a leading cause of nonhereditary neurological complications. When considering antiviral treatment, it is important to differentiate between symptomatic and asymptomatic patients. This study aimed to identify candidate plasma biomarkers for neurological complications of cCMV infection using proteomic analysis. METHODS This study retrospectively enrolled five patients with symptomatic cCMV infection, four with asymptomatic cCMV infection with isolated sensorineural hearing loss (SNHL), and five with asymptomatic cCMV infection. The plasma samples were collected during neonatal period. The peptides were analyzed using liquid chromatography-mass spectrometry. The concentrations of differentially expressed proteins were validated using an enzyme-linked immunosorbent assay. RESULTS A total of 456 proteins were identified and quantified. The levels of 80 proteins were significantly different between patients with and without cCMV-related symptoms including isolated SNHL. The levels of 31 proteins were significantly different between patients with and without neuroimaging abnormalities. The plasma concentrations of Fms-related receptor tyrosine kinase 4 in patients with cCMV-related symptoms were significantly higher than those in patients with asymptomatic cCMV infection. Moreover, plasma peptidylprolyl isomerase A levels were significantly higher in patients with neuroimaging abnormalities than in those without. CONCLUSIONS Proteomic analysis of patients with cCMV infection showed that Fms-related receptor tyrosine kinase 4 and peptidylprolyl isomerase A could be novel diagnostic biomarkers for neurological complications of cCMV infection.
Collapse
Affiliation(s)
- Makoto Yamaguchi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takako Suzuki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Kidokoro
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ken-Ichi Iwata
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuto Fukuda
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazunori Haruta
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuka Torii
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinori Ito
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Jun-Ichi Kawada
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
2
|
Mishchenko TA, Balalaeva IV, Turubanova VD, Saviuk MO, Shilyagina NY, Krysko O, Vedunova MV, Krysko DV. Gold standard assessment of immunogenic cell death induced by photodynamic therapy: From in vitro to tumor mouse models and anti-cancer vaccination strategies. Methods Cell Biol 2023; 183:203-264. [PMID: 38548413 DOI: 10.1016/bs.mcb.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The discovery of the concept of immunogenic cell death (ICD) is a cornerstone in the development of novel anti-cancer immunotherapeutic approaches. Induction of the ICD pathway by specific anti-cancer therapeutic regimens can eliminate cancer cells by directly killing them during therapy and by activation of strong and specific anti-cancer immunity, leading to a long-lasting immunological memory that prevents cancer recurrence. ICD encompasses different forms of regulated cell death and can be triggered by many anti-cancer treatment modalities, including photodynamic therapy (PDT). PDT is a multistep procedure involving the accumulation of a light-sensitive dye known as a photosensitizer (PS) in tumor cells, followed by its activation by irradiation with a light of an appropriate wavelength. In the presence of molecular oxygen, the irradiated PS leads to the generation of cytotoxic reactive oxygen species, which can lead to ICD induction in the cancer cells. Here, we first describe in vitro methods to help optimize the PDT procedure for a specific PS. We also provide a collection of protocols and techniques for assessing ICD in vitro, including analysis of the emission of damage associated molecular patterns (DAMPs), efferocytosis, and the maturation and activation state of antigen presenting cells. Next, we describe in detail protocols for diverse tumor mouse models for assessing and characterizing ICD in vivo, such as murine tumor vaccination models. Finally, as an immunotherapeutic vaccine, we suggest using either PDT-induced dead cancer cells, preferably undergoing ICD, or dendritic cells loaded with lysates of PDT-induced cancer cells in a syngeneic orthotopic glioma model. Overall, this methodological article provides a quantitative, comprehensive set of validated tools that can be successfully used, with some adaptations, to identify, optimize and validate novel PSs in vitro and in vivo for the efficient induction of ICD during photodynamic treatment.
Collapse
Affiliation(s)
- Tatiana A Mishchenko
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Irina V Balalaeva
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Victoria D Turubanova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation; Institute of Neurosciences, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Mariia O Saviuk
- Institute of Neurosciences, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation; Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Natalia Yu Shilyagina
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Olga Krysko
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Maria V Vedunova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Dmitri V Krysko
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium.
| |
Collapse
|
3
|
Mishchenko TA, Yarkov RS, Saviuk MO, Krivonosov MI, Perenkov AD, Gudkov SV, Vedunova MV. Unravelling Contributions of Astrocytic Connexin 43 to the Functional Activity of Brain Neuron-Glial Networks under Hypoxic State In Vitro. MEMBRANES 2022; 12:948. [PMID: 36295708 PMCID: PMC9609249 DOI: 10.3390/membranes12100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Brain hypoxia remains an Achilles' heel for public health that must be urgently addressed. Hypoxic damage affects both neurons and glial cells, particularly astrocytes, which are in close dynamic bi-directional communication, and are organized in plastic and tightly regulated networks. However, astroglial networks have received limited attention regarding their influence on the adaptive functional rearrangements of neural networks to oxygen deficiency. Herein, against the background of astrocytic Cx43 gap junction blockade by the selective blocker Gap19, we evaluated the features of spontaneous calcium activity and network characteristics of cells in primary cultures of the cerebral cortex, as well as the expression levels of metabotropic glutamate receptors 2 (mGluR2) and 5 (mGluR5) in the early and late periods after simulated hypoxia in vitro. We showed that, under normoxic conditions, blockade of Cx43 leads to an increase in the expression of metabotropic glutamate receptors mGluR2 and mGluR5 and long-term modulation of spontaneous calcium activity in primary cortical cultures, primarily expressed in the restructuring of the functional architectonics of neuron-glial networks through reducing the level of correlation between cells in the network and the percentage of existing correlated connections between cells. Blocking Cx43 during hypoxic injury has a pronounced neuroprotective effect. Together with the increased expression of mGluR5 receptors, a decrease in mGluR2 expression to the physiological level was found, which suggests the triggering of alternative molecular mechanisms of cell adaptation to hypoxia. Importantly, the blockade of Cx43 in hypoxic damage contributed to the maintenance of both the main parameters of the spontaneous calcium activity of primary cortical cultures and the functional architectonics of neuron-glial networks while maintaining the profile of calcium oscillations and calcium signal communications between cells at a highly correlated level. Our results demonstrate the crucial importance of astrocytic networks in functional brain adaptation to hypoxic damage and could be a promising target for the development of rational anti-hypoxic therapy.
Collapse
Affiliation(s)
- Tatiana A. Mishchenko
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Roman S. Yarkov
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Mariia O. Saviuk
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Mikhail I. Krivonosov
- Institute of Information, Technology, Mathematics and Mechanics, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Alexey D. Perenkov
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Maria V. Vedunova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| |
Collapse
|
4
|
Mishchenko TA, Klimenko MO, Kuznetsova AI, Yarkov RS, Savelyev AG, Sochilina AV, Mariyanats AO, Popov VK, Khaydukov EV, Zvyagin AV, Vedunova MV. 3D-printed hyaluronic acid hydrogel scaffolds impregnated with neurotrophic factors (BDNF, GDNF) for post-traumatic brain tissue reconstruction. Front Bioeng Biotechnol 2022; 10:895406. [PMID: 36091441 PMCID: PMC9453866 DOI: 10.3389/fbioe.2022.895406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Brain tissue reconstruction posttraumatic injury remains a long-standing challenge in neurotransplantology, where a tissue-engineering construct (scaffold, SC) with specific biochemical properties is deemed the most essential building block. Such three-dimensional (3D) hydrogel scaffolds can be formed using brain-abundant endogenous hyaluronic acid modified with glycidyl methacrylate by employing our proprietary photopolymerisation technique. Herein, we produced 3D hyaluronic scaffolds impregnated with neurotrophic factors (BDNF, GDNF) possessing 600 kPa Young’s moduli and 336% swelling ratios. Stringent in vitro testing of fabricated scaffolds using primary hippocampal cultures revealed lack of significant cytotoxicity: the number of viable cells in the SC+BDNF (91.67 ± 1.08%) and SC+GDNF (88.69 ± 1.2%) groups was comparable to the sham values (p > 0.05). Interestingly, BDNF-loaded scaffolds promoted the stimulation of neuronal process outgrowth during the first 3 days of cultures development (day 1: 23.34 ± 1.46 µm; day 3: 37.26 ± 1.98 µm, p < 0.05, vs. sham), whereas GDNF-loaded scaffolds increased the functional activity of neuron-glial networks of cultures at later stages of cultivation (day 14) manifested in a 1.3-fold decrease in the duration coupled with a 2.4-fold increase in the frequency of Ca2+ oscillations (p < 0.05, vs. sham). In vivo studies were carried out using C57BL/6 mice with induced traumatic brain injury, followed by surgery augmented with scaffold implantation. We found positive dynamics of the morphological changes in the treated nerve tissue in the post-traumatic period, where the GDNF-loaded scaffolds indicated more favorable regenerative potential. In comparison with controls, the physiological state of the treated mice was improved manifested by the absence of severe neurological deficit, significant changes in motor and orienting-exploratory activity, and preservation of the ability to learn and retain long-term memory. Our results suggest in favor of biocompatibility of GDNF-loaded scaffolds, which provide a platform for personalized brain implants stimulating effective morphological and functional recovery of nerve tissue after traumatic brain injury.
Collapse
Affiliation(s)
- Tatiana A. Mishchenko
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Maria O. Klimenko
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Alisa I. Kuznetsova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Roman S. Yarkov
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Alexander G. Savelyev
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, Troitsk-Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Anastasia V. Sochilina
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, Troitsk-Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Alexandra O. Mariyanats
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, Troitsk-Moscow, Russia
| | - Vladimir K. Popov
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, Troitsk-Moscow, Russia
| | - Evgeny V. Khaydukov
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, Troitsk-Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Andrei V. Zvyagin
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
- MQ Photonics Centre, Macquarie University, Sydney, NSW, Australia
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- *Correspondence: Maria V. Vedunova,
| |
Collapse
|
5
|
Savyuk MO, Turubanova VD, Mishchenko TA, Lermontova SA, Klapshina LG, Krysko DV, Vedunova MV. Unraveling of Functional Activity of Primary Hippocampal Neuron-Glial Networks in Photodynamic Therapy Based on Tetracyanotetra(aryl)porphyrazines. Cells 2022; 11:cells11071212. [PMID: 35406776 PMCID: PMC8997601 DOI: 10.3390/cells11071212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
The current efforts in photodynamic therapy (PDT) of brain cancer are focused on the development of novel photosensitizers with improved photodynamic properties, targeted specific localization, and sensitivity to the irradiation dose, ensuring the effectiveness of PDT with fewer side effects for normal nerve tissue. Here, we characterize the effects of four photosensitizers of the tetracyanotetra(aryl)porphyrazine group (pz I–IV) on the functional activity of neuron-glial networks in primary hippocampal cultures in their application in normal conditions and under PDT. The data revealed that the application of pz I–IV leads to a significant decrease in the main parameters of the functional calcium activity of neuron-glial networks and pronounced changes in the network characteristics. The observed negative effects of pz I–IV were aggravated under PDT. Considering the significant restructuring of the functional architectonics of neuron-glial networks that can lead to severe impairments in synaptic transmission and loss of brain functions, and the feasibility of direct application of PDT based on pz I–IV in the therapy of brain tumors is highly controversial. Nevertheless, the unique properties of pz I–IV retain a great prospect of their use in the therapy of tumors of another origin and cellular metabolism.
Collapse
Affiliation(s)
- Maria O. Savyuk
- Department of Basic and Medical Genetics, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia; (M.O.S.); (V.D.T.); (T.A.M.); (D.V.K.)
| | - Victoria D. Turubanova
- Department of Basic and Medical Genetics, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia; (M.O.S.); (V.D.T.); (T.A.M.); (D.V.K.)
- Department of Neurotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia
| | - Tatiana A. Mishchenko
- Department of Basic and Medical Genetics, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia; (M.O.S.); (V.D.T.); (T.A.M.); (D.V.K.)
- Department of Neurotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia
| | - Svetlana A. Lermontova
- Sector of Chromophors for Medicine, G.A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, 49 Tropinin st., 603137 Nizhny Novgorod, Russia; (S.A.L.); (L.G.K.)
| | - Larisa G. Klapshina
- Sector of Chromophors for Medicine, G.A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, 49 Tropinin st., 603137 Nizhny Novgorod, Russia; (S.A.L.); (L.G.K.)
| | - Dmitri V. Krysko
- Department of Basic and Medical Genetics, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia; (M.O.S.); (V.D.T.); (T.A.M.); (D.V.K.)
- Cell Death Investigation and Therapy Laboratory (CDIT), Department of Human Structure and Repair, Ghent University, C. Heymanslaan 10, Building B3, 4th Floor, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Maria V. Vedunova
- Department of Basic and Medical Genetics, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia; (M.O.S.); (V.D.T.); (T.A.M.); (D.V.K.)
- Department of Neurotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia
- Correspondence: ; Tel.: +7-915-937-55-55
| |
Collapse
|
6
|
Effects of SRC and IKKβ Kinase Inhibition in Ischemic Factors Modeling In Vitro and In Vivo. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The search for new molecular targets whose modulation can reduce nerve cell dysfunction and neuronal death during ischemic damage is one of the most significant issues in both fundamental and clinical neurobiology. Various kinase enzymes are often considered to be such promising targets since they are involved in key molecular cascades that regulate cell adaptation to stress factors. Our work is devoted to the study of the role of two kinases—SRC and IKKβ—in maintaining the neural networks’ functional activity under a hypoxic condition in vivo and in vitro. SRC kinase is a cytoplasmic non-receptor protein tyrosine kinase. It is involved in the regulation of cell proliferation and differentiation; its expression in nerve cells changes during hypoxia. IKKβ kinase is involved in the regulation of the activity of the transcription factor NF-κB, which is a pleiotropic regulator of many cellular signaling pathways. We have shown that blockade of SRC and IKKβ kinases by selective inhibitors maintains cell viability in modeling hypoxic damage in vitro but does not allow for the preservation of the bioelectrical activity of neurons. Studies in vivo have shown the neuroprotective effect of SRC but not IKKβ kinase inhibition in the modeling of cerebral ischemia in mice.
Collapse
|
7
|
Inhibition of Neuronal Necroptosis Mediated by RIPK1 Provides Neuroprotective Effects on Hypoxia and Ischemia In Vitro and In Vivo. Int J Mol Sci 2022; 23:ijms23020735. [PMID: 35054920 PMCID: PMC8775468 DOI: 10.3390/ijms23020735] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/01/2022] [Accepted: 01/07/2022] [Indexed: 11/24/2022] Open
Abstract
Ischemic brain injury is a widespread pathological condition, the main components of which are a deficiency of oxygen and energy substrates. In recent years, a number of new forms of cell death, including necroptosis, have been described. In necroptosis, a cascade of interactions between the kinases RIPK1 and RIPK3 and the MLKL protein leads to the formation of a specialized death complex called the necrosome, which triggers MLKL-mediated destruction of the cell membrane and necroptotic cell death. Necroptosis probably plays an important role in the development of ischemia/reperfusion injury and can be considered as a potential target for finding methods to correct the disruption of neural networks in ischemic damage. In the present study, we demonstrated that blockade of RIPK1 kinase by Necrostatin-1 preserved the viability of cells in primary hippocampal cultures in an in vitro model of glucose deprivation. The effect of RIPK1 blockade on the bioelectrical and metabolic calcium activity of neuron-glial networks in vitro using calcium imaging and multi-electrode arrays was assessed for the first time. RIPK1 blockade was shown to partially preserve both calcium and bioelectric activity of neuron-glial networks under ischemic factors. However, it should be noted that RIPK1 blockade does not preserve the network parameters of the collective calcium dynamics of neuron-glial networks, despite the maintenance of network bioelectrical activity (the number of bursts and the number of spikes in the bursts). To confirm the data obtained in vitro, we studied the effect of RIPK1 blockade on the resistance of small laboratory animals to in vivo modeling of hypoxia and cerebral ischemia. The use of Necrostatin-1 increases the survival rate of C57BL mice in modeling both acute hypobaric hypoxia and ischemic brain damage.
Collapse
|