1
|
Zhang X, Tian X, Wang Y, Yan Y, Wang Y, Su M, Lv H, Li K, Hao X, Xing X, Song S. Application of lipopolysaccharide in establishing inflammatory models. Int J Biol Macromol 2024; 279:135371. [PMID: 39244120 DOI: 10.1016/j.ijbiomac.2024.135371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Lipopolysaccharide (LPS), a unique component of the outer membrane of Gram-negative bacteria, possesses immune-activating properties. It induces an immune response by stimulating host cells to produce a lot of inflammatory cytokines with a thermogenic effect, which may cause an inflammatory response. In the past few decades, the structure and function of LPS and its mechanism leading to inflammation have been extensively analyzed. Since LPS can cause inflammation, it is often used to establish inflammation models. These models are crucial in the study of inflammatory diseases that pose a serious threat to human health. In addition, the non-pro-inflammatory effects of LPS under certain circumstances are also being studied widely. This review summarizes the methods by which LPS has been used to establish inflammatory models at the cellular and animal levels to study related diseases. It also introduces in detail the evaluation indicators necessary for the successful establishment of these models, providing a reference for future research.
Collapse
Affiliation(s)
- Xiao Zhang
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Xiao Tian
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Yan Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Yong Yan
- JD Berry Agricultural Development Co., Ltd, Weihai, Shandong 264209, China.
| | - Yuan Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Meicai Su
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Haifei Lv
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Kaitao Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Xiaobin Hao
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Xiang Xing
- Marine College, Shandong University, Weihai, Shandong 264209, China; Weihai Research Institute of Industrial Technology, Shandong University, Weihai 264209, China.
| | - Shuliang Song
- Marine College, Shandong University, Weihai, Shandong 264209, China; Weihai Research Institute of Industrial Technology, Shandong University, Weihai 264209, China.
| |
Collapse
|
2
|
Mao N, Yu Y, Lu X, Yang Y, Liu Z, Wang D. Preventive effects of matrine on LPS-induced inflammation in RAW 264.7 cells and intestinal damage in mice through the TLR4/NF-κB/MAPK pathway. Int Immunopharmacol 2024; 143:113432. [PMID: 39447411 DOI: 10.1016/j.intimp.2024.113432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/03/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Matrine is a tetracyclic quinolizidine alkaloid with diverse bioactive properties, including anti-inflammatory and neuroprotective properties. However, the underlying anti-inflammatory mechanisms remain unclear. PURPOSE This study aimed to explore how matrine reduces Lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 cells and to assess its protective effects against LPS-induced intestinal damage. METHODS The effect of matrine on cell viability was assessed using the cell counting kit-8 (CCK-8) assay. Additionally, its impact on inflammatory cytokines and macrophage polarization was assessed using enzyme-linked immunosorbent assay (ELISA), flow cytometry, and quantitative real-time polymerase chain reaction (qRT-PCR) analyses. The effects on intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), nitric oxide (NO) production, and oxidative stress were evaluated using 2',7'-dichlorodihydrofluorescein diacetate staining and JC-1 and Griess assays. Immunofluorescence staining was used to observe the translocation of the NF-κB p65 subunit. Western blotting (WB) and qRT-PCR were employed to analyze the expression levels of proteins related to the toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB)/mitogen-activated protein kinase (MAPK) pathway. An LPS-induced mouse model was established to study the intestinal inflammation and barrier injury. Mouse feces characteristics, colon length, and disease activity index (DAI) were recorded. Hematoxylin-eosin (H&E) and alcian blue/periodic acid schiff (AB/PAS) staining were used to observe morphological changes and barrier damage in the duodenum, jejunum, ileum, and colon and to measure villus length, crypt depth, goblet cell count, and positive areas in the duodenum, jejunum, and ileum. The content of short-chain fatty acids (SCFAs) in the colon was determined using gas chromatography (GC). RESULTS Matrine inhibited LPS-induced inflammatory cytokine levels, suppressed macrophage M1 polarization, and promoted M2 macrophage polarization. Matrine reduced LPS-induced increases in ROS and NO levels and regulates oxidative stress. Additionally, matrine inhibited the nuclear translocation of the NF-κB p65 subunit and exerted anti-inflammatory effects by suppressing the activation of the TLR4/NF-κB/MAPK pathway. In vivo experiments indicated that matrine significantly alleviated LPS-induced diarrhea, increased DAI, and shortened the colon. Matrine reduced the production of the pro-inflammatory cytokine interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α and the pro-inflammatory mediator NO in mouse intestinal tissues while promoting the content of the anti-inflammatory cytokine IL-10. Furthermore, it improved intestinal tissue structure and alleviated LPS-induced intestinal barrier damage. Finally, matrine increased the SCFA levels in the intestine. CONCLUSION Matrine exerted its anti-inflammatory effects and protects against intestinal injury through the TLR4/NF-κB/MAPK signaling pathway.
Collapse
Affiliation(s)
- Ningning Mao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yaming Yu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xuanqi Lu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yang Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhenguang Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
3
|
van Gorp C, de Lange IH, Hütten MC, López-Iglesias C, Massy KRI, Kessels L, Knoops K, Cuijpers I, Sthijns MMJPE, Troost FJ, van Gemert WG, Spiller OB, Birchenough GMH, Zimmermann LJI, Wolfs TGAM. Antenatal Ureaplasma Infection Causes Colonic Mucus Barrier Defects: Implications for Intestinal Pathologies. Int J Mol Sci 2024; 25:4000. [PMID: 38612809 PMCID: PMC11011967 DOI: 10.3390/ijms25074000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Chorioamnionitis is a risk factor for necrotizing enterocolitis (NEC). Ureaplasma parvum (UP) is clinically the most isolated microorganism in chorioamnionitis, but its pathogenicity remains debated. Chorioamnionitis is associated with ileal barrier changes, but colonic barrier alterations, including those of the mucus barrier, remain under-investigated, despite their importance in NEC pathophysiology. Therefore, in this study, the hypothesis that antenatal UP exposure disturbs colonic mucus barrier integrity, thereby potentially contributing to NEC pathogenesis, was investigated. In an established ovine chorioamnionitis model, lambs were intra-amniotically exposed to UP or saline for 7 d from 122 to 129 d gestational age. Thereafter, colonic mucus layer thickness and functional integrity, underlying mechanisms, including endoplasmic reticulum (ER) stress and redox status, and cellular morphology by transmission electron microscopy were studied. The clinical significance of the experimental findings was verified by examining colon samples from NEC patients and controls. UP-exposed lambs have a thicker but dysfunctional colonic mucus layer in which bacteria-sized beads reach the intestinal epithelium, indicating undesired bacterial contact with the epithelium. This is paralleled by disturbed goblet cell MUC2 folding, pro-apoptotic ER stress and signs of mitochondrial dysfunction in the colonic epithelium. Importantly, the colonic epithelium from human NEC patients showed comparable mitochondrial aberrations, indicating that NEC-associated intestinal barrier injury already occurs during chorioamnionitis. This study underlines the pathogenic potential of UP during pregnancy; it demonstrates that antenatal UP infection leads to severe colonic mucus barrier deficits, providing a mechanistic link between antenatal infections and postnatal NEC development.
Collapse
Affiliation(s)
- Charlotte van Gorp
- Department of Pediatrics, School for Oncology and Reproduction (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands; (C.v.G.); (M.C.H.); (K.R.I.M.); (L.K.); (L.J.I.Z.)
| | - Ilse H. de Lange
- Department of Pediatrics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| | - Matthias C. Hütten
- Department of Pediatrics, School for Oncology and Reproduction (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands; (C.v.G.); (M.C.H.); (K.R.I.M.); (L.K.); (L.J.I.Z.)
- Neonatology, Department of Pediatrics, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Carmen López-Iglesias
- Microscopy CORE Lab, Maastricht Multimodal Molecular Imaging Institute (M4I), Maastricht University, 6211 LK Maastricht, The Netherlands; (C.L.-I.); (K.K.)
| | - Kimberly R. I. Massy
- Department of Pediatrics, School for Oncology and Reproduction (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands; (C.v.G.); (M.C.H.); (K.R.I.M.); (L.K.); (L.J.I.Z.)
| | - Lilian Kessels
- Department of Pediatrics, School for Oncology and Reproduction (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands; (C.v.G.); (M.C.H.); (K.R.I.M.); (L.K.); (L.J.I.Z.)
| | - Kèvin Knoops
- Microscopy CORE Lab, Maastricht Multimodal Molecular Imaging Institute (M4I), Maastricht University, 6211 LK Maastricht, The Netherlands; (C.L.-I.); (K.K.)
| | - Iris Cuijpers
- Food Innovation and Health, Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 5911 BV Venlo, The Netherlands; (I.C.); (M.M.J.P.E.S.); (F.J.T.)
| | - Mireille M. J. P. E. Sthijns
- Food Innovation and Health, Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 5911 BV Venlo, The Netherlands; (I.C.); (M.M.J.P.E.S.); (F.J.T.)
| | - Freddy J. Troost
- Food Innovation and Health, Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 5911 BV Venlo, The Netherlands; (I.C.); (M.M.J.P.E.S.); (F.J.T.)
| | - Wim G. van Gemert
- Department of Surgery, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| | - Owen B. Spiller
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XW, UK;
| | - George M. H. Birchenough
- Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden;
| | - Luc J. I. Zimmermann
- Department of Pediatrics, School for Oncology and Reproduction (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands; (C.v.G.); (M.C.H.); (K.R.I.M.); (L.K.); (L.J.I.Z.)
| | - Tim G. A. M. Wolfs
- Department of Pediatrics, School for Oncology and Reproduction (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands; (C.v.G.); (M.C.H.); (K.R.I.M.); (L.K.); (L.J.I.Z.)
- Department of Biomedical Engineering (BMT), School for Cardiovascular Diseases (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
4
|
van Gorp C, de Lange IH, Hütten MC, López-Iglesias C, Massy KRI, Kessels L, Kramer B, van de Wetering W, Spiller B, Birchenough GM, van Gemert WG, Zimmermann LJ, Wolfs TGAM. Antenatal Ureaplasma infection induces ovine small intestinal goblet cell defects: a strong link with NEC pathology. Tissue Barriers 2023; 11:2158016. [PMID: 36576242 PMCID: PMC10606782 DOI: 10.1080/21688370.2022.2158016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/05/2022] [Indexed: 12/29/2022] Open
Abstract
Disruption of the intestinal mucus barrier and intestinal epithelial endoplasmic reticulum (ER) stress contribute to necrotizing enterocolitis (NEC). Previously, we observed intestinal goblet cell loss and increased intestinal epithelial ER stress following chorioamnionitis. Here, we investigated how chorioamnionitis affects goblet cells by assessing their cellular characteristics. Importantly, goblet cell features are compared with those in clinical NEC biopsies. Mucus thickness was assessed as read-out of goblet cell function. Fetal lambs were intra-amniotically (IA) infected for 7d at 122 gestational age with Ureaplasma parvum serovar-3, the main microorganism clinically associated with chorioamnionitis. After preterm delivery, mucus thickness, goblet cell numbers, gut inflammation, epithelial proliferation and apoptosis and intestinal epithelial ER stress were investigated in the terminal ileum. Next, goblet cell morphological alterations (TEM) were studied and compared to human NEC samples. Ileal mucus thickness and goblet cell numbers were elevated following IA UP exposure. Increased pro-apoptotic ER stress, detected by elevated CHOP-positive cell counts and disrupted organelle morphology of secretory cells in the intestinal epithelium, was observed in IA UP exposed animals. Importantly, comparable cellular morphological alterations were observed in the ileum from NEC patients. In conclusion, UP-driven chorioamnionitis leads to a thickened ileal mucus layer and mucus hypersecretion from goblet cells. Since this was associated with pro-apoptotic ER stress and organelle disruption, mucus barrier alterations seem to occur at the expense of goblet cell resilience and may therefore predispose to detrimental intestinal outcomes. The remarkable overlap of these in utero findings with observations in NEC patients underscores their clinical relevance.
Collapse
Affiliation(s)
- Charlotte van Gorp
- Department of Pediatrics, School of Oncology and Reproduction (GROW), Maastricht University, Maastricht, The Netherlands
| | - Ilse H de Lange
- Department of Pediatrics, School of Oncology and Reproduction (GROW), Maastricht University, Maastricht, The Netherlands
- Department of Surgery, School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
- European Surgical Center Aachen-Maastricht, Department of Pediatric Surgery, School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Matthias C Hütten
- Department of Pediatrics, School of Oncology and Reproduction (GROW), Maastricht University, Maastricht, The Netherlands
- Neonatology, Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Carmen López-Iglesias
- Microscopy CORE Lab, Maastricht Multimodal Molecular Imaging Institute (M4I), Maastricht University, Maastricht, The Netherlands
| | - Kimberly RI Massy
- Department of Pediatrics, School of Oncology and Reproduction (GROW), Maastricht University, Maastricht, The Netherlands
| | - Lilian Kessels
- Department of Pediatrics, School of Oncology and Reproduction (GROW), Maastricht University, Maastricht, The Netherlands
| | - Boris Kramer
- Department of Pediatrics, School of Oncology and Reproduction (GROW), Maastricht University, Maastricht, The Netherlands
| | - Willine van de Wetering
- Microscopy CORE Lab, Maastricht Multimodal Molecular Imaging Institute (M4I), Maastricht University, Maastricht, The Netherlands
| | - Brad Spiller
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - George M Birchenough
- Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Center for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Wim G van Gemert
- Department of Surgery, School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
- European Surgical Center Aachen-Maastricht, Department of Pediatric Surgery, School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Luc J Zimmermann
- Department of Pediatrics, School of Oncology and Reproduction (GROW), Maastricht University, Maastricht, The Netherlands
| | - Tim GAM Wolfs
- Department of Pediatrics, School of Oncology and Reproduction (GROW), Maastricht University, Maastricht, The Netherlands
- Department of Biomedical Engineering (BMT), School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
5
|
Wang C, Wang S, Zeng N, Péré M, Xu G, Zou J, Zhou A. Effect of kelp powder on the resistance of Aeromonas hydrophila in the gut of hybrid snakeheads (Channa maculata ♀ × Channa argus ♂). FISH & SHELLFISH IMMUNOLOGY 2023; 139:108916. [PMID: 37355219 DOI: 10.1016/j.fsi.2023.108916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 06/26/2023]
Abstract
To assess the level of oxidative stress, expression of immune-related genes, histomorphology, and changes in the intestinal tract of hybrid snakeheads(Channa maculata ♀ × Channa argus ♂) under stress from kelp powder in place of flour against Aeromonas hydrophila. We set up experimental diets: a control (C) diet of 20% flour, an experimental (MR) diet of 10% kelp powder and 10% flour, and an experimental (FR) diet of 0% starch and 15% kelp powder. The experimental fish in each group were infected with Aeromonas hydrophila after 60 days of feeding. For this experiment, some of the experimental fish in group C were injected with PBS as a negative control group (PBS). The results showed that the C group had significantly higher SOD, CAT, and T-AOC activity and expression of TAK1, IKKβ, IL-1β, and TNF-α genes in the MyD88 pathway than the PBS group. CAT activity and the expression of TAK1, IL-1β and TNF-α genes in the MyD88 pathway were significantly lower in the MR group than in the C group. Furthermore, the number of goblet cells in the MR group was significantly higher than in the C group. Furthermore, microorganisms such as Bacteroidota and Actinobacteriota were significantly lower in the C group than in the PBS and FR groups, as were beneficial bacteria such as Clostridium_sensu_stricto_1 and Sphingomonas. Replacing flour with kelp powder increases hybrid snakehead gut resistance to Aeromonas hydrophila.
Collapse
Affiliation(s)
- Chong Wang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Shaodan Wang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Nanyang Zeng
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Maxime Péré
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Guohuan Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 16 510070, China.
| | - Jixing Zou
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Aiguo Zhou
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
6
|
Hoogenboom LA, Lely AT, Kemp MW, Saito M, Jobe AH, Wolfs TGAM, Schreuder MF. Chorioamnionitis Causes Kidney Inflammation, Podocyte Damage, and Pro-fibrotic Changes in Fetal Lambs. Front Pediatr 2022; 10:796702. [PMID: 35444963 PMCID: PMC9013807 DOI: 10.3389/fped.2022.796702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/01/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Perinatal complications, such as prematurity and intrauterine growth restriction, are associated with increased risk of chronic kidney disease. Although often associated with reduced nephron endowment, there is also evidence of increased susceptibility for sclerotic changes and podocyte alterations. Preterm birth is frequently associated with chorioamnionitis, though studies regarding the effect of chorioamnionitis on the kidney are scarce. In this study, we aim to unravel the consequences of premature birth and/or perinatal inflammation on kidney development using an ovine model. METHODS In a preterm sheep model, chorioamnionitis was induced by intra-amniotic injection of lipopolysaccharide (LPS) at either 2, 8, or 15 days prior to delivery. Control animals received intra-amniotic injections of sterile saline. All lambs were surgically delivered at 125 days' gestation (full term is 150 days) and immediately euthanized for necropsy. Kidneys were harvested and processed for staining with myeloperoxidase (MPO), Wilms tumor-1 (WT1) and alpha-smooth muscle actine (aSMA). mRNA expression of tumor necrosis factor alpha (TNFA), Interleukin 10 (IL10), desmin (DES), Platelet derived growth factor beta (PDGFB), Platelet derived growth factor receptor beta (PDGFRB), synaptopodin (SYNPO), and transforming growth factor beta (TGFB) was measured using quantitative PCR. RESULTS Animals with extended (but not acute) LPS exposure had an inflammatory response in the kidney. MPO staining was significantly increased after 8 and 15 days (p = 0.003 and p = 0.008, respectively). Expression of TNFA (p = 0.016) and IL10 (p = 0.026) transcripts was increased, peaking on day 8 after LPS exposure. Glomerular aSMA and expression of TGFB was increased on day 8, suggesting pro-fibrotic mesangial activation, however, this was not confirmed with PDFGB or PDGFRB. The number of WT1 positive nuclei in the glomerulus, as well as expression of synaptopodin, decreased, indicating podocyte injury. CONCLUSION We report that, in an ovine model of prematurity, LPS-induced chorioamnionitis leads to inflammation of the immature kidney. In addition, this process was associated with podocyte injury and there are markers to support pro-fibrotic changes to the glomerular mesangium. These data suggest a potential important role for antenatal inflammation in the development of preterm-associated kidney disease, which is frequent.
Collapse
Affiliation(s)
- Lieke A Hoogenboom
- Department of Pediatrics, Maastricht University Medical Centre, Maastricht, Netherlands.,Department of Pediatric Nephrology, Radboudumc Amalia Children's Hospital, Nijmegen, Netherlands
| | - A Titia Lely
- Department of Obstetrics, Wilhelmina Children's Hospital Birth Center, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Matthew W Kemp
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan.,Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, WA, Australia.,Women and Infants Research Foundation, Perth, WA, Australia.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Masatoshi Saito
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Alan H Jobe
- Division of Neonatology/Pulmonary Biology, The Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - Tim G A M Wolfs
- Department of Pediatrics, School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, Netherlands.,Department of Biomedical Engineering (BMT), Maastricht University, Maastricht, Netherlands
| | - Michiel F Schreuder
- Department of Pediatric Nephrology, Radboudumc Amalia Children's Hospital, Nijmegen, Netherlands
| |
Collapse
|
7
|
Jiang S, Xue D, Zhang M, Li Q, Liu H, Zhao D, Zhou G, Li C. Myoglobin diet affected colonic mucus layer and barrier by increasing the abundance of several beneficial gut bacteria. Food Funct 2022; 13:9060-9077. [DOI: 10.1039/d2fo01799g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The study aimed to explore the in vitro digestion of myoglobin diet and its relationship with the gut microbiota and intestinal barrier at two feeding time points. In vitro study...
Collapse
|
8
|
Lau E, Lee C, Li B, Pierro A. Endoplasmic reticulum stress in the acute intestinal epithelial injury of necrotizing enterocolitis. Pediatr Surg Int 2021; 37:1151-1160. [PMID: 34117913 DOI: 10.1007/s00383-021-04929-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 03/07/2023]
Abstract
Endoplasmic reticulum (ER) is a dynamic organelle that has many functions including protein synthesis, lipid synthesis, and calcium metabolism. Any perturbation in the ER such as accumulation of unfolded or misfolded proteins in the ER lumen causes ER stress. ER stress has been implicated in many intestinal inflammatory diseases. However, the role of ER stress in acute intestinal epithelial injuries such as necrotizing enterocolitis in preterm neonates, remains incompletely understood. In this review, we introduce ER structure, functions and summarize the intracellular signaling pathways involved in unfolded protein response (UPR), a survival mechanism in which cells exert an adaptive function to restore homeostasis in the ER. However, intense and prolonged ER stress induces apoptotic response which results in apoptotic cell death. We also discuss and highlight recent advances that have improved our understanding of the molecular mechanisms that regulate the ER stress in acute intestinal epithelial injuries such as necrotizing enterocolitis (NEC). We focus on the role of ER stress in influencing gut homeostasis in the neonatal period and on the potential therapeutic interventions to alleviate ER stress-induced cell death in NEC.
Collapse
Affiliation(s)
- Ethan Lau
- Division of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Carol Lee
- Division of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Bo Li
- Division of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Agostino Pierro
- Division of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
9
|
Heymans C, den Dulk M, Lenaerts K, Heij LR, de Lange IH, Hadfoune M, van Heugten C, Kramer BW, Jobe AH, Saito M, Kemp MW, Wolfs TGAM, van Gemert WG. Chorioamnionitis induces hepatic inflammation and time-dependent changes of the enterohepatic circulation in the ovine fetus. Sci Rep 2021; 11:10331. [PMID: 33990635 PMCID: PMC8121927 DOI: 10.1038/s41598-021-89542-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 04/19/2021] [Indexed: 11/10/2022] Open
Abstract
Chorioamnionitis, inflammation of fetal membranes, is an important cause of preterm birth and a risk factor for the development of adverse neonatal outcomes including sepsis and intestinal pathologies. Intestinal bile acids (BAs) accumulation and hepatic cytokine production are involved in adverse intestinal outcomes. These findings triggered us to study the liver and enterohepatic circulation (EHC) following intra-amniotic (IA) lipopolysaccharide (LPS) exposure. An ovine chorioamnionitis model was used in which circulatory cytokines and outcomes of the liver and EHC of preterm lambs were longitudinally assessed following IA administration of 10 mg LPS at 5, 12 or 24h or 2, 4, 8 or 15d before preterm birth. Hepatic inflammation was observed, characterized by increased hepatic cytokine mRNA levels (5h - 2d post IA LPS exposure) and increased erythropoietic clusters (at 8 and 15 days post IA LPS exposure). Besides, 12h after IA LPS exposure, plasma BA levels were increased, whereas gene expression levels of several hepatic BA transporters were decreased. Initial EHC alterations normalized over time. Concluding, IA LPS exposure induces significant time-dependent changes in the fetal liver and EHC. These chorioamnionitis induced changes have potential postnatal consequences and the duration of IA LPS exposure might be essential herein.
Collapse
Affiliation(s)
- Cathelijne Heymans
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200, MD, Maastricht, the Netherlands
| | - Marcel den Dulk
- Department of Surgery, Maastricht University Medical Center+, 6202, AZ, Maastricht, the Netherlands.,Department of Surgery, University Hospital Aachen, 52074, Aachen, Germany
| | - Kaatje Lenaerts
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200, MD, Maastricht, the Netherlands
| | - Lara R Heij
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200, MD, Maastricht, the Netherlands.,Department of Surgery, University Hospital Aachen, 52074, Aachen, Germany.,Department of Pathology, University Hospital Aachen, 52074, Aachen, Germany
| | - Ilse H de Lange
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200, MD, Maastricht, the Netherlands.,Department of Pediatrics, School for Oncology and Developmental Biology (GROW), Maastricht University, 6200, MD, Maastricht, the Netherlands
| | - Mhamed Hadfoune
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200, MD, Maastricht, the Netherlands
| | - Chantal van Heugten
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200, MD, Maastricht, the Netherlands
| | - Boris W Kramer
- Department of Pediatrics, School for Oncology and Developmental Biology (GROW), Maastricht University, 6200, MD, Maastricht, the Netherlands.,Department of Pediatrics, Maastricht University Medical Center +, 6202, AZ, Maastricht, the Netherlands
| | - Alan H Jobe
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, WA, 6009, Australia.,Division of Neonatology/Pulmonary Biology, Cincinnati Children's Hospital Medical Center, The Perinatal Institute, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Masatoshi Saito
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, WA, 6009, Australia.,Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, 980-8574, Japan
| | - Matthew W Kemp
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, WA, 6009, Australia.,School of Veterinary and Life Sciences, Murdoch University, Perth, WA, 6150, Australia
| | - Tim G A M Wolfs
- Department of Pediatrics, School for Oncology and Developmental Biology (GROW), Maastricht University, 6200, MD, Maastricht, the Netherlands. .,Department of Biomedical Engineering (BMT), School for Cardiovascular Diseases (CARIM), Maastricht University, Universiteitssingel 50, P.O. Box 5800, 6200, MD, Maastricht, the Netherlands.
| | - Wim G van Gemert
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200, MD, Maastricht, the Netherlands.,Department of Surgery, Maastricht University Medical Center+, 6202, AZ, Maastricht, the Netherlands.,Department of Surgery, University Hospital Aachen, 52074, Aachen, Germany
| |
Collapse
|