1
|
Yan T, Alimu G, Zhu L, Fan H, Zhang L, Du Z, Ma R, Chen S, Alifu N, Zhang X. PpIX/IR-820 Dual-Modal Therapeutic Agents for Enhanced PDT/PTT Synergistic Therapy in Cervical Cancer. ACS OMEGA 2022; 7:44643-44656. [PMID: 36530282 PMCID: PMC9753516 DOI: 10.1021/acsomega.2c02977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/10/2022] [Indexed: 05/10/2023]
Abstract
High treatment accuracy is the key to efficient cancer treatment. Photodynamic therapy (PDT) and photothermal therapy (PTT) are two kinds of popular, precise treatment methods. The combination of photodynamic and photothermal therapy (PDT/PTT) can greatly enhance the precise therapeutic efficacy. In this work, protoporphyrin IX (PpIX) was selected as the PDT agent (photosensitizer), and new indocyanine green (IR-820) was selected as the PTT agent. Further, the two kinds of theranostic agents were encapsulated by biological-membrane-compatible liposomes to form PpIX-IR-820@Lipo nanoparticles (NPs), a new kind of PDT/PTT agent. The PpIX-IR-820@Lipo NPs exhibited good water solubility, a spherical shape, and high fluorescence peak emission in the near-infrared spectral region (700-900 nm, NIR). The cellular toxicity of PpIX-IR-820@Lipo NPs for human cervical cancer cells (HeLa) and human cervical epithelial cells (H8) was detected by the CCK-8 method, and low cytotoxicity was observed for the PpIX-IR-820@Lipo NPs. Then, the excellent cellular uptake of PpIX-IR-820@Lipo NPs was confirmed by laser scanning confocal microscopy. Moreover, the PDT/PTT property of PpIX-IR-820@Lipo NPs was illustrated via 2',7'-dichlorofluorescin diacetate (DCFH-DA) and annexin V-fluorescein isothiocyanate (annexin V-FITC), as indicator probes. The PDT/PTT synergistic efficiency of PpIX-IR-820@Lipo NPs on HeLa cells was verified, exhibiting a high efficiency of 70.5%. Thus, the novel theranostic PpIX-IR-820@Lipo NPs can be used as a promising PDT/PTT synergistic theranostic nanoplatform in future cervical cancer treatment.
Collapse
Affiliation(s)
- Ting Yan
- Department
of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, No.567 Shangde North Road, Ürümqi 830054, China
- State
Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence
Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Ürümqi 830054, China
| | - Gulinigaer Alimu
- Department
of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, No.567 Shangde North Road, Ürümqi 830054, China
- State
Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence
Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Ürümqi 830054, China
| | - Lijun Zhu
- Department
of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, No.567 Shangde North Road, Ürümqi 830054, China
- State
Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence
Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Ürümqi 830054, China
| | - Huimin Fan
- State
Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence
Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Ürümqi 830054, China
| | - Linxue Zhang
- State
Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence
Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Ürümqi 830054, China
| | - Zhong Du
- State
Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence
Diseases in Central Asia/Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi 830054, China
| | - Rong Ma
- State
Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence
Diseases in Central Asia/Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi 830054, China
| | - Shuang Chen
- State
Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence
Diseases in Central Asia/Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi 830054, China
| | - Nuernisha Alifu
- Department
of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, No.567 Shangde North Road, Ürümqi 830054, China
- State
Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence
Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Ürümqi 830054, China
| | - Xueliang Zhang
- Department
of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, No.567 Shangde North Road, Ürümqi 830054, China
- State
Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence
Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Ürümqi 830054, China
| |
Collapse
|
2
|
Translating Research for the Radiotheranostics of Nanotargeted 188Re-Liposome. Int J Mol Sci 2021; 22:ijms22083868. [PMID: 33918011 PMCID: PMC8068325 DOI: 10.3390/ijms22083868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Nanoliposomes are one of the leading potential nano drug delivery systems capable of targeting chemotherapeutics to tumor sites because of their passive nano-targeting capability through the enhanced permeability and retention (EPR) effect for cancer patients. Recent advances in nano-delivery systems have inspired the development of a wide range of nanotargeted materials and strategies for applications in preclinical and clinical usage in the cancer field. Nanotargeted 188Re-liposome is a unique internal passive radiotheranostic agent for nuclear imaging and radiotherapeutic applications in various types of cancer. This article reviews and summarizes our multi-institute, multidiscipline, and multi-functional studied results and achievements in the research and development of nanotargeted 188Re-liposome from preclinical cells and animal models to translational clinical investigations, including radionuclide nanoliposome formulation, targeted nuclear imaging, biodistribution, pharmacokinetics, radiation dosimetry, radiation tumor killing effects in animal models, nanotargeted radionuclide and radio/chemo-combination therapeutic effects, and acute toxicity in various tumor animal models. The systemic preclinical and clinical studied results suggest 188Re-liposome is feasible and promising for in vivo passive nanotargeted radionuclide theranostics in future cancer care applications.
Collapse
|