1
|
Hall A, Middlehurst B, Cadogan MAM, Reed X, Billingsley KJ, Bubb VJ, Quinn JP. A SINE-VNTR-Alu at the LRIG2 locus is associated with proximal and distal gene expression in CRISPR and population models. Sci Rep 2024; 14:792. [PMID: 38191889 PMCID: PMC10774264 DOI: 10.1038/s41598-023-50307-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/18/2023] [Indexed: 01/10/2024] Open
Abstract
SINE-VNTR-Alu (SVA) retrotransposons represent mobile regulatory elements that have the potential to influence the surrounding genome when they insert into a locus. Evolutionarily recent mobilisation has resulted in loci in the human genome where a given retrotransposon might be observed to be present or absent, termed a retrotransposon insertion polymorphism (RIP). We previously observed that an SVA RIP ~ 2 kb upstream of LRIG2 on chromosome 1, the 'LRIG2 SVA', was associated with differences in local gene expression and methylation, and that the two were correlated. Here, we have used CRISPR-mediated deletion of the LRIG2 SVA in a cell line model to validate that presence of the retrotransposon is directly affecting local expression and provide evidence that is suggestive of a modest role for the SVA in modulating nearby methylation. Additionally, in leveraging an available Hi-C dataset we observed that the LRIG2 SVA was also involved in long-range chromatin interactions with a cluster of genes ~ 300 kb away, and that expression of these genes was to varying degrees associated with dosage of the SVA in both CRISPR cell line and population models. Altogether, these data support a regulatory role for SVAs in the modulation of gene expression, with the latter potentially involving chromatin looping, consistent with the model that RIPs may contribute to interpersonal differences in transcriptional networks.
Collapse
Affiliation(s)
- Ashley Hall
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7BE, UK
| | - Ben Middlehurst
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7BE, UK
| | - Max A M Cadogan
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7BE, UK
| | - Xylena Reed
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
- Center for Alzheimer's and Related Dementias, National Institute on Aging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kimberley J Billingsley
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
- Center for Alzheimer's and Related Dementias, National Institute on Aging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Vivien J Bubb
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7BE, UK
| | - John P Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7BE, UK.
| |
Collapse
|
2
|
Kalinovskii AP, Utkina LL, Korolkova YV, Andreev YA. TRPV3 Ion Channel: From Gene to Pharmacology. Int J Mol Sci 2023; 24:ijms24108601. [PMID: 37239947 DOI: 10.3390/ijms24108601] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Transient receptor potential vanilloid subtype 3 (TRPV3) is an ion channel with a sensory function that is most abundantly expressed in keratinocytes and peripheral neurons. TRPV3 plays a role in Ca2+ homeostasis due to non-selective ionic conductivity and participates in signaling pathways associated with itch, dermatitis, hair growth, and skin regeneration. TRPV3 is a marker of pathological dysfunctions, and its expression is increased in conditions of injury and inflammation. There are also pathogenic mutant forms of the channel associated with genetic diseases. TRPV3 is considered as a potential therapeutic target of pain and itch, but there is a rather limited range of natural and synthetic ligands for this channel, most of which do not have high affinity and selectivity. In this review, we discuss the progress in the understanding of the evolution, structure, and pharmacology of TRPV3 in the context of the channel's function in normal and pathological states.
Collapse
Affiliation(s)
- Aleksandr P Kalinovskii
- Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (IBCh RAS), 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia
| | - Lyubov L Utkina
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trbetskaya Str. 8, Bld. 2, 119991 Moscow, Russia
| | - Yuliya V Korolkova
- Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (IBCh RAS), 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia
| | - Yaroslav A Andreev
- Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (IBCh RAS), 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trbetskaya Str. 8, Bld. 2, 119991 Moscow, Russia
| |
Collapse
|
3
|
Savage AL, Iacoangeli A, Schumann GG, Rubio-Roldan A, Garcia-Perez JL, Al Khleifat A, Koks S, Bubb VJ, Al-Chalabi A, Quinn JP. Characterisation of retrotransposon insertion polymorphisms in whole genome sequencing data from individuals with amyotrophic lateral sclerosis. Gene 2022; 843:146799. [PMID: 35963498 DOI: 10.1016/j.gene.2022.146799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/15/2022] [Accepted: 08/05/2022] [Indexed: 11/15/2022]
Abstract
The genetics of an individual is a crucial factor in understanding the risk of developing the neurodegenerative disease amyotrophic lateral sclerosis (ALS). There is still a large proportion of the heritability of ALS, particularly in sporadic cases, to be understood. Among others, active transposable elements drive inter-individual variability, and in humans long interspersed element 1 (LINE1, L1), Alu and SINE-VNTR-Alu (SVA) retrotransposons are a source of polymorphic insertions in the population. We undertook a pilot study to characterise the landscape of non-reference retrotransposon insertion polymorphisms (non-ref RIPs) in 15 control and 15 ALS individuals' whole genomes from Project MinE, an international project to identify potential genetic causes of ALS. The combination of two bioinformatics tools (mobile element locator tool (MELT) and TEBreak) identified on average 1250 Alu, 232 L1 and 77 SVA non-ref RIPs per genome across the 30 analysed. Further PCR validation of individual polymorphic retrotransposon insertions showed a similar level of accuracy for MELT and TEBreak. Our preliminary study did not identify a specific RIP or a significant difference in the total number of non-ref RIPs in ALS compared to control genomes. The use of multiple bioinformatic tools improved the accuracy of non-ref RIP detection and our study highlights the potential importance of studying these elements further in ALS.
Collapse
Affiliation(s)
- Abigail L Savage
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
| | - Alfredo Iacoangeli
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 9RT, UK; Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
| | - Gerald G Schumann
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen 63225, Germany
| | - Alejandro Rubio-Roldan
- Department of Genomic Medicine and Department of Oncology, GENYO, Centre for Genomics & Oncology, PTS Granada, 18007, Spain
| | - Jose L Garcia-Perez
- Department of Genomic Medicine and Department of Oncology, GENYO, Centre for Genomics & Oncology, PTS Granada, 18007, Spain; MRC-HGU Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Ahmad Al Khleifat
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 9RT, UK
| | - Sulev Koks
- Perron Institute for Neurological and Translational Science, Perth, Western Australia 6009, Australia; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia 6150, Australia
| | - Vivien J Bubb
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
| | - Ammar Al-Chalabi
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 9RT, UK; Department of Neurology, King's College Hospital, London SE5 9RS, UK
| | - John P Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK.
| |
Collapse
|
4
|
Zhang RX, Li BB, Yang ZG, Huang JQ, Sun WH, Bhanbhro N, Liu WT, Chen KM. Dissecting Plant Gene Functions Using CRISPR Toolsets for Crop Improvement. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7343-7359. [PMID: 35695482 DOI: 10.1021/acs.jafc.2c01754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The CRISPR-based gene editing technology has become more and more powerful in genome manipulation for agricultural breeding, with numerous improved toolsets springing up. In recent years, many CRISPR toolsets for gene editing, such as base editors (BEs), CRISPR interference (CRISPRi), CRISPR activation (CRISPRa), and plant epigenetic editors (PEEs), have been developed to clarify gene function and full-level gene regulation. Here, we comprehensively summarize the application and capacity of the different CRISPR toolsets in the study of plant gene expression regulation, highlighting their potential application in gene regulatory networks' analysis. The general problems in CRISPR application and the optimal solutions in the existing schemes for high-throughput gene function analysis are also discussed. The CRISPR toolsets targeting gene manipulation discussed here provide new solutions for further genetic improvement and molecular breeding of crops.
Collapse
Affiliation(s)
- Rui-Xiang Zhang
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bin-Bin Li
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zheng-Guang Yang
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jia-Qi Huang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Wei-Hang Sun
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Nadeem Bhanbhro
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|