1
|
Lu F, Zhang S, Dong S, Wang M, Pang K, Zhao Y, Huang J, Kang J, Liu N, Zhang X, Zhao D, Lu F, Zhang W. Exogenous hydrogen sulfide enhances myogenic differentiation of C2C12 myoblasts under high palmitate stress. Heliyon 2024; 10:e38661. [PMID: 39416846 PMCID: PMC11481675 DOI: 10.1016/j.heliyon.2024.e38661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/03/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Skeletal muscle atrophy was one of main complications of type 2 diabetes mellitus. Hydrogen sulfide (H2S) is involved in various physiological functions, such as anti-hypertension and anti-oxidant. Skeletal muscle atrophy caused by type 2 diabetes could lead to the regeneration of muscle fibers. Wnt signaling pathway plays a crucial important role in this process. H2S maybe regulate the Wnt signaling pathway to alleviate skeletal muscle atrophy, however, this role has not been clarified. The aim of this study is to investigate the potential regulatory role of H2S in the Wnt signaling pathway. C2C12 myoblasts treated with 500 μmol palmitate as an in vitro model. Western blot was used to detect the levels of CSE, PKM1, β-catenin, MuRF1, MYOG, MYF6 and MYOD1. In addition, MuRF1 was mutated at Cys44 and MuRF1 S-sulfhydration was detected by biotin switch assay. The interaction between PKM1 and MuRF1 was assessed via Co-immunoprecipitation. Differentiation of C2C12 myoblasts was evaluated using LAMININ staining. These data showed the levels of CSE, β-catenin, PKM1, MYOG, MYF6 and MYOD1 were decreased in pal group, compared with control and pal + NaHS groups. MuRF1 Cys44 mutants increased the protein levels of β-catenin, MYOG, MYF6 and MYOD1 in pal group. Our results suggest that H2S regulates the S-sulfhydration levels of MuRF1 at Cys44, influencing the ubiquitination levels of PKM1 and ultimately promoting myoblast differentiation.
Collapse
Affiliation(s)
- Fangping Lu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
- Department of Pathophysiology, Mudanjiang Medical University, Mudanjiang, China
| | - Shiwu Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Shiyun Dong
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Mengyi Wang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Kemiao Pang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Yajun Zhao
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Jiayi Huang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Jiaxin Kang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Ning Liu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Xueya Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Dechao Zhao
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fanghao Lu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Weihua Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| |
Collapse
|
2
|
Alves PKN, Cruz A, Adams V, Moriscot AS, Labeit S. Small-molecule mediated MuRF1 inhibition protects from doxorubicin-induced cardiac atrophy and contractile dysfunction. Eur J Pharmacol 2024; 984:177027. [PMID: 39366504 DOI: 10.1016/j.ejphar.2024.177027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/29/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Cancer chemotherapy induces cell stress in rapidly dividing cancer cells to trigger their growth arrest and apoptosis. However, adverse effects related to cardiotoxicity underpinned by a limited regenerative potential of the heart limits clinical application: In particular, chemotherapy with doxorubicin (DOXO) causes acute heart injury that can transition to persisting cardiomyopathy (DOXO-CM). Here, we tested if MuRF1 inhibition ("MuRFi") was able to attenuate DOXO-CM. To mimic DOXO chemotherapy, we treated mice over four weeks with five DOXO injections, resulting in a cumulative dosage of 25 mg/kg. At day 28, mice had lower body and heart weights, reduced cardiac cross-sectional myofibrillar areas (CSAs), and disturbed functional ejection fractions (EFs) and fractional shortenings (FS) as indicated by echocardiography (ECHO). In contrast, mice with a 1 g/kg Myomed#205 spiked diet, a previously described experimental MuRFi therapy, showed lower DOXO-CM at day 28, and also reduced acute DOXO cardiac injury at day 7 (single DOXO dose; 15 mg/kg). Underlying molecular signatures using Western blot (WB) assays showed at day 28 reduced phospho-AKT (AKTp) and phospo-4EBP1 (4 EBP1p) levels following DOXO that were normalized following MuRFi treatment. Taken together, our data suggest that MuRFi treatment is suitable to attenuate DOXO-CM by preserving AKTp and 4 EBP1p levels in DOXO stressed cardiomyocytes, thereby supporting de novo protein translation and cardiomyocyte survival under translational arrest stress.
Collapse
Affiliation(s)
- Paula K N Alves
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil.
| | - André Cruz
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil.
| | - Volker Adams
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany.
| | - Anselmo S Moriscot
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil.
| | - Siegfried Labeit
- DZHK Partnersite Mannheim-Heidelberg, Universitätsmedizin Mannheim, Mannheim 68169, Germany.
| |
Collapse
|
3
|
Bolado-Carrancio A, Tapia O, Rodríguez-Rey JC. Ubiquitination Insight from Spinal Muscular Atrophy-From Pathogenesis to Therapy: A Muscle Perspective. Int J Mol Sci 2024; 25:8800. [PMID: 39201486 PMCID: PMC11354275 DOI: 10.3390/ijms25168800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Spinal muscular atrophy (SMA) is one of the most frequent causes of death in childhood. The disease's molecular basis is deletion or mutations in the SMN1 gene, which produces reduced survival motor neuron protein (SMN) levels. As a result, there is spinal motor neuron degeneration and a large increase in muscle atrophy, in which the ubiquitin-proteasome system (UPS) plays a significant role. In humans, a paralogue of SMN1, SMN2 encodes the truncated protein SMNΔ7. Structural differences between SMN and SMNΔ7 affect the interaction of the proteins with UPS and decrease the stability of the truncated protein. SMN loss affects the general ubiquitination process by lowering the levels of UBA1, one of the main enzymes in the ubiquitination process. We discuss how SMN loss affects both SMN stability and the general ubiquitination process, and how the proteins involved in ubiquitination could be used as future targets for SMA treatment.
Collapse
Affiliation(s)
- Alfonso Bolado-Carrancio
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria-and Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain;
| | - Olga Tapia
- Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas, Universidad de la Laguna, 38200 La Laguna, Spain
| | - José C. Rodríguez-Rey
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria-and Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain;
| |
Collapse
|
4
|
Chen J, Feng X, Zhou X, Li Y. Role of the tripartite motif-containing (TRIM) family of proteins in insulin resistance and related disorders. Diabetes Obes Metab 2024; 26:3-15. [PMID: 37726973 DOI: 10.1111/dom.15294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/27/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023]
Abstract
Emerging evidence suggests that the ubiquitin-mediated degradation of insulin-signalling-related proteins may be involved in the development of insulin resistance and its related disorders. Tripartite motif-containing (TRIM) proteins, a superfamily belonging to the E3 ubiquitin ligases, are capable of controlling protein levels and function by ubiquitination, which is essential for the modulation of insulin sensitivity. Recent research has indicated that some of these TRIMs act as key regulatory factors of metabolic disorders such as type 2 diabetes mellitus, obesity, nonalcoholic fatty liver disease, and atherosclerosis. This review provides a comprehensive overview of the latest evidence linking TRIMs to the regulation of insulin resistance and its related disorders, their roles in regulating multiple signalling pathways or cellular processes, such as insulin signalling pathways, peroxisome proliferator-activated receptor signalling pathways, glucose and lipid metabolism, the inflammatory response, and cell cycle control, as well as recent advances in the development of TRIM-targeted drugs.
Collapse
Affiliation(s)
- Jianrong Chen
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Centre for Endocrine and Metabolic disease, Nanchang, China
- Jiangxi Branch of National Clinical Research Centre for Metabolic disease, Nanchang, China
| | - Xianjie Feng
- Evidence-based Medicine Research Centre, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xu Zhou
- Evidence-based Medicine Research Centre, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yong Li
- Department of Anaesthesiology, Medical Centre of Anaesthesiology and Pain, First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Chen Q, Xie C, Tang K, Luo M, Zhang Z, Jin Y, Liu Y, Zhou L, Kong Y. The E3 ligase Trim63 promotes podocyte injury and proteinuria by targeting PPARα to inhibit fatty acid oxidation. Free Radic Biol Med 2023; 209:40-54. [PMID: 37793501 DOI: 10.1016/j.freeradbiomed.2023.09.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/21/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023]
Abstract
Podocyte injury is a hallmark of glomerular disease and one of the leading causes of chronic kidney disease (CKD). Peroxisome proliferator-activated receptor α (PPARα) plays a key role in podocyte fatty acid oxidation (FAO). However, the underlying regulatory mechanisms remain unresolved. Trim63 is an E3 ubiquitin ligase that has been shown to inhibit PPARα activity; however, its role in fatty acid metabolism in the kidney has not been elucidated to date. In this study, we investigated the effects of overexpression and knockdown of Trim63 in Adriamycin (ADR)-induced nephropathy and diabetic nephropathy models and a podocyte cell line. In both rodents and human patients with proteinuric CKD, Trim63 was upregulated, particularly in the podocytes of injured glomeruli. In the ADR-induced nephropathy model, ectopic Trim63 application aggravated FAO deficiency and mitochondrial dysfunction and triggered intense lipid deposition, podocyte injury, and proteinuria. Notably, Trim63 inhibition alleviated FAO deficiency and mitochondrial dysfunction, and markedly restored podocyte injury and renal fibrosis in ADR-induced and diabetic nephropathy (DN) models. Additionally, Trim63 was observed to mediate PPARα ubiquitination and degradation, leading to podocyte injury. We demonstrate the pathological role of Trim63, which was previously unrecognized in kidney tissue, in FAO deficiency and podocyte injury. Targeting Trim63 may represent a viable therapeutic strategy for podocyte injury and proteinuria.
Collapse
Affiliation(s)
- Qiyan Chen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Division of Nephrology, The First People's Hospital of Foshan, Foshan, China
| | - Chao Xie
- Division of Nephrology, The First People's Hospital of Foshan, Foshan, China
| | - Kaiyue Tang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mujin Luo
- Division of Nephrology, The First People's Hospital of Foshan, Foshan, China
| | - Zhe Zhang
- Division of Nephrology, The First People's Hospital of Foshan, Foshan, China
| | - Yabin Jin
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Yaozhong Kong
- Division of Nephrology, The First People's Hospital of Foshan, Foshan, China.
| |
Collapse
|
6
|
Cao G, Lin M, Gu W, Su Z, Duan Y, Song W, Liu H, Zhang F. The rules and regulatory mechanisms of FOXO3 on inflammation, metabolism, cell death and aging in hosts. Life Sci 2023:121877. [PMID: 37352918 DOI: 10.1016/j.lfs.2023.121877] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
The FOX family of transcription factors was originally identified in 1989, comprising the FOXA to FOXS subfamilies. FOXO3, a well-known member of the FOXO subfamily, is widely expressed in various human organs and tissues, with higher expression levels in the ovary, skeletal muscle, heart, and spleen. The biological effects of FOXO3 are mostly determined by its phosphorylation, which occurs in the nucleus or cytoplasm. Phosphorylation of FOXO3 in the nucleus can promote its translocation into the cytoplasm and inhibit its transcriptional activity. In contrast, phosphorylation of FOXO3 in the cytoplasm leads to its translocation into the nucleus and exerts regulatory effects on biological processes, such as inflammation, aerobic glycolysis, autophagy, apoptosis, oxidative stress, cell cycle arrest and DNA damage repair. Additionally, FOXO3 isoform 2 acts as an important suppressor of osteoclast differentiation. FOXO3 can also interfere with the development of various diseases, including inhibiting the proliferation and invasion of tumor cells, blocking the production of inflammatory factors in autoimmune diseases, and inhibiting β-amyloid deposition in Alzheimer's disease. Furthermore, FOXO3 slows down the aging process and exerts anti-aging effects by delaying telomere attrition, promoting cell self-renewal, and maintaining genomic stability. This review suggests that changes in the levels and post-translational modifications of FOXO3 protein can maintain organismal homeostasis and improve age-related diseases, thus counteracting aging. Moreover, this may indicate that alterations in FOXO3 protein levels are also crucial for longevity, offering new perspectives for therapeutic strategies targeting FOXO3.
Collapse
Affiliation(s)
- Guoding Cao
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China
| | - Monan Lin
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China
| | - Wei Gu
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China
| | - Zaiyu Su
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China
| | - Yagan Duan
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China
| | - Wuqi Song
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China
| | - Hailiang Liu
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China.
| | - Fengmin Zhang
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China.
| |
Collapse
|
7
|
Li J, Hu Y, Li J, Wang H, Wu H, Zhao C, Tan T, Zhang L, Zhu D, Liu X, Li N, Hu X. Loss of MuRF1 in Duroc pigs promotes skeletal muscle hypertrophy. Transgenic Res 2023; 32:153-167. [PMID: 37071377 DOI: 10.1007/s11248-023-00342-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/03/2023] [Indexed: 04/19/2023]
Abstract
Muscle mass development depends on increased protein synthesis and reduced muscle protein degradation. Muscle ring-finger protein-1 (MuRF1) plays a key role in controlling muscle atrophy. Its E3 ubiquitin ligase activity recognizes and degrades skeletal muscle proteins through the ubiquitin-proteasome system. The loss of Murf1, which encodes MuRF1, in mice leads to the accumulation of skeletal muscle proteins and alleviation of muscle atrophy. However, the function of Murf1 in agricultural animals remains unclear. Herein, we bred F1 generation Murf1+/- and F2 generation Murf1-/- Duroc pigs from F0 Murf1-/- pigs to investigate the effect of Murf1 knockout on skeletal muscle development. We found that the Murf1+/- pigs retained normal levels of muscle growth and reproduction, and their percentage of lean meat increased by 6% compared to that of the wild type (WT) pigs. Furthermore, the meat color, pH, water-holding capacity, and tenderness of the Murf1+/- pigs were similar to those of the WT pigs. The drip loss rate and intramuscular fat decreased slightly in the Murf1+/- pigs. However, the cross-sectional area of the myofibers in the longissimus dorsi increased in the adult Murf1+/- pigs. The skeletal muscle proteins MYBPC3 and actin, which are targeted by MuRF1, accumulated in the Murf1+/- and Murf1-/- pigs. Our findings show that inhibiting muscle protein degradation in MuRF1-deficient Duroc pigs increases the size of their myofibers and their percentage of lean meat without influencing their growth or pork quality. Our study demonstrates that Murf1 is a target gene for promoting skeletal muscle hypertrophy in pig breeding.
Collapse
Affiliation(s)
- Jiaping Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Yiqing Hu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
- National Center for Cardiovascular Diseases, Beijing, People's Republic of China
- National Institute of Biological Sciences, Beijing, People's Republic of China
| | - Jiajia Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Haitao Wang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Hanyu Wu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Chengcheng Zhao
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Tan Tan
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
- Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
| | - Li Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, 225300, China
| | - Di Zhu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Xu Liu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Ning Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China.
| | - Xiaoxiang Hu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China.
| |
Collapse
|
8
|
Ribeiro F, Alves PKN, Bechara LRG, Ferreira JCB, Labeit S, Moriscot AS. Small-Molecule Inhibition of MuRF1 Prevents Early Disuse-Induced Diaphragmatic Dysfunction and Atrophy. Int J Mol Sci 2023; 24:ijms24043637. [PMID: 36835047 PMCID: PMC9965746 DOI: 10.3390/ijms24043637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
In clinical conditions such as diaphragm paralysis or mechanical ventilation, disuse-induced diaphragmatic dysfunction (DIDD) is a condition that poses a threat to life. MuRF1 is a key E3-ligase involved in regulating skeletal muscle mass, function, and metabolism, which contributes to the onset of DIDD. We investigated if the small-molecule mediated inhibition of MuRF1 activity (MyoMed-205) protects against early DIDD after 12 h of unilateral diaphragm denervation. Wistar rats were used in this study to determine the compound's acute toxicity and optimal dosage. For potential DIDD treatment efficacy, diaphragm contractile function and fiber cross-sectional area (CSA) were evaluated. Western blotting investigated potential mechanisms underlying MyoMed-205's effects in early DIDD. Our results indicate 50 mg/kg bw MyoMed-205 as a suitable dosage to prevent early diaphragmatic contractile dysfunction and atrophy following 12 h of denervation without detectable signs of acute toxicity. Mechanistically, treatment did not affect disuse-induced oxidative stress (4-HNE) increase, whereas phosphorylation of (ser632) HDAC4 was normalized. MyoMed-205 also mitigated FoxO1 activation, inhibited MuRF2, and increased phospho (ser473) Akt protein levels. These findings may suggest that MuRF1 activity significantly contributes to early DIDD pathophysiology. Novel strategies targeting MuRF1 (e.g., MyoMed-205) have potential therapeutic applications for treating early DIDD.
Collapse
Affiliation(s)
- Fernando Ribeiro
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Paula K. N. Alves
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Luiz R. G. Bechara
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Julio C. B. Ferreira
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Siegfried Labeit
- DZHK Partner Site Mannheim-Heidelberg, Medical Faculty Mannheim, University of Heidelberg, 68169 Mannheim, Germany
- Myomedix GmbH, 69151 Neckargemünd, Germany
| | - Anselmo S. Moriscot
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
- Correspondence: ; Tel.: +55-11-3091-0946
| |
Collapse
|
9
|
Pan T, Wang Y, Ye L, Wang Q, Yin F, Qin C. EFFECTS OF CONTUSION AND EXHAUSTIVE EXERCISE ON MURF1 AND MAFBX IN THE SKELETAL MUSCLE OF RATS. REV BRAS MED ESPORTE 2023. [DOI: 10.1590/1517-8692202329012021_0396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Objective To study the effects of contusion and exhaustive exercise on the expression of degradation-related factors MuRF1 and MAFbx in the skeletal muscle of rats and describe the repair mechanism of skeletal muscle injury. Methods Forty-two male SD rats were randomly divided into 7 groups. The rats in each group were killed at different time points (0h, 24h, 48h) after exhaustive exercise (E0, E24, E48) and contusion (D0, D24, D48), respectively, and in the resting state in control group (C). The right gastrocnemius muscles were resected and divided into two parts, one for the mRNAs of MuRF1 and MAFbx by real-time PCR, and the other for protein measurement by Western blotting. Results Compared with the control group, the MuRF1 mRNA and protein expression of the skeletal muscle in the E0 group was markedly increased (P <0.05) and followed by a downward trend in E24 the E48 groups. On the other hand, MuRF1 mRNA expression of the skeletal muscle in the D24 group was significantly upregulated (P <0.01), then decreased in the D48 group (P <0.01). Meanwhile, compared with the C group, MAFbx mRNA gene expression continued to be upregulated in D24 and D48 (P <0.05), but decreased in E24 and E48 (p<0.01). On the other hand, the NF-κB protein contents of the skeletal muscle in the D0, D24, and D48 groups, as well as in the E48 group, were markedly downregulated (P <0.05), and the one in E48 was also remarkably downregulated (P <0.05). Conclusion NF-κB may negatively regulate the process of protein degradation by the NF-κB / MuRF1 signal pathway. Level of evidence III; Therapeutic studies investigating the results of treatment.
Collapse
|
10
|
Skeletal muscle mitochondrial remodeling in heart failure: An update on mechanisms and therapeutic opportunities. Biomed Pharmacother 2022; 155:113833. [DOI: 10.1016/j.biopha.2022.113833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022] Open
|
11
|
Wang W, Shi B, Cong R, Hao M, Peng Y, Yang H, Song J, Feng D, Zhang N, Li D. RING-finger E3 ligases regulatory network in PI3K/AKT-mediated glucose metabolism. Cell Death Dis 2022; 8:372. [PMID: 36002460 PMCID: PMC9402544 DOI: 10.1038/s41420-022-01162-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 12/21/2022]
Abstract
The phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway plays an essential role in glucose metabolism, promoting glycolysis and resisting gluconeogenesis. PI3K/AKT signaling can directly alter glucose metabolism by phosphorylating several metabolic enzymes or regulators of nutrient transport. It can indirectly promote sustained aerobic glycolysis by increasing glucose transporters and glycolytic enzymes, which are mediated by downstream transcription factors. E3 ubiquitin ligase RING-finger proteins are mediators of protein post-translational modifications and include the cullin-RING ligase complexes, the tumor necrosis factor receptor-associated family, the tripartite motif family and etc. Some members of the RING family play critical roles in regulating cell signaling and are involved in the development and progression of various metabolic diseases, such as cancer, diabetes, and dyslipidemia. And with the progression of modern research, as a negative or active regulator, the RING-finger adaptor has been found to play an indispensable role in PI3K/AKT signaling. However, no reviews have comprehensively clarified the role of RING-finger E3 ligases in PI3K/AKT-mediated glucose metabolism. Therefore, in this review, we focus on the regulation and function of RING ligases in PI3K/AKT-mediated glucose metabolism to establish new insights into the prevention and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Wenke Wang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bei Shi
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Ruiting Cong
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mingjun Hao
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Peng
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hongyue Yang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiahui Song
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Di Feng
- Education Center for Clinical Skill Practice, China Medical University, Shenyang, China
| | - Naijin Zhang
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Da Li
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
12
|
Removal of MuRF1 Increases Muscle Mass in Nemaline Myopathy Models, but Does Not Provide Functional Benefits. Int J Mol Sci 2022; 23:ijms23158113. [PMID: 35897687 PMCID: PMC9331820 DOI: 10.3390/ijms23158113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
Nemaline myopathy (NM) is characterized by skeletal muscle weakness and atrophy. No curative treatments exist for this debilitating disease. NM is caused by mutations in proteins involved in thin-filament function, turnover, and maintenance. Mutations in nebulin, encoded by NEB, are the most common cause. Skeletal muscle atrophy is tightly linked to upregulation of MuRF1, an E3 ligase, that targets proteins for proteasome degradation. Here, we report a large increase in MuRF1 protein levels in both patients with nebulin-based NM, also named NEM2, and in mouse models of the disease. We hypothesized that knocking out MuRF1 in animal models of NM with muscle atrophy would ameliorate the muscle deficits. To test this, we crossed MuRF1 KO mice with two NEM2 mouse models, one with the typical form and the other with the severe form. The crosses were viable, and muscles were studied in mice at 3 months of life. Ultrastructural examination of gastrocnemius muscle lacking MuRF1 and with severe NM revealed a small increase in vacuoles, but no significant change in the myofibrillar fractional area. MuRF1 deficiency led to increased weights of various muscle types in the NM models. However, this increase in muscle size was not associated with increased in vivo or in vitro force production. We conclude that knocking out MuRF1 in NEM2 mice increases muscle size, but does not improve muscle function.
Collapse
|
13
|
Adams V, Schauer A, Augstein A, Kirchhoff V, Draskowski R, Jannasch A, Goto K, Lyall G, Männel A, Barthel P, Mangner N, Winzer EB, Linke A, Labeit S. Targeting MuRF1 by small molecules in a HFpEF rat model improves myocardial diastolic function and skeletal muscle contractility. J Cachexia Sarcopenia Muscle 2022; 13:1565-1581. [PMID: 35301823 PMCID: PMC9178400 DOI: 10.1002/jcsm.12968] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND About half of heart failure (HF) patients, while having preserved left ventricular function, suffer from diastolic dysfunction (so-called HFpEF). No specific therapeutics are available for HFpEF in contrast to HF where reduced ejection fractions (HFrEF) can be treated pharmacologically. Myocardial titin filament stiffening, endothelial dysfunction, and skeletal muscle (SKM) myopathy are suspected to contribute to HFpEF genesis. We previously described small molecules interfering with MuRF1 target recognition thereby attenuating SKM myopathy and dysfunction in HFrEF animal models. The aim of the present study was to test the efficacy of one small molecule (MyoMed-205) in HFpEF and to describe molecular changes elicited by MyoMed-205. METHODS Twenty-week-old female obese ZSF1 rats received the MuRF1 inhibitor MyoMed-205 for 12 weeks; a comparison was made to age-matched untreated ZSF1-lean (healthy) and obese rats as controls. LV (left ventricle) function was assessed by echocardiography and by invasive haemodynamic measurements until week 32. At week 32, SKM and endothelial functions were measured and tissues collected for molecular analyses. Proteome-wide analysis followed by WBs and RT-PCR was applied to identify specific genes and affected molecular pathways. MuRF1 knockout mice (MuRF1-KO) SKM tissues were included to validate MuRF1-specificity. RESULTS By week 32, untreated obese rats had normal LV ejection fraction but augmented E/e' ratios and increased end diastolic pressure and myocardial fibrosis, all typical features of HFpEF. Furthermore, SKM myopathy (both atrophy and force loss) and endothelial dysfunction were detected. In contrast, MyoMed-205 treated rats had markedly improved diastolic function, less myocardial fibrosis, reduced SKM myopathy, and increased SKM function. SKM extracts from MyoMed-205 treated rats had reduced MuRF1 content and lowered total muscle protein ubiquitination. In addition, proteomic profiling identified eight proteins to respond specifically to MyoMed-205 treatment. Five out of these eight proteins are involved in mitochondrial metabolism, dynamics, or autophagy. Consistent with the mitochondria being a MyoMed-205 target, the synthesis of mitochondrial respiratory chain complexes I + II was increased in treated rats. MuRF1-KO SKM controls also had elevated mitochondrial complex I and II activities, also suggesting mitochondrial activity regulation by MuRF1. CONCLUSIONS MyoMed-205 improved myocardial diastolic function and prevented SKM atrophy/function in the ZSF1 animal model of HFpEF. Mechanistically, SKM benefited from an attenuated ubiquitin proteasome system and augmented synthesis/activity of proteins of the mitochondrial respiratory chain while the myocardium seemed to benefit from reduced titin modifications and fibrosis.
Collapse
Affiliation(s)
- Volker Adams
- Laboratory of Molecular and Experimental CardiologyTU Dresden, Heart Center DresdenDresdenGermany
- Dresden Cardiovascular Research Institute and Core Laboratories GmbHDresdenGermany
| | - Antje Schauer
- Laboratory of Molecular and Experimental CardiologyTU Dresden, Heart Center DresdenDresdenGermany
| | - Antje Augstein
- Laboratory of Molecular and Experimental CardiologyTU Dresden, Heart Center DresdenDresdenGermany
| | - Virginia Kirchhoff
- Laboratory of Molecular and Experimental CardiologyTU Dresden, Heart Center DresdenDresdenGermany
| | - Runa Draskowski
- Laboratory of Molecular and Experimental CardiologyTU Dresden, Heart Center DresdenDresdenGermany
| | - Anett Jannasch
- Department of Cardiac SurgeryTU Dresden, Heart Center DresdenDresdenGermany
| | - Keita Goto
- Laboratory of Molecular and Experimental CardiologyTU Dresden, Heart Center DresdenDresdenGermany
| | - Gemma Lyall
- School of Biomedical SciencesUniversity of LeedsLeedsUK
| | - Anita Männel
- Laboratory of Molecular and Experimental CardiologyTU Dresden, Heart Center DresdenDresdenGermany
| | - Peggy Barthel
- Laboratory of Molecular and Experimental CardiologyTU Dresden, Heart Center DresdenDresdenGermany
| | - Norman Mangner
- Laboratory of Molecular and Experimental CardiologyTU Dresden, Heart Center DresdenDresdenGermany
| | - Ephraim B. Winzer
- Laboratory of Molecular and Experimental CardiologyTU Dresden, Heart Center DresdenDresdenGermany
| | - Axel Linke
- Laboratory of Molecular and Experimental CardiologyTU Dresden, Heart Center DresdenDresdenGermany
- Dresden Cardiovascular Research Institute and Core Laboratories GmbHDresdenGermany
| | - Siegfried Labeit
- Myomedix GmbHNeckargemündGermany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/MannheimMannheimGermany
| |
Collapse
|