1
|
Kok M, Brodsky JL. The biogenesis of potassium transporters: implications of disease-associated mutations. Crit Rev Biochem Mol Biol 2024; 59:154-198. [PMID: 38946646 PMCID: PMC11444911 DOI: 10.1080/10409238.2024.2369986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/02/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024]
Abstract
The concentration of intracellular and extracellular potassium is tightly regulated due to the action of various ion transporters, channels, and pumps, which reside primarily in the kidney. Yet, potassium transporters and cotransporters play vital roles in all organs and cell types. Perhaps not surprisingly, defects in the biogenesis, function, and/or regulation of these proteins are linked to range of catastrophic human diseases, but to date, few drugs have been approved to treat these maladies. In this review, we discuss the structure, function, and activity of a group of potassium-chloride cotransporters, the KCCs, as well as the related sodium-potassium-chloride cotransporters, the NKCCs. Diseases associated with each of the four KCCs and two NKCCs are also discussed. Particular emphasis is placed on how these complex membrane proteins fold and mature in the endoplasmic reticulum, how non-native forms of the cotransporters are destroyed in the cell, and which cellular factors oversee their maturation and transport to the cell surface. When known, we also outline how the levels and activities of each cotransporter are regulated. Open questions in the field and avenues for future investigations are further outlined.
Collapse
Affiliation(s)
- Morgan Kok
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Laghmani K. Protein Quality Control of NKCC2 in Bartter Syndrome and Blood Pressure Regulation. Cells 2024; 13:818. [PMID: 38786040 PMCID: PMC11120568 DOI: 10.3390/cells13100818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Mutations in NKCC2 generate antenatal Bartter syndrome type 1 (type 1 BS), a life-threatening salt-losing nephropathy characterized by arterial hypotension, as well as electrolyte abnormalities. In contrast to the genetic inactivation of NKCC2, inappropriate increased NKCC2 activity has been associated with salt-sensitive hypertension. Given the importance of NKCC2 in salt-sensitive hypertension and the pathophysiology of prenatal BS, studying the molecular regulation of this Na-K-2Cl cotransporter has attracted great interest. Therefore, several studies have addressed various aspects of NKCC2 regulation, such as phosphorylation and post-Golgi trafficking. However, the regulation of this cotransporter at the pre-Golgi level remained unknown for years. Similar to several transmembrane proteins, export from the ER appears to be the rate-limiting step in the cotransporter's maturation and trafficking to the plasma membrane. The most compelling evidence comes from patients with type 5 BS, the most severe form of prenatal BS, in whom NKCC2 is not detectable in the apical membrane of thick ascending limb (TAL) cells due to ER retention and ER-associated degradation (ERAD) mechanisms. In addition, type 1 BS is one of the diseases linked to ERAD pathways. In recent years, several molecular determinants of NKCC2 export from the ER and protein quality control have been identified. The aim of this review is therefore to summarize recent data regarding the protein quality control of NKCC2 and to discuss their potential implications in BS and blood pressure regulation.
Collapse
Affiliation(s)
- Kamel Laghmani
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France;
- CNRS, ERL8228, F-75006 Paris, France
| |
Collapse
|
3
|
Frachon N, Demaretz S, Seaayfan E, Chelbi L, Bakhos-Douaihy D, Laghmani K. AUP1 Regulates the Endoplasmic Reticulum-Associated Degradation and Polyubiquitination of NKCC2. Cells 2024; 13:389. [PMID: 38474353 DOI: 10.3390/cells13050389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/30/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Inactivating mutations of kidney Na-K-2Cl cotransporter NKCC2 lead to antenatal Bartter syndrome (BS) type 1, a life-threatening salt-losing tubulopathy. We previously reported that this serious inherited renal disease is linked to the endoplasmic reticulum-associated degradation (ERAD) pathway. The purpose of this work is to characterize further the ERAD machinery of NKCC2. Here, we report the identification of ancient ubiquitous protein 1 (AUP1) as a novel interactor of NKCC2 ER-resident form in renal cells. AUP1 is also an interactor of the ER lectin OS9, a key player in the ERAD of NKCC2. Similar to OS9, AUP1 co-expression decreased the amount of total NKCC2 protein by enhancing the ER retention and associated protein degradation of the cotransporter. Blocking the ERAD pathway with the proteasome inhibitor MG132 or the α-mannosidase inhibitor kifunensine fully abolished the AUP1 effect on NKCC2. Importantly, AUP1 knock-down or inhibition by overexpressing its dominant negative form strikingly decreased NKCC2 polyubiquitination and increased the protein level of the cotransporter. Interestingly, AUP1 co-expression produced a more profound impact on NKCC2 folding mutants. Moreover, AUP1 also interacted with the related kidney cotransporter NCC and downregulated its expression, strongly indicating that AUP1 is a common regulator of sodium-dependent chloride cotransporters. In conclusion, our data reveal the presence of an AUP1-mediated pathway enhancing the polyubiquitination and ERAD of NKCC2. The characterization and selective regulation of specific ERAD constituents of NKCC2 and its pathogenic mutants could open new avenues in the therapeutic strategies for type 1 BS treatment.
Collapse
Affiliation(s)
- Nadia Frachon
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
- CNRS, ERL8228, F-75006 Paris, France
| | - Sylvie Demaretz
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
- CNRS, ERL8228, F-75006 Paris, France
| | - Elie Seaayfan
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
- CNRS, ERL8228, F-75006 Paris, France
| | - Lydia Chelbi
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
- CNRS, ERL8228, F-75006 Paris, France
| | - Dalal Bakhos-Douaihy
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
- CNRS, ERL8228, F-75006 Paris, France
| | - Kamel Laghmani
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
- CNRS, ERL8228, F-75006 Paris, France
| |
Collapse
|
4
|
Espinoza MF, Nguyen KK, Sycks MM, Lyu Z, Quanrud GM, Montoya MR, Genereux JC. Heat shock protein Hspa13 regulates endoplasmic reticulum and cytosolic proteostasis through modulation of protein translocation. J Biol Chem 2022; 298:102597. [PMID: 36244454 PMCID: PMC9691929 DOI: 10.1016/j.jbc.2022.102597] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
Most eukaryotic secretory proteins are cotranslationally translocated through Sec61 into the endoplasmic reticulum (ER). Because these proteins have evolved to fold in the ER, their mistargeting is associated with toxicity. Genetic experiments have implicated the ER heat shock protein 70 (Hsp70) Hspa13/STCH as involved in processing of nascent secretory proteins. Herein, we evaluate the role of Hspa13 in protein import and the maintenance of cellular proteostasis in human cells, primarily using the human embryonic kidney 293T cell line. We find that Hspa13 interacts primarily with the Sec61 translocon and its associated factors. Hspa13 overexpression inhibits translocation of the secreted protein transthyretin, leading to accumulation and aggregation of immature transthyretin in the cytosol. ATPase-inactive mutants of Hspa13 further inhibit translocation and maturation of secretory proteins. While Hspa13 overexpression inhibits cell growth and ER quality control, we demonstrate that HSPA13 knockout destabilizes proteostasis and increases sensitivity to ER disruption. Thus, we propose that Hspa13 regulates import through the translocon to maintain both ER and cytosolic protein homeostasis. The raw mass spectrometry data associated with this article have been deposited in the PRIDE archive and can be accessed at PXD033498.
Collapse
Affiliation(s)
- Mateo F Espinoza
- Graduate Program in Microbiology, University of California, Riverside, California, USA
| | - Khanh K Nguyen
- Department of Chemistry, University of California, Riverside, California, USA
| | - Melody M Sycks
- Department of Chemistry, University of California, Riverside, California, USA
| | - Ziqi Lyu
- Department of Chemistry, University of California, Riverside, California, USA
| | - Guy M Quanrud
- Department of Chemistry, University of California, Riverside, California, USA
| | - Maureen R Montoya
- Department of Chemistry, University of California, Riverside, California, USA
| | - Joseph C Genereux
- Graduate Program in Microbiology, University of California, Riverside, California, USA; Department of Chemistry, University of California, Riverside, California, USA.
| |
Collapse
|
5
|
Seaayfan E, Nasrah S, Quell L, Radi A, Kleim M, Schermuly RT, Weber S, Laghmani K, Kömhoff M. Reciprocal Regulation of MAGED2 and HIF-1α Augments Their Expression under Hypoxia: Role of cAMP and PKA Type II. Cells 2022; 11:3424. [PMID: 36359819 PMCID: PMC9655371 DOI: 10.3390/cells11213424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 09/10/2023] Open
Abstract
Hypoxia stabilizes the transcription factor HIF-1α, which promotes the transcription of many genes essential to adapt to reduced oxygen levels. Besides proline hydroxylation, expression of HIF-1α is also regulated by a range of other posttranslational modifications including phosphorylation by cAMP-dependent protein kinase A (PKA), which stabilizes HIF-1α. We recently demonstrated that MAGED2 is required for cAMP generation under hypoxia and proposed that this regulation may explain the transient nature of antenatal Bartter syndrome (aBS) due to MAGED2 mutations. Consequently, we sought to determine whether hypoxic induction of HIF-1α requires also MAGED2. In HEK293 and HeLa cells, MAGED2 knock-down impaired maximal induction of HIF-1α under physical hypoxia as evidenced by time-course experiments, which showed a signification reduction of HIF-1α upon MAGED2 depletion. Similarly, using cobalt chloride to induce HIF-1α, MAGED2 depletion impaired its appropriate induction. Given the known effect of the cAMP/PKA pathway on the hypoxic induction of HIF-1α, we sought to rescue impaired HIF-1α induction with isoproterenol and forskolin acting upstream and downstream of Gαs, respectively. Importantly, while forskolin induced HIF-1α above control levels in MAGED2-depleted cells, isoproterenol had no effect. To further delineate which PKA subtype is involved, we analyzed the effect of two PKA inhibitors and identified that PKA type II regulates HIF-1α. Interestingly, MAGED2 mRNA and protein were also increased under hypoxia by a cAMP mimetic. Moreover, MAGED2 protein expression also required HIF-1α. Thus, our data provide evidence for reciprocal regulation of MAGED2 and HIF-1α under hypoxia, revealing therefore a new regulatory mechanism that may further explain the transient nature of aBS caused by MAGED2 mutations.
Collapse
Affiliation(s)
- Elie Seaayfan
- University Children’s Hospital, Philipps University, 35043 Marburg, Germany
| | - Sadiq Nasrah
- University Children’s Hospital, Philipps University, 35043 Marburg, Germany
| | - Lea Quell
- University Children’s Hospital, Philipps University, 35043 Marburg, Germany
| | - Aline Radi
- University Children’s Hospital, Philipps University, 35043 Marburg, Germany
| | - Maja Kleim
- University Children’s Hospital, Philipps University, 35043 Marburg, Germany
| | - Ralph T. Schermuly
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig-University, 35392 Giessen, Germany
| | - Stefanie Weber
- University Children’s Hospital, Philipps University, 35043 Marburg, Germany
| | - Kamel Laghmani
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, CNRS, ERL8228, F-75006 Paris, France
| | - Martin Kömhoff
- University Children’s Hospital, Philipps University, 35043 Marburg, Germany
| |
Collapse
|
6
|
Bakhos-Douaihy D, Seaayfan E, Frachon N, Demaretz S, Kömhoff M, Laghmani K. Diacidic Motifs in the Carboxyl Terminus Are Required for ER Exit and Translocation to the Plasma Membrane of NKCC2. Int J Mol Sci 2022; 23:ijms232112761. [PMID: 36361553 PMCID: PMC9656672 DOI: 10.3390/ijms232112761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022] Open
Abstract
Mutations in the apical Na-K-2Cl co-transporter, NKCC2, cause type I Bartter syndrome (BS1), a life-threatening kidney disease. We have previously demonstrated that the BS1 variant Y998X, which deprives NKCC2 from its highly conserved dileucine-like motifs, compromises co-transporter surface delivery through ER retention mechanisms. However, whether these hydrophobic motifs are sufficient for anterograde trafficking of NKCC2 remains to be determined. Interestingly, sequence analysis of NKCC2 C-terminus revealed the presence of consensus di-acidic (D/E-X-D/E) motifs, 949EEE951 and 1019DAELE1023, located upstream and downstream of BS1 mutation Y998X, respectively. Di-acidic codes are involved in ER export of proteins through interaction with COPII budding machinery. Importantly, whereas mutating 949EEE951 motif to 949AEA951 had no effect on NKCC2 processing, mutating 1019DAE1021 to 1019AAA1021 heavily impaired complex-glycosylation and cell surface expression of the cotransporter in HEK293 and OKP cells. Most importantly, triple mutation of D, E and E residues of 1019DAELE1023 to 1019AAALA1023 almost completely abolished NKCC2 complex-glycosylation, suggesting that this mutant failed to exit the ER. Cycloheximide chase analysis demonstrated that the absence of the terminally glycosylated form of 1019AAALA1023 was caused by defects in NKCC2 maturation. Accordingly, co-immunolocalization experiments revealed that 1019AAALA1023 was trapped in the ER. Finally, overexpression of a dominant negative mutant of Sar1-GTPase abolished NKCC2 maturation and cell surface expression, clearly indicating that NKCC2 export from the ER is COPII-dependent. Hence, our data indicate that in addition to the di-leucine like motifs, NKCC2 uses di-acidic exit codes for export from the ER through the COPII-dependent pathway. We propose that any naturally occurring mutation of NKCC2 interfering with this pathway could form the molecular basis of BS1.
Collapse
Affiliation(s)
- Dalal Bakhos-Douaihy
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
- CNRS-ERL8228, F-75006 Paris, France
| | - Elie Seaayfan
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
- CNRS-ERL8228, F-75006 Paris, France
| | - Nadia Frachon
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
- CNRS-ERL8228, F-75006 Paris, France
| | - Sylvie Demaretz
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
- CNRS-ERL8228, F-75006 Paris, France
| | - Martin Kömhoff
- Division of Pediatric Nephrology and Transplantation, University Children’s Hospital, Philipps-University, 35043 Marburg, Germany
| | - Kamel Laghmani
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
- CNRS-ERL8228, F-75006 Paris, France
- Correspondence:
| |
Collapse
|
7
|
Demaretz S, Seaayfan E, Bakhos-Douaihy D, Frachon N, Kömhoff M, Laghmani K. Golgi Alpha1,2-Mannosidase IA Promotes Efficient Endoplasmic Reticulum-Associated Degradation of NKCC2. Cells 2021; 11:cells11010101. [PMID: 35011665 PMCID: PMC8750359 DOI: 10.3390/cells11010101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 12/18/2022] Open
Abstract
Mutations in the apically located kidney Na-K-2Cl cotransporter NKCC2 cause type I Bartter syndrome, a life-threatening kidney disorder. We previously showed that transport from the ER represents the limiting phase in NKCC2 journey to the cell surface. Yet very little is known about the ER quality control components specific to NKCC2 and its disease-causing mutants. Here, we report the identification of Golgi alpha1, 2-mannosidase IA (ManIA) as a novel binding partner of the immature form of NKCC2. ManIA interaction with NKCC2 takes place mainly at the cis-Golgi network. ManIA coexpression decreased total NKCC2 protein abundance whereas ManIA knock-down produced the opposite effect. Importantly, ManIA coexpression had a more profound effect on NKCC2 folding mutants. Cycloheximide chase assay showed that in cells overexpressing ManIA, NKCC2 stability and maturation are heavily hampered. Deleting the cytoplasmic region of ManIA attenuated its interaction with NKCC2 and inhibited its effect on the maturation of the cotransporter. ManIA-induced reductions in NKCC2 expression were offset by the proteasome inhibitor MG132. Likewise, kifunensine treatment greatly reduced ManIA effect, strongly suggesting that mannose trimming is involved in the enhanced ERAD of the cotransporter. Moreover, depriving ManIA of its catalytic domain fully abolished its effect on NKCC2. In summary, our data demonstrate the presence of a ManIA-mediated ERAD pathway in renal cells promoting retention and degradation of misfolded NKCC2 proteins. They suggest a model whereby Golgi ManIA contributes to ERAD of NKCC2, by promoting the retention, recycling, and ERAD of misfolded proteins that initially escape protein quality control surveillance within the ER.
Collapse
Affiliation(s)
- Sylvie Demaretz
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; (S.D.); (E.S.); (D.B.-D.); (N.F.)
- CNRS, ERL8228, F-75006 Paris, France
| | - Elie Seaayfan
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; (S.D.); (E.S.); (D.B.-D.); (N.F.)
- CNRS, ERL8228, F-75006 Paris, France
| | - Dalal Bakhos-Douaihy
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; (S.D.); (E.S.); (D.B.-D.); (N.F.)
- CNRS, ERL8228, F-75006 Paris, France
| | - Nadia Frachon
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; (S.D.); (E.S.); (D.B.-D.); (N.F.)
- CNRS, ERL8228, F-75006 Paris, France
| | - Martin Kömhoff
- Division of Pediatric Nephrology and Transplantation, University Children’s Hospital, Philipps-University, 35043 Marburg, Germany;
| | - Kamel Laghmani
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; (S.D.); (E.S.); (D.B.-D.); (N.F.)
- CNRS, ERL8228, F-75006 Paris, France
- Correspondence:
| |
Collapse
|
8
|
Nuñez-Gonzalez L, Carrera N, Garcia-Gonzalez MA. Molecular Basis, Diagnostic Challenges and Therapeutic Approaches of Bartter and Gitelman Syndromes: A Primer for Clinicians. Int J Mol Sci 2021; 22:11414. [PMID: 34768847 PMCID: PMC8584233 DOI: 10.3390/ijms222111414] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/18/2022] Open
Abstract
Gitelman and Bartter syndromes are rare inherited diseases that belong to the category of renal tubulopathies. The genes associated with these pathologies encode electrolyte transport proteins located in the nephron, particularly in the Distal Convoluted Tubule and Ascending Loop of Henle. Therefore, both syndromes are characterized by alterations in the secretion and reabsorption processes that occur in these regions. Patients suffer from deficiencies in the concentration of electrolytes in the blood and urine, which leads to different systemic consequences related to these salt-wasting processes. The main clinical features of both syndromes are hypokalemia, hypochloremia, metabolic alkalosis, hyperreninemia and hyperaldosteronism. Despite having a different molecular etiology, Gitelman and Bartter syndromes share a relevant number of clinical symptoms, and they have similar therapeutic approaches. The main basis of their treatment consists of electrolytes supplements accompanied by dietary changes. Specifically for Bartter syndrome, the use of non-steroidal anti-inflammatory drugs is also strongly supported. This review aims to address the latest diagnostic challenges and therapeutic approaches, as well as relevant recent research on the biology of the proteins involved in disease. Finally, we highlight several objectives to continue advancing in the characterization of both etiologies.
Collapse
Affiliation(s)
- Laura Nuñez-Gonzalez
- Grupo de Xenetica e Bioloxia do Desenvolvemento das Enfermidades Renais, Laboratorio de Nefroloxia (No. 11), Instituto de Investigacion Sanitaria de Santiago (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain;
- Grupo de Medicina Xenomica, Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
| | - Noa Carrera
- Grupo de Xenetica e Bioloxia do Desenvolvemento das Enfermidades Renais, Laboratorio de Nefroloxia (No. 11), Instituto de Investigacion Sanitaria de Santiago (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain;
- Grupo de Medicina Xenomica, Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
- RedInRen (Red en Investigación Renal) RETIC (Redes Temáticas de Investigación Cooperativa en Salud), ISCIII (Instituto de Salud Carlos III), 28029 Madrid, Spain
| | - Miguel A. Garcia-Gonzalez
- Grupo de Xenetica e Bioloxia do Desenvolvemento das Enfermidades Renais, Laboratorio de Nefroloxia (No. 11), Instituto de Investigacion Sanitaria de Santiago (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain;
- Grupo de Medicina Xenomica, Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
- RedInRen (Red en Investigación Renal) RETIC (Redes Temáticas de Investigación Cooperativa en Salud), ISCIII (Instituto de Salud Carlos III), 28029 Madrid, Spain
- Fundación Pública Galega de Medicina Xenomica—SERGAS, Complexo Hospitalario de Santiago de Compotela (CHUS), 15706 Santiago de Compostela, Spain
| |
Collapse
|
9
|
Shaukat I, Bakhos-Douaihy D, Zhu Y, Seaayfan E, Demaretz S, Frachon N, Weber S, Kömhoff M, Vargas-Poussou R, Laghmani K. New insights into the role of endoplasmic reticulum-associated degradation in Bartter Syndrome Type 1. Hum Mutat 2021; 42:947-968. [PMID: 33973684 DOI: 10.1002/humu.24217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/12/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
Mutations in Na-K-2Cl co-transporter, NKCC2, lead to type I Bartter syndrome (BS1), a life-threatening kidney disease. Yet, our knowledge of the molecular regulation of NKCC2 mutants remains poor. Here, we aimed to identify the molecular pathogenic mechanisms of one novel and three previously reported missense NKCC2 mutations. Co-immunolocalization studies revealed that all NKCC2 variants are not functional because they are not expressed at the cell surface due to retention in the endoplasmic reticulum (ER). Cycloheximide chase assays together with treatment by protein degradation and mannose trimming inhibitors demonstrated that the defect in NKCC2 maturation arises from ER retention and associated degradation (ERAD). Small interfering RNA (siRNA) knock-down experiments revealed that the ER lectin OS9 is involved in the ERAD of NKCC2 mutants. 4-phenyl butyric acid (4-PBA) treatment mimicked OS9 knock-down effect on NKCC2 mutants by stabilizing their immature forms. Importantly, out of the four studied mutants, only one showed an increased protein maturation upon treatment with glycerol. In summary, our study reveals that BS1 is among diseases linked to the ERAD pathway. Moreover, our data open the possibility that maturation of some ER retained NKCC2 variants is correctable by chemical chaperones offering, therefore, promising avenues in elucidating the molecular pathways governing the ERAD of NKCC2 folding mutants.
Collapse
Affiliation(s)
- Irfan Shaukat
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris, France.,CNRS, ERL8228, Paris, France
| | - Dalal Bakhos-Douaihy
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris, France.,CNRS, ERL8228, Paris, France
| | - Yingying Zhu
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris, France.,CNRS, ERL8228, Paris, France
| | - Elie Seaayfan
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris, France.,CNRS, ERL8228, Paris, France
| | - Sylvie Demaretz
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris, France.,CNRS, ERL8228, Paris, France
| | - Nadia Frachon
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris, France.,CNRS, ERL8228, Paris, France
| | - Stefanie Weber
- Division of Pediatric Nephrology and Transplantation, University Children's Hospital, Philipps-University, Marburg, Germany
| | - Martin Kömhoff
- Division of Pediatric Nephrology and Transplantation, University Children's Hospital, Philipps-University, Marburg, Germany
| | | | - Kamel Laghmani
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris, France.,CNRS, ERL8228, Paris, France
| |
Collapse
|