1
|
Morais ID, Campos Francelino LE, Leite VGS, Martins GM, de Oliveira Vitoriano J, Feijó FMC, Santos CS, de Oliveira MF, Alves Júnior C, de Moura CEB. Preventing Candida albicans Contamination on Packaged Ti-6Al-4V Alloy Surfaces by Cold Atmospheric Plasma Treatment. ACS APPLIED BIO MATERIALS 2025. [PMID: 39957427 DOI: 10.1021/acsabm.4c01422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Recent investigations have demonstrated that opportunistic fungi, such as Candida albicans, are associated with the contamination of implantable devices, biofilm formation, and consequent resistance to antimicrobial treatment. Preventing biofilm formation on implantable device surfaces represents a significant challenge in medicine and dentistry. This study aimed to evaluate the effects of cold atmospheric plasma (CAP) treatment on Ti-6Al-4V alloy surfaces, sterilized in an autoclave at 120 °C for 20 min in surgical-grade paper packaging, focusing on their potential to optimize surface physicochemical properties and reduce C. albicans colonization. X-ray photoelectron spectroscopy (XPS) revealed the formation of Ti-O-H peaks and the oxidation of titanium (Ti3+ to Ti4+) on CAP-treated surfaces. Sessile drop tests demonstrated a significant improvement in wettability, with a reduction in contact angle (68.94° vs 36.1°, p < 0.05). Microbiological assays showed a reduction in C. albicans colony-forming units (CFUs) (42,500 ± 8,838 vs 24,000 ± 7,920; p < 0.05) and a decrease in pseudohyphae formation (32.7 ± 9.7 vs 11.6 ± 1.8; p < 0.05). Scanning electron microscopy (SEM) further confirmed a reduction in yeast aggregates on treated surfaces incubated with fungal strains for 90 min. Data normality was assessed using the Shapiro-Wilk test, and statistical comparisons were performed with t tests at a significance level of p < 0.05. These findings suggest that CAP is a promising tool for enhancing surface wettability and reducing fungal contamination on Ti-6Al-4V implants sealed in surgical-grade paper, offering potential benefits for medical and dental applications.
Collapse
Affiliation(s)
- Isau Dantas Morais
- Department of Animal Sciences, Federal Rural University of the Semi-Arid (UFERSA), Mossoró, Rio Grande do Norte 59625-900, Brazil
| | - Luiz Emanuel Campos Francelino
- Department of Animal Sciences, Federal Rural University of the Semi-Arid (UFERSA), Mossoró, Rio Grande do Norte 59625-900, Brazil
| | - Vanesca G S Leite
- Department of Animal Sciences, Federal Rural University of the Semi-Arid (UFERSA), Mossoró, Rio Grande do Norte 59625-900, Brazil
| | - Gabriel M Martins
- Department of Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte 9078-970, Brazil
| | - Jussier de Oliveira Vitoriano
- Department of Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte 9078-970, Brazil
| | - Francisco Marlon C Feijó
- Department of Animal Sciences, Federal Rural University of the Semi-Arid (UFERSA), Mossoró, Rio Grande do Norte 59625-900, Brazil
| | - Caio S Santos
- Department of Animal Sciences, Federal Rural University of the Semi-Arid (UFERSA), Mossoró, Rio Grande do Norte 59625-900, Brazil
| | - Moacir F de Oliveira
- Department of Animal Sciences, Federal Rural University of the Semi-Arid (UFERSA), Mossoró, Rio Grande do Norte 59625-900, Brazil
| | - Clodomiro Alves Júnior
- Department of Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte 9078-970, Brazil
- Aeronautics Institute of Technology, São José dos Campos, São Paulo 12228-900, Brazil
- Plasma Laboratory Applied to Agriculture, Health and Environment, UFERSA, Mossoró, Rio Grande do Norte 59625-900, Brazil
| | - Carlos Eduardo Bezerra de Moura
- Department of Animal Sciences, Federal Rural University of the Semi-Arid (UFERSA), Mossoró, Rio Grande do Norte 59625-900, Brazil
| |
Collapse
|
2
|
Wen Y, Dong H, Lin J, Zhuang X, Xian R, Li P, Li S. Response of Human Gingival Fibroblasts and Porphyromonas gingivalis to UVC-Activated Titanium Surfaces. J Funct Biomater 2023; 14:jfb14030137. [PMID: 36976061 PMCID: PMC10051447 DOI: 10.3390/jfb14030137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
Ultraviolet (UV) photofunctionalization has been demonstrated to synergistically improve the osteoblast response and reduce biofilm formation on titanium (Ti) surfaces. However, it remains obscure how photofunctionalization affects soft tissue integration and microbial adhesion on the transmucosal part of a dental implant. This study aimed to investigate the effect of UVC (100–280 nm) pretreatment on the response of human gingival fibroblasts (HGFs) and Porphyromonas gingivalis (P. g.) to Ti-based implant surfaces. The smooth and anodized nano-engineered Ti-based surfaces were triggered by UVC irradiation, respectively. The results showed that both smooth and nano-surfaces acquired super hydrophilicity without structural alteration after UVC photofunctionalization. UVC-activated smooth surfaces enhanced the adhesion and proliferation of HGFs compared to the untreated smooth ones. Regarding the anodized nano-engineered surfaces, UVC pretreatment weakened the fibroblast attachment but had no adverse effects on proliferation and the related gene expression. Additionally, both Ti-based surfaces could effectively inhibit P. g. adhesion after UVC irradiation. Therefore, the UVC photofunctionalization could be more potentially favorable to synergistically improve the fibroblast response and inhibit P. g. adhesion on the smooth Ti-based surfaces.
Collapse
Affiliation(s)
- Yin Wen
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Hao Dong
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Jiating Lin
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Xianxian Zhuang
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Ruoting Xian
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Ping Li
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
- Correspondence: (P.L.); (S.L.)
| | - Shaobing Li
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
- First Clinical Medical College, Xinjiang Medical University, Urumqi 830011, China
- The First People’s Hospital of Kashgar Region, Kashgar 844000, China
- Correspondence: (P.L.); (S.L.)
| |
Collapse
|
3
|
Brigiano FS, Bazin D, Tielens F. Peculiar opportunities given by XPS spectroscopy for the clinician. CR CHIM 2022. [DOI: 10.5802/crchim.154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Abdullatif FA, Al-Askar M. Does Ultraviolet Radiation Exhibit Antimicrobial Effect against Oral Pathogens Attached on Various Dental Implant Surfaces? A Systematic Review. Dent J (Basel) 2022; 10:dj10060093. [PMID: 35735635 PMCID: PMC9221630 DOI: 10.3390/dj10060093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 12/10/2022] Open
Abstract
Background: Dental implant therapy is currently identified as the most effective treatment for edentulous patient. However, peri-implant inflammations were found to be one of the most common complications that leads to the loss and failure of dental implantation. Ultraviolet (UV) radiation has been proposed to enhance bone integration and reduce bacterial attachment. In this study, we aimed to systematically review the current evidence regarding the antimicrobial effect of UV on different dental implant surfaces. Methods: Five databases including PubMed, Scopus, Web of science, VHL, and Cochran Library were searched to retrieve relevant articles. All original reports that examined the effect of the application of UV radiation on dental implants were included in our study. Results: A total of 16 in vitro studies were included in this systematic review. Polymethyl methacrylate UV radiation has induced a significant decrease in bacterial survival in PMMA materials, with an increased effect by modification with 2.5% and 5% TiO2 nanotubes. UV-C showed a superior effect to UV-A in reducing bacterial attachment and accumulation. UV wavelength of 265 and 285 nm showed powerful bactericidal effects. UV of 365 nm for 24 h had the highest inhibition of bacterial growth in ZnO coated magnesium alloys. In UV-irradiated commercially pure titanium surfaces treated with plasma electrolytic oxidation, silver ion application, heat or alkali had shown significant higher bactericidal effect vs non-irradiated treated surfaces than the treatment with any of them alone. UVC and gamma-ray irradiation increased the hydrophilicity of zirconia surface, compared to the dry heat. Conclusion: UV radiation on Ti surfaces exhibited significant antibacterial effects demonstrated through the reduction in bacterial attachment and biofilm formation with suppression of bacterial cells growth. Combination of UV and treated surfaces with alkali, plasma electrolytic oxidation, silver ion application or heat enhance the overall photocatalytic antimicrobial effect.
Collapse
|
5
|
Zuo R, Lu X, Wei C, Xiong S, Chen J, Zhang S, Huang P, Yang B. The response of bioactive titanium surfaces with different structure to UVC-irradiation to eliminate the negative effect on biological properties during aging time. Biomed Mater 2022; 17. [PMID: 35042197 DOI: 10.1088/1748-605x/ac4c8d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/18/2022] [Indexed: 11/11/2022]
Abstract
The biological aging of titanium implants affects the service lifetime negatively in clinical applications, and UV irradiation is an applicable method to overcome the biological aging. This study investigated the changes in surface characteristics and biological properties of bioactive titanium surfaces with different structure and topography after UVC-irradiation. The bioactive titanium surfaces were prepared by anodizing (AO), sandblasting and acid-etching (SLA), acid-alkali etching (AA), alkali-heat etching (AH) methods. Samples were stored at dark for 7 weeks to simulate biological aging process and then irradiated by UVC for 2 hours. The results showed that the Ti-OH groups, which are crucial to enhance the biological properties, were easier to be generated on AO surfaces by UVC-irradiation, o owing to a mixture of anatase and rutile on surfaces. UVC-irradiation had the strongest effect on AO surfaces to enhance the bioactivity in bone-like apatite deposition and better biocompatibility in MSCs attachment and proliferation. Therefore, titanium surfaces with a mixture phase of anatase and rutile has the potential to effectively utilize the benefits of UVC-irradiation to overcome the negative effects of the biological aging and have a promising clinical application prospect.
Collapse
Affiliation(s)
- Rui Zuo
- Sichuan University, No. 24, South Section, First Ring Road, Chengdu, Chengdu, Sichuan, 610065, CHINA
| | - Xugang Lu
- Sichuan University, No. 24, South Section, First Ring Road, Chengdu, Chengdu, Sichuan, 610065, CHINA
| | - Changsheng Wei
- Sichuan University, No. 24, South Section, First Ring Road, Chengdu, Chengdu, Sichuan, 610065, CHINA
| | - Shibing Xiong
- Sichuan University, No. 24, South Section, First Ring Road, Chengdu, Chengdu, Sichuan, 610065, CHINA
| | - Jun Chen
- Sichuan University, No. 24, South Section, First Ring Road, Chengdu, Chengdu, Sichuan, 610065, CHINA
| | - Siqi Zhang
- Sichuan University, No. 24, South Section, First Ring Road, Chengdu, Chengdu, Sichuan, 610065, CHINA
| | - Ping Huang
- Panzhihua University, No. 10, Airport Road of East District, Panzhihua City, Sichuan Province, Panzhihua, Sichuan, 617000, CHINA
| | - Bangcheng Yang
- Centre for Engineering Research in Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China, Chengdu, Sichuan, 610065, CHINA
| |
Collapse
|
6
|
EL-Ghoul Y, Alminderej FM, Alsubaie FM, Alrasheed R, Almousa NH. Recent Advances in Functional Polymer Materials for Energy, Water, and Biomedical Applications: A Review. Polymers (Basel) 2021; 13:4327. [PMID: 34960878 PMCID: PMC8708011 DOI: 10.3390/polym13244327] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 01/10/2023] Open
Abstract
Academic research regarding polymeric materials has been of great interest. Likewise, polymer industries are considered as the most familiar petrochemical industries. Despite the valuable and continuous advancements in various polymeric material technologies over the last century, many varieties and advances related to the field of polymer science and engineering still promise a great potential for exciting new applications. Research, development, and industrial support have been the key factors behind the great progress in the field of polymer applications. This work provides insight into the recent energy applications of polymers, including energy storage and production. The study of polymeric materials in the field of enhanced oil recovery and water treatment technologies will be presented and evaluated. In addition, in this review, we wish to emphasize the great importance of various functional polymers as effective adsorbents of organic pollutants from industrial wastewater. Furthermore, recent advances in biomedical applications are reviewed and discussed.
Collapse
Affiliation(s)
- Yassine EL-Ghoul
- Department of Chemistry, College of Science, Qassim University, King Abdulaziz Rd, P.O. Box 1162, Buraidah 51452, Saudi Arabia
- Textile Engineering Laboratory, University of Monastir, Monastir 5019, Tunisia
| | - Fahad M. Alminderej
- Department of Chemistry, College of Science, Qassim University, King Abdulaziz Rd, P.O. Box 1162, Buraidah 51452, Saudi Arabia
| | - Fehaid M. Alsubaie
- National Center for Chemical Catalysis Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Radwan Alrasheed
- National Center for Desalination & Water Treatment Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Norah H. Almousa
- National Center for Chemical Catalysis Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| |
Collapse
|