1
|
Lim JW, Lee JH, Nejad JG, Lee HG. Effects of L-leucine and sodium acetate on milk protein synthesis under heat stress conditions in bovine mammary epithelial cells in vitro. J Therm Biol 2024; 126:103975. [PMID: 39571500 DOI: 10.1016/j.jtherbio.2024.103975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 12/21/2024]
Abstract
It is widely known that heat stress (HS) has negative effects on dairy cows, such as a reduction in milk production and milk protein. However, there has been no research yet on the effects of HS at the bovine mammary epithelial cells (MAC-T) level and the function of L-leucine (LEU) and sodium acetate (ACE) in reducing HS. In this study, we evaluated the negative effects of HS at various temperatures on MAC-T and verified whether LEU and ACE are effective at reducing HS and increasing protein synthesis. An experiment was conducted by dividing MAC-T into three groups: 39 °C, 41 °C, and 43 °C. In the case of LEU and ACE supplementation experiments, the cells were supplemented with 0, 0.45, 0.9, 1.8, and 3.6 mM of LEU and ACE to reach the differentiation medium. It was observed that under HS at 41 °C, HSP70, BAX, and eIF4EBP1 gene expression were increased, whereas Bcl-2, eIF4E, and PRKAA1 gene expression were decreased. When 1.8 mM of LEU was added under HS at 41 °C, it suppressed apoptosis by reducing the gene expression of HSP70 and controlling the gene expression of apoptosis-related genes such as BAX and Bcl-2. Additionally, mTOR, P-mTOR, and β-casein proteins were increased. In the case of 0.9 mM of ACE, it was found to decrease the gene expression of HSP70 and BAX and increase the amount of β-casein protein synthesis. Simultaneous supplementation of LEU and ACE has been shown to reduce HS, inhibit apoptosis, and increase β-casein protein expression. In summary, HS at 41 °C began to have a negative effect on MAC-T, while LEU and ACE reduced HS and inhibited apoptosis, alleviating cell damage and effectively increasing β-casein protein synthesis. The results suggest that LEU and ACE have the potential to reduce HS and promote protein synthesis under HS conditions in MAC-T.
Collapse
Affiliation(s)
- Jung-Woo Lim
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, 05029, South Korea
| | - Jun-Hee Lee
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, 05029, South Korea
| | - Jalil Ghassemi Nejad
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, 05029, South Korea
| | - Hong-Gu Lee
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, 05029, South Korea.
| |
Collapse
|
2
|
Fu L, You Y, Zeng Y, Ran Q, Zhou Y, Long R, Yang H, Chen J, Loor JJ, Wang G, Zhang L, Dong X. Varying the ratio of Lys: Met through enhancing methionine supplementation improved milk secretion ability through regulating the mRNA expression in bovine mammary epithelial cells under heat stress. Front Vet Sci 2024; 11:1393372. [PMID: 38983772 PMCID: PMC11231434 DOI: 10.3389/fvets.2024.1393372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024] Open
Abstract
Introduction The ratio of lysine (Lys) to methionine (Met) with 3.0: 1 is confirmed as the "ideal" profile for milk protein synthesis, but whether this ratio is suitable for milk protein synthesis under HS needs to be further studied. Methods To evaluate the molecular mechanism by which HS and Lys to Met ratios affect mammary cell functional capacity, an immortalized bovine mammary epithelial cell line (MAC-T) is incubated with 5 doses of Met while maintaining a constant concentration of Lys. The MAC-T cells was treated for 6 h as follow: Lys: Met 3.0: 1 (control 37°C and IPAA 42°C) or treatments under HS (42°C) with different ratios of Lys: Met at 2.0: 1 (LM20), 2.5: 1 (LM25), 3.5: 1 (LM35) and 4.0: 1 (LM40). RNA sequencing was used to assess transcriptome-wide alterations in mRNA abundance. Results The significant difference between control and other groups was observed base on PCA analysis. A total of 2048 differentially expressed genes (DEGs) were identified in the IPAA group relative to the control group. Similarly, 226, 306, 148, 157 DEGs were detected in the LM20, LM25, LM35 and LM40 groups, respectively, relative to the IPAA group. The relative mRNA abundance of HSPA1A was upregulated and anti-apoptotic genes (BCL2L1 and BCL2) was down-regulated in the IPAA group, compared to the control group (p < 0.05). Compared with the IPAA group, the relative mRNA abundance of anti-apoptotic genes and casein genes (CSN1S2 and CSN2) was up-regulated in the LM25 group (p < 0.05). The DEGs between LM25 and IPAA groups were associated with the negative regulation of transcription RNA polymerase II promoter in response to stress (GO: 0051085, DEGs of BAG3, DNAJB1, HSPA1A) as well as the mTOR signaling pathway (ko04150, DEGs of ATP6V1C2, WNT11, WNT3A, and WNT9A). Several DEGs involved in amino acids metabolism (AFMID, HYKK, NOS3, RIMKLB) and glycolysis/gluconeogenesis (AFMID and MGAT5B) were up-regulated while DEGs involved in lipolysis and beta-oxidation catabolic processes (ALOX12 and ALOX12B) were down-regulated. Conclusion These results suggested that increasing Met supply (Lys: Met at 2.5: 1) may help mammary gland cells resist HS-induced cell damage, while possibly maintaining lactation capacity through regulation of gene expression.
Collapse
Affiliation(s)
- Lin Fu
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Yinjie You
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Yu Zeng
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Qifan Ran
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Yan Zhou
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Rui Long
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Heng Yang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Juncai Chen
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Gaofu Wang
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Li Zhang
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Xianwen Dong
- Chongqing Academy of Animal Sciences, Chongqing, China
| |
Collapse
|
3
|
He T, Yuan Z, Chen Q, Luo J, Mao J, Tang Z, Zhao X, Yang Z. Circular RNAs Mediate the Effects of Dietary Tryptophan on the Transformation of Muscle Fiber Types in Weaned Piglets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8595-8605. [PMID: 38591744 DOI: 10.1021/acs.jafc.4c00762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The nutritional composition of the diet significantly impacts the overall growth and development of weaned piglets. The current study aimed to explore the effects and underlying mechanisms of dietary tryptophan consumption on muscle fiber type transformation during the weaning period. Thirty weaned piglets with an average body weight of 6.12 ± 0.16 kg were randomly divided into control (CON, 0.14% Trp diet) and high Trp (HT, 0.35% Trp) groups and maintained on the respective diet for 28 days. The HT group of weaned piglets exhibited highly significant improvements in growth performance and an increased proportion of fast muscle fibers. Transcriptome sequencing revealed the potential contribution of differentially expressed circular RNAs toward the transformation of myofiber types in piglets and toward the regulation of expression of related genes by targeting the microRNAs, miR-34c and miR-182, to further regulate myofiber transformation. In addition, 145 DE circRNAs were identified as potentially protein-encoding, with the encoded proteins associated with a myofiber type transformation. In conclusion, the current study greatly advances and refines our current understanding of the regulatory networks associated with piglet muscle development and myofiber type transformation and also contributes to the optimization of piglet diet formulation.
Collapse
Affiliation(s)
- Tianle He
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhidong Yuan
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Qingyun Chen
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Ju Luo
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Jiani Mao
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhiru Tang
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Xuan Zhao
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhenguo Yang
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| |
Collapse
|
4
|
Wei K, Lu Y, Ma X, Duan A, Lu X, Abdel-Shafy H, Deng T. Transcriptome-Wide Association Study Reveals Potentially Candidate Genes Responsible for Milk Production Traits in Buffalo. Int J Mol Sci 2024; 25:2626. [PMID: 38473873 DOI: 10.3390/ijms25052626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Identifying key causal genes is critical for unraveling the genetic basis of complex economic traits, yet it remains a formidable challenge. The advent of large-scale sequencing data and computational algorithms, such as transcriptome-wide association studies (TWASs), offers a promising avenue for identifying potential causal genes. In this study, we harnessed the power of TWAS to identify genes potentially responsible for milk production traits, including daily milk yield (MY), fat percentage (FP), and protein percentage (PP), within a cohort of 100 buffaloes. Our approach began by generating the genotype and expression profiles for these 100 buffaloes through whole-genome resequencing and RNA sequencing, respectively. Through comprehensive genome-wide association studies (GWAS), we pinpointed a total of seven and four single nucleotide polymorphisms (SNPs) significantly associated with MY and FP traits, respectively. By using TWAS, we identified 55, 71, and 101 genes as significant signals for MY, FP, and PP traits, respectively. To delve deeper, we conducted protein-protein interaction (PPI) analysis, revealing the categorization of these genes into distinct PPI networks. Interestingly, several TWAS-identified genes within the PPI network played a vital role in milk performance. These findings open new avenues for identifying potentially causal genes underlying important traits, thereby offering invaluable insights for genomics and breeding in buffalo populations.
Collapse
Affiliation(s)
- Kelong Wei
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Ying Lu
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Xiaoya Ma
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Anqian Duan
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Xingrong Lu
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Hamdy Abdel-Shafy
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Tingxian Deng
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| |
Collapse
|
5
|
Jo JH, Jalil GN, Kim WS, Moon JO, Lee SD, Kwon CH, Lee HG. Effects of Rumen-Protected L-Tryptophan Supplementation on Productivity, Physiological Indicators, Blood Profiles, and Heat Shock Protein Gene Expression in Lactating Holstein Cows under Heat Stress Conditions. Int J Mol Sci 2024; 25:1217. [PMID: 38279240 PMCID: PMC10816680 DOI: 10.3390/ijms25021217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
In this study, we examined the effects of rumen-protected L-tryptophan supplementation on the productivity and physiological metabolic indicators in lactating Holstein cows under heat stress conditions. The study involved eight early lactating Holstein cows (days in milk = 40 ± 9 days; milk yield 30 ± 1.5 kg/day; parity 1.09 ± 0.05, p < 0.05), four cows per experiment, with environmentally controlled chambers. In each experiment, two distinct heat stress conditions were created: a low-temperature and low-humidity (LTLH) condition at 25 °C with 35-50% humidity and a high-temperature and high-humidity (HTHH) condition at 31 °C with 80-95% humidity. During the adaptation phase, the cows were subjected to LTLH and HTHH conditions for 3 days. This was followed by a 4-day heat stress phase and then by a 7-day phase of heat stress, which were complemented by supplementation with rumen-protected L-tryptophan (ACT). The findings revealed that supplementation with ACT increased dry matter intake as well as milk yield and protein and decreased water intake, heart rate, and rectal temperature in the HTHH group (p < 0.05). For plateletcrit (PCT, p = 0.0600), the eosinophil percentage (EOS, p = 0.0880) showed a tendency to be lower, while the monocyte (MONO) and large unstained cells (LUC) amounts were increased in both groups (p < 0.05). Albumin and glucose levels were lower in the HTHH group (p < 0.05). The gene expressions of heat shock proteins 70 and 90 in the peripheral blood mononuclear cells were higher in the ACT group (HTHH, p < 0.05). These results suggest that ACT supplementation improved productivity, physiological indicators, blood characteristics, and gene expression in the peripheral blood mononuclear cells of early lactating Holstein cows under heat-stress conditions. In particular, ACT supplementation objectively relieved stress in these animals, suggesting that L-tryptophan has potential as a viable solution for combating heat-stress-induced effects on the cattle in dairy farming.
Collapse
Affiliation(s)
- Jang-Hoon Jo
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Republic of Korea; (J.-H.J.); (G.N.J.)
| | - Ghassemi Nejad Jalil
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Republic of Korea; (J.-H.J.); (G.N.J.)
| | - Won-Seob Kim
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA;
| | - Jun-Ok Moon
- Institute of Integrated Technology, CJ CheilJedang, Suwon 16495, Republic of Korea;
| | - Sung-Dae Lee
- Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea;
| | - Chan-Ho Kwon
- Department of Animal Science, Kyungpook National University, Sangju 37224, Republic of Korea;
| | - Hong-Gu Lee
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Republic of Korea; (J.-H.J.); (G.N.J.)
| |
Collapse
|
6
|
Luo P, Chen G, Shi Z, Yang J, Wang X, Pan J, Zhu L. Comprehensive multi-omics analysis of tryptophan metabolism-related gene expression signature to predict prognosis in gastric cancer. Front Pharmacol 2023; 14:1267186. [PMID: 37908977 PMCID: PMC10613981 DOI: 10.3389/fphar.2023.1267186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/18/2023] [Indexed: 11/02/2023] Open
Abstract
Introduction: The 5-year survival of gastric cancer (GC) patients with advanced stage remains poor. Some evidence has indicated that tryptophan metabolism may induce cancer progression through immunosuppressive responses and promote the malignancy of cancer cells. The role of tryptophan and its metabolism should be explored for an in-depth understanding of molecular mechanisms during GC development. Material and methods: We utilized the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) dataset to screen tryptophan metabolism-associated genes via single sample gene set enrichment analysis (ssGSEA) and correlation analysis. Consensus clustering analysis was employed to construct different molecular subtypes. Most common differentially expressed genes (DEGs) were determined from the molecular subtypes. Univariate cox analysis as well as lasso were performed to establish a tryptophan metabolism-associated gene signature. Gene Set Enrichment Analysis (GSEA) was utilized to evaluate signaling pathways. ESTIMATE, ssGSEA, and TIDE were used for the evaluation of the gastric tumor microenvironment. Results: Two tryptophan metabolism-associated gene molecular subtypes were constructed. Compared to the C2 subtype, the C1 subtype showed better prognosis with increased CD4 positive memory T cells as well as activated dendritic cells (DCs) infiltration and suppressed M2-phenotype macrophages inside the tumor microenvironment. The immune checkpoint was downregulated in the C1 subtype. A total of eight key genes, EFNA3, GPX3, RGS2, CXCR4, SGCE, ADH4, CST2, and GPC3, were screened for the establishment of a prognostic risk model. Conclusion: This study concluded that the tryptophan metabolism-associated genes can be applied in GC prognostic prediction. The risk model established in the current study was highly accurate in GC survival prediction.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Linghua Zhu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
Ma H, Yao S, Bai L, Bai S, Liu G. The effects of rumen-protected tryptophan (RPT) on production performance and relevant hormones of dairy cows. PeerJ 2022; 10:e13831. [PMID: 36117532 PMCID: PMC9480067 DOI: 10.7717/peerj.13831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/11/2022] [Indexed: 01/18/2023] Open
Abstract
Tryptophan is an essential amino acid that cannot be synthesized in mammals. Therefore, the dietary supply of tryptophan is critical for the health and production performance (e.g., milk) of mammals. In the present study, 36 lactating Holstein cows were used, of which 24 cows were in the rumen-protected tryptophan (RPT) feeding groups with different doses at 14 g/d and 28 g/d, respectively and 12 cows were in the control group. This approach could avoid dietary tryptophan being degraded by the rumen microorganisms and improve its bioavailability for cows. The results showed that RPT increased milk protein percentage, milk protein yield, milk solid non-fat (SNF), and milk yield. In response to RPT treatment, the levels of melatonin (MT), prolactin (PRL), and insulin-like growth factor-1 (IGF-1) were significantly increased in the serum of cows compared to the controls. RPT feeding improved nutrient utilization efficiency and lactation performance of dairy cows, which enhanced the quality of milk.
Collapse
Affiliation(s)
- Hui Ma
- Beijing Sanyuan Breeding Technology Co., Ltd., Beijing, China
| | - Songyang Yao
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Libing Bai
- Beijing Sunlon Livestock Development Co. Ltd., Beijing, China
| | - Sarvvl Bai
- Beijing Sunlon Livestock Development Co. Ltd., Beijing, China
| | - Guoshi Liu
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Tryptophan in Nutrition and Health. Int J Mol Sci 2022; 23:ijms23105455. [PMID: 35628285 PMCID: PMC9146092 DOI: 10.3390/ijms23105455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
|
9
|
Jeon SW, Conejos JRV, Lee JS, Keum SH, Lee HG. D-Methionine and 2-hydroxy-4-methylthiobutanoic acid i alter
beta-casein, proteins and metabolites linked in milk protein synthesis in bovine
mammary epithelial cells. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:481-499. [PMID: 35709129 PMCID: PMC9184702 DOI: 10.5187/jast.2022.e37] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/25/2022] [Accepted: 05/10/2022] [Indexed: 11/20/2022]
Affiliation(s)
- Seung-Woo Jeon
- Department of Animal Science and
Technology, Sanghuh College of Life Sciences, Konkuk
University, Seoul 05029, Korea
| | - Jay Ronel V. Conejos
- Institute of Animal Science, College of
Agriculture and Food Sciences, University of the Philippines Los
Baños, College Batong Malake, Los Baños, Laguna
4031, Philippines
| | - Jae-Sung Lee
- Department of Animal Science and
Technology, Sanghuh College of Life Sciences, Konkuk
University, Seoul 05029, Korea
| | - Sang-Hoon Keum
- Department of Animal Science and
Technology, Sanghuh College of Life Sciences, Konkuk
University, Seoul 05029, Korea
| | - Hong-Gu Lee
- Department of Animal Science and
Technology, Sanghuh College of Life Sciences, Konkuk
University, Seoul 05029, Korea
- Corresponding author: Hong-Gu Lee, Department of
Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk
University, Seoul 05029, Korea. Tel: +82-2-450-0410, E-mail:
| |
Collapse
|
10
|
Fu L, Zhang L, Liu L, Yang H, Zhou P, Song F, Dong G, Chen J, Wang G, Dong X. Effect of Heat Stress on Bovine Mammary Cellular Metabolites and Gene Transcription Related to Amino Acid Metabolism, Amino Acid Transportation and Mammalian Target of Rapamycin (mTOR) Signaling. Animals (Basel) 2021; 11:ani11113153. [PMID: 34827885 PMCID: PMC8614368 DOI: 10.3390/ani11113153] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary This study mainly employed metabolomics technology to determine changes of intracellular metabolite concentrations related to milk protein synthesis induced by heat stress (HS) in bovine mammary epithelial cells. HS was associated with significant differences in intracellular amino acid metabolism resulting in an increase in the intracellular amino acid concentrations. Moreover, HS promoted amino acid transportation and the activity of the mammalian target of rapamycin (mTOR) signaling pathway, which plays an important role as a central regulator of cell metabolism, growth, proliferation and survival. Greater expression of the alpha-S2-casein gene (CSN1S2) was also observed during HS. Overall, our study indicated that bovine mammary epithelial cells may have the ability to resist HS damage and continue milk protein synthesis partly through enhanced intracellular amino acid absorption and metabolism and by activating the mTOR signaling pathway during HS. Abstract Heat stress (HS) is one of the most serious factors to negatively affect the lactation performance of dairy cows. Bovine mammary epithelial cells are important for lactation. It was demonstrated that HS decreases the lactation performance of dairy cows, partly through altering gene expression within bovine mammary epithelial tissue. However, the cellular metabolism mechanisms under HS remains largely unknown. The objective of this study was to determine whether HS induced changes in intracellular metabolites and gene transcription related to amino acid metabolism, amino acid transportation and the mTOR signaling pathway. Immortalized bovine mammary epithelial cell lines (MAC-T cells, n = 5 replicates/treatment) were incubated for 12 h at 37 °C (Control group) and 42 °C (HS group). Relative to the control group, HS led to a greater mRNA expression of heat shock protein genes HSF1, HSPB8, HSPA5, HSP90AB1 and HSPA1A. Compared with the control group, metabolomics using liquid chromatography tandem–mass spectrometry identified 417 differential metabolites with p < 0.05 and a variable importance in projection (VIP) score >1.0 in the HS group. HS resulted in significant changes to the intracellular amino acid metabolism of glutathione, phenylalanine, tyrosine, tryptophan, valine, leucine, isoleucine, arginine, proline, cysteine, methionine, alanine, aspartate and glutamate. HS led to a greater mRNA expression of the amino acid transporter genes SLC43A1, SLC38A9, SLC36A1, and SLC3A2 but a lower mRNA expression of SLC7A5 and SLC38A2. Additionally, HS influenced the expression of genes associated with the mTOR signaling pathway and significantly upregulated the mRNA expression of mTOR, AKT, RHEB, eIF4E and eEF2K but decreased the mRNA expression of TSC1, TSC2 and eEF2 relative to the control group. Compared with the control group, HS also led to greater mRNA expression of the CSN1S2 gene. Overall, our study indicates that bovine mammary epithelial cells may have the ability to resist HS damage and continue milk protein synthesis partly through enhanced intracellular amino acid absorption and metabolism and by activating the mTOR signaling pathway during HS.
Collapse
Affiliation(s)
- Lin Fu
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (L.F.); (L.Z.); (P.Z.); (F.S.)
| | - Li Zhang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (L.F.); (L.Z.); (P.Z.); (F.S.)
| | - Li Liu
- Faculty of Pharmaceutical Engineering, Chongqing Chemical Industry Vocational College, Chongqing 401228, China;
| | - Heng Yang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China;
| | - Peng Zhou
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (L.F.); (L.Z.); (P.Z.); (F.S.)
| | - Fan Song
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (L.F.); (L.Z.); (P.Z.); (F.S.)
| | - Guozhong Dong
- College of Animal Science and Technology, Southwest University, Chongqing 400716, China; (G.D.); (J.C.)
| | - Juncai Chen
- College of Animal Science and Technology, Southwest University, Chongqing 400716, China; (G.D.); (J.C.)
| | - Gaofu Wang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (L.F.); (L.Z.); (P.Z.); (F.S.)
- Correspondence: (G.W.); (X.D.)
| | - Xianwen Dong
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (L.F.); (L.Z.); (P.Z.); (F.S.)
- Correspondence: (G.W.); (X.D.)
| |
Collapse
|
11
|
Amino Acids Supplementation for the Milk and Milk Protein Production of Dairy Cows. Animals (Basel) 2021; 11:ani11072118. [PMID: 34359247 PMCID: PMC8300144 DOI: 10.3390/ani11072118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The composition of milk not only has nutritional implications, but is also directly related to the income of dairy producers. As regards milk’s composition, concerns around milk protein have emerged from the increased consumption of casein products. The synthesis of proteins in milk is a highly complex and high-cost process, because the conversion efficiency of dietary protein to milk protein is very low in dairy cows. Thus, some studies have increased milk protein by using protein supplements or a single amino acid (AA) supply. AAs are the building blocks of protein, and can also stimulate the protein synthetic pathway. This review mainly concerns the use of AAs for producing milk protein in high-producing dairy cows, particularly with methionine, lysine, and histidine. Understanding the mechanisms of AAs will help to promote milk protein synthesis in the dairy industry. Abstract As the preference of consumers for casein products has increased, the protein content of milk from dairy cows is drawing more attention. Protein synthesis in the milk of dairy cows requires a proper supply of dietary protein. High protein supplementation may help to produce more milk protein, but residues in feces and urine cause environmental pollution and increase production costs. As such, previous studies have focused on protein supplements and amino acid (AA) supply. This review concerns AA nutrition for enhancing milk protein in dairy cows, and mainly focuses on three AAs: methionine, lysine, and histidine. AA supplementation for promoting protein synthesis is related to the mammalian target of rapamycin (mTOR) complex and its downstream pathways. Each AA has different stimulating effects on the mTOR translation initiation pathway, and thus manifests different milk protein yields. This review will expand our understanding of AA nutrition and the involved pathways in relation to the synthesis of milk protein in dairy cows.
Collapse
|