3
|
Zhu Y, Feng M, Wang B, Zheng Y, Jiang D, Zhao L, Mamun MAA, Kang H, Nie H, Zhang X, Guo N, Qin S, Wang N, Liu H, Gao Y. New insights into the non-enzymatic function of HDAC6. Biomed Pharmacother 2023; 161:114438. [PMID: 37002569 DOI: 10.1016/j.biopha.2023.114438] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/11/2023] Open
Abstract
Histone deacetylase 6 (HDAC6) is a class IIb histone deacetylase that contains two catalytic domains and a zinc-finger ubiquitin binding domain (ZnF-UBP) domain. The deacetylation function of HDAC6 has been extensively studied with common substrates such as α-tubulin, cortactin, and Hsp90. Apart from its deacetylase activity, HDAC6 ZnF-UBP binds to unanchored ubiquitin of specific sequences and serves as a carrier for transporting aggregated proteins. As a result, aggresomes are formed and protein degradation is facilitated by the autophagy-lysosome pathway. This HDAC6-dependent microtubule transport can be used by cells to assemble and activate inflammasomes, which play a critical role in immune regulation. Even viruses can benefit from the carrier of HDAC6 to assist in uncoating their surfaces during their infection cycle. However, HDAC6 is also capable of blocking virus invasion and replication in a non-enzymatic manner. Given these non-enzymatic functions, HDAC6 is closely associated with various diseases, including neurodegeneration, inflammasome-associated diseases, cancer, and viral infections. Small molecule inhibitors targeting the ubiquitin binding pocket of HDAC6 have been investigated. In this review, we focus on mechanisms in non-enzymatic functions of HDAC6 and discuss the rationality and prospects of therapeutic strategies by intervening the activation of HDAC6 ZnF-UBP in concrete diseases.
Collapse
Affiliation(s)
- Yuanzai Zhu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Mengkai Feng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Bo Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
| | - Yichao Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Dandan Jiang
- Department of Pharmacy, People's Hospital of Henan Province, Zhengzhou University, Henan 450001, China
| | - Lijuan Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - M A A Mamun
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Huiqin Kang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Haiqian Nie
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Xiya Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ningjie Guo
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Shangshang Qin
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ning Wang
- The School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hongmin Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Ya Gao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| |
Collapse
|
4
|
Wu CP, Hung CY, Hsieh YJ, Murakami M, Huang YH, Su TY, Hung TH, Yu JS, Wu YS, Ambudkar SV. ABCB1 and ABCG2 Overexpression Mediates Resistance to the Phosphatidylinositol 3-Kinase Inhibitor HS-173 in Cancer Cell Lines. Cells 2023; 12:cells12071056. [PMID: 37048130 PMCID: PMC10093605 DOI: 10.3390/cells12071056] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Constitutive activation of the phosphoinositide-3-kinase (PI3K)/Akt signaling pathway is crucial for tumor growth and progression. As such, this pathway has been an enticing target for drug discovery. Although HS-173 is a potent PI3K inhibitor that halts cancer cell proliferation via G2/M cell cycle arrest, the resistance mechanisms to HS-173 have not been investigated. In this study, we investigated the susceptibility of HS-173 to efflux mediated by the multidrug efflux transporters ABCB1 and ABCG2, which are two of the most well-known ATP-binding cassette (ABC) transporters associated with the development of cancer multidrug resistance (MDR). We found that the overexpression of ABCB1 or ABCG2 significantly reduced the efficacy of HS-173 in human cancer cells. Our data show that the intracellular accumulation of HS-173 was substantially reduced by ABCB1 and ABCG2, affecting G2/M arrest and apoptosis induced by HS-173. More importantly, the efficacy of HS-173 in multidrug-resistant cancer cells could be recovered by inhibiting the drug-efflux function of ABCB1 and ABCG2. Taken together, our study has demonstrated that HS-173 is a substrate for both ABCB1 and ABCG2, resulting in decreased intracellular concentration of this drug, which may have implications for its clinical use.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan
| | - Cheng-Yu Hung
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ya-Ju Hsieh
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Megumi Murakami
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yang-Hui Huang
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan
| | - Tsung-Yao Su
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Jau-Song Yu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Zheng YC, Kang HQ, Wang B, Zhu YZ, Mamun MAA, Zhao LF, Nie HQ, Liu Y, Zhao LJ, Zhang XN, Gao MM, Jiang DD, Liu HM, Gao Y. Curriculum vitae of HDAC6 in solid tumors. Int J Biol Macromol 2023; 230:123219. [PMID: 36642357 DOI: 10.1016/j.ijbiomac.2023.123219] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Histone deacetylase 6 (HDAC6) is the only member of the HDAC family that resides primarily in the cytoplasm with two catalytic domains and a ubiquitin-binding domain. HDAC6 is highly expressed in various solid tumors and participates in a wide range of biological activities, including hormone receptors, the p53 signaling pathway, and the kinase cascade signaling pathway due to its unique structural foundation and abundant substrate types. Additionally, HDAC6 can function as an oncogenic factor in solid tumors, boosting tumor cell proliferation, invasion and metastasis, drug resistance, stemness, and lowering tumor cell immunogenicity, so assisting in carcinogenesis. Pan-HDAC inhibitors for cancer prevention are associated with potential cardiotoxicity in clinical investigations. It's interesting that HDAC6 silencing didn't cause any significant harm to normal cells. Currently, the use of HDAC6 specific inhibitors, individually or in combination, is among the most promising therapies in solid tumors. This review's objective is to give a general overview of the structure, biological functions, and mechanism of HDAC6 in solid tumor cells and in the immunological milieu and discuss the preclinical and clinical trials of selective HDAC6 inhibitors. These endeavors highlight that targeting HDAC6 could effectively kill tumor cells and enhance patients' immunity during solid tumor therapy.
Collapse
Affiliation(s)
- Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Hui-Qin Kang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Bo Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
| | - Yuan-Zai Zhu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - M A A Mamun
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Long-Fei Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Hai-Qian Nie
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ying Liu
- Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Henan 450001, China
| | - Li-Juan Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Xiao-Nan Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Mei-Mei Gao
- Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Henan 450001, China
| | - Dan-Dan Jiang
- Department of Pharmacy, People's Hospital of Henan Province, Zhengzhou University, Henan 450001, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Ya Gao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| |
Collapse
|
9
|
He SW, Zhang Y, Chen L, Luo WJ, Li XM, Chen Y, Huang SY, He QM, Yang XJ, Li YQ, Liu N, Zhao Y, Ma J. Gemcitabine synergizes with cisplatin to inhibit nasopharyngeal carcinoma cell proliferation and tumor growth. FASEB J 2021; 35:e21885. [PMID: 34478585 DOI: 10.1096/fj.202100076rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 07/17/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022]
Abstract
In a recently published phase III clinical trial, gemcitabine (GEM) plus cisplatin (DDP) induction chemotherapy significantly improved recurrence-free survival and overall survival and became the standard of care among patients with locoregionally advanced NPC. However, the molecular mechanisms of GEM synergized with DPP in NPC cells remain elucidated. These findings prompt us to explore the effect of the combination between GEM and DDP in NPC cell lines through proliferative phenotype, immunofluorescence, flow cytometry, and western blotting assays. In vitro studies reveal that GEM or DPP treated alone induces cell cycle arrest, promotes cell apoptosis, forces DNA damage response, and GEM synergism with DDP significantly increases the above effects in NPC cells. In vivo studies indicate that GEM or DPP treated alone significantly inhibits the tumor growth and prolongs the survival time of mice injected with SUNE1 cells compared to the control group. Moreover, the mice treated with GEM combined with DDP have smaller tumors and survive longer than those in GEM or DPP treated alone group. In addition, P-gp may be the key molecule that regulates the synergistic effect of gemcitabine and cisplatin. GEM synergizes with DPP to inhibit NPC cell proliferation and tumor growth by inducing cell cycle arrest, cell apoptosis, and DNA damage response, which reveals the mechanisms of combined GEM and DDP induction chemotherapy in improving locoregionally advanced NPC.
Collapse
Affiliation(s)
- Shi-Wei He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Yuan Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Lei Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Wei-Jie Luo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Xiao-Min Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Yang Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Sheng-Yan Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Qing-Mei He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Xiao-Jing Yang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Ying-Qin Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Na Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Yin Zhao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Jun Ma
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| |
Collapse
|