1
|
Rossi T, Iorio E, Chirico M, Pisanu ME, Amodio N, Cantafio MEG, Perrotta I, Colciaghi F, Fiorillo M, Gianferrari A, Puccio N, Neri A, Ciarrocchi A, Pistoni M. BET inhibitors (BETi) influence oxidative phosphorylation metabolism by affecting mitochondrial dynamics leading to alterations in apoptotic pathways in triple-negative breast cancer (TNBC) cells. Cell Prolif 2024:e13730. [PMID: 39223828 DOI: 10.1111/cpr.13730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Repressing BET proteins' function using bromodomain inhibitors (BETi) has been shown to elicit antitumor effects by regulating the transcription of genes downstream of BRD4. We previously showed that BETi promoted cell death of triple-negative breast cancer (TNBC) cells. Here, we proved that BETi induce altered mitochondrial dynamics fitness in TNBC cells falling in cell death. We demonstrated that BETi treatment downregulated the expression of BCL-2, and proteins involved in mitochondrial fission and increased fused mitochondria. Impaired mitochondrial fission affected oxidative phosphorylation (OXPHOS) inducing the expression of OXPHOS-related genes, SDHa and ATP5a, and increased cell death. Consistently, the amount of mitochondrial DNA and mitochondrial membrane potential (∆Ψm) increased in BETi-treated cells compared to control cells. Lastly, BETi in combination with Metformin reduced cell growth. Our results indicate that mitochondrial dynamics and OXPHOS metabolism support breast cancer proliferation and represent novel BETi downstream targets in TNBC cells.
Collapse
Affiliation(s)
- Teresa Rossi
- Laboratory of Translational Research, AUSL-IRCCS di Reggio Emilia, Reggio Emila, Italy
| | - Egidio Iorio
- High Resolution NMR Unit, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Mattea Chirico
- High Resolution NMR Unit, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Elena Pisanu
- High Resolution NMR Unit, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | | | - Ida Perrotta
- Department of Biology, Ecology and Earth Sciences, Centre for Microscopy and Microanalysis (CM2), University of Calabria, Cosenza, Italy
| | - Francesca Colciaghi
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marco Fiorillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Alessia Gianferrari
- Laboratory of Translational Research, AUSL-IRCCS di Reggio Emilia, Reggio Emila, Italy
| | - Noemi Puccio
- Laboratory of Translational Research, AUSL-IRCCS di Reggio Emilia, Reggio Emila, Italy
| | - Antonino Neri
- Scientific Directorate, AUSL-IRCCS di Reggio Emilia, Reggio Emila, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, AUSL-IRCCS di Reggio Emilia, Reggio Emila, Italy
| | - Mariaelena Pistoni
- Laboratory of Translational Research, AUSL-IRCCS di Reggio Emilia, Reggio Emila, Italy
| |
Collapse
|
2
|
Yuan M, Liu T, Cai A, Zhan Z, Cheng Y, Wang Q, Xia Y, Shen N, Huang P, Zou X. Emerging connectivity of programmed cell death pathways and pulmonary vascular remodelling during pulmonary hypertension. J Cell Mol Med 2024; 28:e70003. [PMID: 39153207 PMCID: PMC11330287 DOI: 10.1111/jcmm.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/08/2024] [Accepted: 07/23/2024] [Indexed: 08/19/2024] Open
Abstract
Pulmonary hypertension (PH) is a chronic progressive vascular disease characterized by abnormal pulmonary vascular resistance and pulmonary artery pressure. The major structural alteration during PH is pulmonary vascular remodelling, which is mainly caused by the imbalance between proliferation and apoptosis of pulmonary vascular cells. Previously, it was thought that apoptosis was the only type of programmed cell death (PCD). Soon afterward, other types of PCD have been identified, including autophagy, pyroptosis, ferroptosis and necroptosis. In this review, we summarize the role of the above five forms of PCD in mediating pulmonary vascular remodelling, and discuss their guiding significance for PH treatment. The current review could provide a better understanding of the correlation between PCD and pulmonary vascular remodelling, contributing to identify new PCD-associated drug targets for PH.
Collapse
Affiliation(s)
- Meng‐nan Yuan
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Ting Liu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - An‐qi Cai
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Zibo Zhan
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Yi‐li Cheng
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Qi‐yue Wang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Yu‐xuan Xia
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Nong‐er Shen
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Xiao‐zhou Zou
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| |
Collapse
|
3
|
Thompson PE, Shortt J. Defeating MYC with drug combinations or dual-targeting drugs. Trends Pharmacol Sci 2024; 45:490-502. [PMID: 38782688 DOI: 10.1016/j.tips.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024]
Abstract
Members of the MYC family of proteins are a major target for cancer drug discovery, but the development of drugs that block MYC-driven cancers has not yet been successful. Approaches to achieve success may include the development of combination therapies or dual-acting drugs that target MYC at multiple nodes. Such treatments hold the possibility of additive or synergistic activity, potentially reducing side effect profiles and the emergence of resistance. In this review, we examine the prominent MYC-related targets and highlight those that have been targeted in combination and/or dual-target approaches. Finally, we explore the challenges of combination and dual-target approaches from a drug development perspective.
Collapse
Affiliation(s)
- Philip E Thompson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Jake Shortt
- Blood Cancer Therapeutics Laboratory, School of Clinical Sciences at Monash Health, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, Victoria 3168, Australia; Monash Hematology, Monash Health, Melbourne, Victoria 3168, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria 3000, Australia
| |
Collapse
|
4
|
Winer H, Li W, Rodrigues G, Gower T, Meyer TJ, Hixon J, Durum SK. Mechanism of co-operation of mutant IL-7Rα and mutant NRAS in acute lymphoblastic leukemia: role of MYC. Haematologica 2024; 109:1726-1740. [PMID: 38031763 PMCID: PMC11141644 DOI: 10.3324/haematol.2023.283559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is an aggressive leukemia which can be derived from either T-cell or B-cell precursors. With current treatments, the survival rate is high, but the treatments are highly toxic with severe side effects. Individual mutations in IL7Ra and RAS pathways have been previously shown to be prevalent in ALL, and especially in relapsed patients. The relationship of IL-7Ra and RAS was investigated by transducing immature mouse thymocytes with the combination of these mutants. The resultant ALL cells were analyzed to identify the regulators and the oncoproteins that are up-regulated or down-regulated by the combination of IL7Ra with NRAS. Leukemia cells showed a significant increase in IL7Ra-mediated BCL2 expression, and an increase in MYC protein levels was mainly induced by NRAS signaling. MYC was both necessary and sufficient to replace mutant NRAS, and drugs targeting the MYC pathway showed a therapeutic benefit in IL-7Ra/NRAS T-ALL. We suggest that MYC protein stability can be regulated by PLK-1 kinase, which was increased mainly by the NRAS signal. These studies identify novel pathways of oncogenesis and new targets for intervention that could lead to better therapeutic development.
Collapse
Affiliation(s)
- Hila Winer
- Cytokines and Immunity Section, Cancer Innovation Laboratory (CIL), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD
| | - Wenqing Li
- Cytokines and Immunity Section, Cancer Innovation Laboratory (CIL), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD
| | - Gisele Rodrigues
- Cytokines and Immunity Section, Cancer Innovation Laboratory (CIL), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD
| | - Tim Gower
- Cytokines and Immunity Section, Cancer Innovation Laboratory (CIL), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD
| | - Thomas Joshua Meyer
- CCR Collaborative Bioinformatics Resource (CCBR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD
| | - Julie Hixon
- Cytokines and Immunity Section, Cancer Innovation Laboratory (CIL), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD
| | - Scott K Durum
- Cytokines and Immunity Section, Cancer Innovation Laboratory (CIL), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD.
| |
Collapse
|
5
|
Azimi Y, Hajibabaei S, Azimi G, Rahimi-Jamnani F, Azizi M. Inhibitory effect of miR-377 on the proliferative and invasive behaviors of prostate cancer cells through the modulation of MYC mRNA via its interaction with BCL-2/Bax, PTEN, and CDK4. Genes Cancer 2024; 15:28-40. [PMID: 38756697 PMCID: PMC11098572 DOI: 10.18632/genesandcancer.236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/24/2024] [Indexed: 05/18/2024] Open
Abstract
The MYC gene is a regulatory and proto-oncogenic gene that is overexpressed in the majority of prostate cancers (PCa). Numerous studies have indicated that aberrant expression of microRNAs is involved in the initiation and progression of prostate cancer. In this investigation, we assessed the impact of miR-377 on MYC through luciferase assay. Real-time PCR was employed to determine whether miR-377 could reduce the levels of MYC mRNA in transfected PCa cell lines (PC-3 and DU145) and change in the mRNA levels of BCL-2/Bax, PTEN, and CDK4 as a consequence of MYC downregulation. Moreover, we analyzed the effects of miR-377 on apoptosis, proliferation, cell cycle, and wound healing. Our findings demonstrate that miR-377 effectively targets MYC mRNA, as confirmed by luciferase assay and Real-time PCR. We observed a significant reduction in BCL-2 and CDK4 expression, along with an increase in Bax and PTEN, in prostate cancer cell lines upon MYC suppression. Additionally, elevated levels of miR-377 in PCa cell lines induced apoptosis, inhibited proliferation and migration, and arrested the cell cycle. Taken together, these results unveil the inhibitory role of miR-377 in MYC function within PCa, thereby suggesting its potential as a therapeutic target for the treatment of this malignancy.
Collapse
Affiliation(s)
- Yasamin Azimi
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sara Hajibabaei
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ghazal Azimi
- Department of Nanotechnology, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Rahimi-Jamnani
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Masoumeh Azizi
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
6
|
Chan KI, Zhang S, Li G, Xu Y, Cui L, Wang Y, Su H, Tan W, Zhong Z. MYC Oncogene: A Druggable Target for Treating Cancers with Natural Products. Aging Dis 2024; 15:640-697. [PMID: 37450923 PMCID: PMC10917530 DOI: 10.14336/ad.2023.0520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/20/2023] [Indexed: 07/18/2023] Open
Abstract
Various diseases, including cancers, age-associated disorders, and acute liver failure, have been linked to the oncogene, MYC. Animal testing and clinical trials have shown that sustained tumor volume reduction can be achieved when MYC is inactivated, and different combinations of therapeutic agents including MYC inhibitors are currently being developed. In this review, we first provide a summary of the multiple biological functions of the MYC oncoprotein in cancer treatment, highlighting that the equilibrium points of the MYC/MAX, MIZ1/MYC/MAX, and MAD (MNT)/MAX complexes have further potential in cancer treatment that could be used to restrain MYC oncogene expression and its functions in tumorigenesis. We also discuss the multifunctional capacity of MYC in various cellular cancer processes, including its influences on immune response, metabolism, cell cycle, apoptosis, autophagy, pyroptosis, metastasis, angiogenesis, multidrug resistance, and intestinal flora. Moreover, we summarize the MYC therapy patent landscape and emphasize the potential of MYC as a druggable target, using herbal medicine modulators. Finally, we describe pending challenges and future perspectives in biomedical research, involving the development of therapeutic approaches to modulate MYC or its targeted genes. Patients with cancers driven by MYC signaling may benefit from therapies targeting these pathways, which could delay cancerous growth and recover antitumor immune responses.
Collapse
Affiliation(s)
- Ka Iong Chan
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Siyuan Zhang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Guodong Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Yida Xu
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Liao Cui
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang 524000, China
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Huanxing Su
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| |
Collapse
|
7
|
Zeuner S, Vollmer J, Sigaud R, Oppermann S, Peterziel H, ElHarouni D, Oehme I, Witt O, Milde T, Ecker J. Combination drug screen identifies synergistic drug interaction of BCL-XL and class I histone deacetylase inhibitors in MYC-amplified medulloblastoma cells. J Neurooncol 2024; 166:99-112. [PMID: 38184819 PMCID: PMC10824805 DOI: 10.1007/s11060-023-04526-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/27/2023] [Indexed: 01/08/2024]
Abstract
PURPOSE Patients with MYC-amplified Group 3 medulloblastoma (MB) (subtype II) show poor progression-free survival rates. Class I histone deacetylase inhibitors (HDACi) are highly effective for the treatment of MYC-amplified MB in vitro and in vivo. Drug combination regimens including class I HDACi may represent an urgently needed novel treatment approach for this high risk disease. METHODS A medium-throughput in vitro combination drug screen was performed in three MYC-amplified and one non-MYC-amplified MB cell line testing 75 clinically relevant drugs alone and in combination with entinostat. The drug sensitivity score (DSS) was calculated based on metabolic inhibition quantified by CellTiter-Glo. The six top synergistic combination hits were evaluated in a 5 × 5 combination matrix and a seven-ray design. Synergy was validated and characterized by cell counts, caspase-3-like-activity and poly-(ADP-ribose)-polymerase-(PARP)-cleavage. On-target activity of drugs was validated by immunoprecipitation and western blot. BCL-XL dependency of the observed effect was explored with siRNA mediated knockdown of BCL2L1, and selective inhibition with targeted compounds (A-1331852, A-1155463). RESULTS 20/75 drugs effectively reduced metabolic activity in combination with entinostat in all three MYC-amplified cell lines (DSS ≥ 10). The combination entinostat and navitoclax showed the strongest synergistic interaction across all MYC-amplified cell lines. siRNA mediated knockdown of BCL2L1, as well as targeted inhibition with selective inhibitors showed BCL-XL dependency of the observed effect. Increased cell death was associated with increased caspase-3-like-activity. CONCLUSION Our study identifies the combination of class I HDACi and BCL-XL inhibitors as a potential new approach for the treatment of MYC-amplified MB cells.
Collapse
Affiliation(s)
- Simon Zeuner
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Johanna Vollmer
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Romain Sigaud
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Sina Oppermann
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Heike Peterziel
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Dina ElHarouni
- Department of Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ina Oehme
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Olaf Witt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Till Milde
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Jonas Ecker
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany.
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.
| |
Collapse
|
8
|
Viktorsson K, Rieckmann T, Fleischmann M, Diefenhardt M, Hehlgans S, Rödel F. Advances in molecular targeted therapies to increase efficacy of (chemo)radiation therapy. Strahlenther Onkol 2023; 199:1091-1109. [PMID: 37041372 PMCID: PMC10673805 DOI: 10.1007/s00066-023-02064-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/19/2023] [Indexed: 04/13/2023]
Abstract
Recent advances in understanding the tumor's biology in line with a constantly growing number of innovative technologies have prompted characterization of patients' individual malignancies and may display a prerequisite to treat cancer at its patient individual tumor vulnerability. In recent decades, radiation- induced signaling and tumor promoting local events for radiation sensitization were explored in detail, resulting the development of novel molecular targets. A multitude of pharmacological, genetic, and immunological principles, including small molecule- and antibody-based targeted strategies, have been developed that are suitable for combined concepts with radiation (RT) or chemoradiation therapy (CRT). Despite a plethora of promising experimental and preclinical findings, however, so far, only a very limited number of clinical trials have demonstrated a better outcome and/or patient benefit when RT or CRT are combined with targeted agents. The current review aims to summarize recent progress in molecular therapies targeting oncogenic drivers, DNA damage and cell cycle response, apoptosis signaling pathways, cell adhesion molecules, hypoxia, and the tumor microenvironment to impact therapy refractoriness and to boost radiation response. In addition, we will discuss recent advances in nanotechnology, e.g., RNA technologies and protein-degrading proteolysis-targeting chimeras (PROTACs) that may open new and innovative ways to benefit from molecular-targeted therapy approaches with improved efficacy.
Collapse
Affiliation(s)
- Kristina Viktorsson
- Department of Oncology/Pathology, Karolinska Institutet, Visionsgatan 4, 17164, Solna, Sweden
| | - Thorsten Rieckmann
- Department of Radiation Oncology, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Department of Otolaryngology, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Maximilian Fleischmann
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), University of Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Markus Diefenhardt
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), University of Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Stephanie Hehlgans
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Franz Rödel
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
- Frankfurt Cancer Institute (FCI), University of Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
- German Cancer Consortium (DKTK) partner site: Frankfurt, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
9
|
Alipour M, Sheikhnejad R, Fouani MH, Bardania H, Hosseinkhani S. DNAi-peptide nanohybrid smart particles target BCL-2 oncogene and induce apoptosis in breast cancer cells. Biomed Pharmacother 2023; 166:115299. [PMID: 37573657 DOI: 10.1016/j.biopha.2023.115299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 08/15/2023] Open
Abstract
Genomic DNA sequences provide unique target sites, with high druggability value, for treatment of genetically-linked diseases like cancer. B-cell lymphoma protein-2 (BCL-2) prevents Bcl-2-associated X protein (BAX) and Bcl-2 antagonist killer 1 (BAK) oligomerization, which would otherwise lead to the release of several apoptogenic molecules from the mitochondrion. It is also known that BCL-2 binds to and inactivates BAX and other pro-apoptotic proteins, thereby inhibiting apoptosis. BCL-2 protein family, through its role in regulation of apoptotic pathways, is possibly related to chemo-resistance in almost half of all cancer types including breast cancer. Here for the first time, we have developed a nanohybrid using a peptide-based carrier and a Deoxyribonucleic acid inhibitor (DNAi) against BCL-2 oncogene to induce apoptosis in breast cancer cells. The genetically designed nanocarrier was functionalized with an internalizing RGD (iRGD) targeting motif and successfully produced by recombinant DNA technology. Gel retardation assay demonstrated that the peptide-based carrier binds single-stranded DNAi upon simple mixing. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) analyses further revealed the formation of nanohybrid particles with a size of 30 nm and a slightly positive charge. This hemocompatible nanohybrid efficiently delivered its contents into cancer cells using iRGD targeting moiety. Gene expression analysis demonstrated that the nanohybrids, which contained DNAi against BCL-2 proficiently suppressed the expression of this oncogene in a sequence specific manner. In addition, the nanohybrid, triggered release of cytochrome c (cyt c) and caspase3/7 activation with high efficiency. Although the DNAi and free nanocarrier were separately unable to affect the cell viability, the nanohybrid of 20 nM of DNAi showed outstanding antineoplastic potential, which was adjusted by the ratio of the MiRGD nanocarrier to DNAi. It should be noted that, the designed nanohybrid showed a suitable specificity profile and did not affect the viability of normal cells. The results suggest that this nanohybrid may be useful for robust breast cancer treatment through targeting the BCL-2 oncogene without any side effects.
Collapse
Affiliation(s)
- Mohsen Alipour
- Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran; Department of Nanobiotechnology, Faculty of Biological Sciences,Tarbiat Modares University, Tehran, Iran.
| | - Reza Sheikhnejad
- Department of Molecular Biology, Tofigh Daru Co. (TODACO), Tehran, Iran
| | - Mohamad Hassan Fouani
- Department of Nanobiotechnology, Faculty of Biological Sciences,Tarbiat Modares University, Tehran, Iran
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Saman Hosseinkhani
- Department of Nanobiotechnology, Faculty of Biological Sciences,Tarbiat Modares University, Tehran, Iran; Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
10
|
Aleksandrova Y, Neganova M. Deciphering the Mysterious Relationship between the Cross-Pathogenetic Mechanisms of Neurodegenerative and Oncological Diseases. Int J Mol Sci 2023; 24:14766. [PMID: 37834214 PMCID: PMC10573395 DOI: 10.3390/ijms241914766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The relationship between oncological pathologies and neurodegenerative disorders is extremely complex and is a topic of concern among a growing number of researchers around the world. In recent years, convincing scientific evidence has accumulated that indicates the contribution of a number of etiological factors and pathophysiological processes to the pathogenesis of these two fundamentally different diseases, thus demonstrating an intriguing relationship between oncology and neurodegeneration. In this review, we establish the general links between three intersecting aspects of oncological pathologies and neurodegenerative disorders, i.e., oxidative stress, epigenetic dysregulation, and metabolic dysfunction, examining each process in detail to establish an unusual epidemiological relationship. We also focus on reviewing the current trends in the research and the clinical application of the most promising chemical structures and therapeutic platforms that have a modulating effect on the above processes. Thus, our comprehensive analysis of the set of molecular determinants that have obvious cross-functional pathways in the pathogenesis of oncological and neurodegenerative diseases can help in the creation of advanced diagnostic tools and in the development of innovative pharmacological strategies.
Collapse
Affiliation(s)
- Yulia Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Margarita Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia
| |
Collapse
|
11
|
Yang WC, Gong DH, Hong Wu, Gao YY, Hao GF. Grasping cryptic binding sites to neutralize drug resistance in the field of anticancer. Drug Discov Today 2023; 28:103705. [PMID: 37453458 DOI: 10.1016/j.drudis.2023.103705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/09/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Drug resistance is a significant obstacle to successful cancer treatment. The utilization and development of cryptic binding sites (CBSs) in proteins involved in cancer-related drug-resistance (CRDR) could help to overcome that drug resistance. However, there is no comprehensive review of the successful use of CBSs in addressing CRDR. Here, we have systematically summarized and analyzed the opportunities and challenges of using CBSs in addressing CRDR and revealed the key role that CBSs have in targeting CRDR. First, we have identified the CRDR targets and the corresponding CBSs. Second, we discuss the mechanisms by which CBSs can overcome CRDR. Finally, we have provided examples of successful CBS applications in addressing CRDR. We hope that this approach will provide guidance to biologists and chemists in effectively utilizing CBSs for the development of new drugs to alleviate CRDR.
Collapse
Affiliation(s)
- Wei-Cheng Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Dao-Hong Gong
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Hong Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Yang-Yang Gao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| | - Ge-Fei Hao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China; National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
12
|
Xia J, Dai QL, He S, Jia HJ, Liu XG, Hua H, Zhou M, Wang X. Artesunate alleviates 5-fluorouracil-induced intestinal damage by suppressing cellular senescence and enhances its antitumor activity. Discov Oncol 2023; 14:139. [PMID: 37498338 PMCID: PMC10374509 DOI: 10.1007/s12672-023-00747-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/06/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most prevalent diagnosed malignancies and one of the leading causes of cancer-related deaths worldwide. 5-Fluorouracil (5-FU) and its combination regimen are commonly used as primary chemotherapeutic agents for advanced CRC. Intestinal mucositis is one of the most frequent side effects of 5-FU. Artesunate (Arte) is derived from the wormwood plant Artemisia annua. Arte is not only effective against malaria but also diabetes, atherosclerosis, inflammation, and other conditions. The mechanism by which 5-FU damages the intestinal tract is unclear, and there is no standard treatment for diarrhea caused by 5-FU. Therefore, it is critical to discover novel and promising therapeutic drugs for 5-FU side effect treatment. METHODS The morphology and expression of genes and proteins associated with the aging of HUVECs, HIECs, and intestinal tissues were compared to the those of the control group. The cell lines and tissues were evaluated by SA-β-Gal staining, Western blotting, and RT‒qPCR. HIEC and HCT116 cell viability was assessed in vitro by a CCK-8 assay and in vivo by a subcutaneous tumor mouse assay. Tumor cell proliferation and apoptosis was evaluated by immunohistochemistry. RESULTS Here, we report that Arte alleviates the adverse side effects caused by 5-FU in intestinal tissue, and that 5-FU-induced intestinal damage is associated with drug-induced chemical inflammation and an increase in the proportion of senescent cells. Arte decreases the ratio of SA-β-Gal-positive cells and downregulated the expression of aging-related proteins (p53, p16) and aging-related genes (p53, p21). Mechanistically, Arte relieves intestinal injury by inhibiting mTOR expression, which is associated with the regulation of aging. Moreover, Arte suppresses the p38MAPK and NF-κB signaling pathways, which are related to inflammation regulation. In addition, the combined therapy of Arte plus 5-FU significantly decreases cancer cell viability in vitro. Arte and 5-FU synergistically reduce the growth of colorectal cancer (CRC) xenografts in vivo. CONCLUSIONS Overall, our findings point to the crucial treatment effect of Arte on inflammation, intestinal cell senescence, and CRC cell proliferation and offer a new option for CRC treatment.
Collapse
Affiliation(s)
- Jing Xia
- School of Basic Medicine, Dali University, Dali, 671000, Yunnan, China
- Key Laboratory of University Cell Biology Yunnan Province, Dali, 671000, Yunnan, China
| | - Qian Long Dai
- School of Basic Medicine, Dali University, Dali, 671000, Yunnan, China
- Key Laboratory of University Cell Biology Yunnan Province, Dali, 671000, Yunnan, China
| | - Siyue He
- School of Basic Medicine, Dali University, Dali, 671000, Yunnan, China
- Key Laboratory of University Cell Biology Yunnan Province, Dali, 671000, Yunnan, China
| | - Hui-Jie Jia
- School of Basic Medicine, Dali University, Dali, 671000, Yunnan, China
- Key Laboratory of University Cell Biology Yunnan Province, Dali, 671000, Yunnan, China
| | - Xian-Guo Liu
- Department of Oncology, The Affiliated Chengdu 363 Hospital of Southwest Medical University, No. 108, Daosangshu Street, Chengdu, 610041, China
| | - Hui Hua
- School of Basic Medicine, Dali University, Dali, 671000, Yunnan, China
- Key Laboratory of University Cell Biology Yunnan Province, Dali, 671000, Yunnan, China
| | - Min Zhou
- School of Basic Medicine, Dali University, Dali, 671000, Yunnan, China.
- Key Laboratory of University Cell Biology Yunnan Province, Dali, 671000, Yunnan, China.
| | - Xiaobo Wang
- School of Basic Medicine, Dali University, Dali, 671000, Yunnan, China.
- Key Laboratory of University Cell Biology Yunnan Province, Dali, 671000, Yunnan, China.
| |
Collapse
|
13
|
Martínez-Martín S, Beaulieu ME, Soucek L. Targeting MYC-driven lymphoma: lessons learned and future directions. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:205-222. [PMID: 37457123 PMCID: PMC10344726 DOI: 10.20517/cdr.2022.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/24/2023] [Accepted: 03/22/2023] [Indexed: 07/18/2023]
Abstract
MYC plays a central role in tumorigenesis by orchestrating cell proliferation, growth and survival, among other transformation mechanisms. In particular, MYC has often been associated with lymphomagenesis. In fact, MYC overexpressing lymphomas such as high-grade B-cell lymphoma (HGBL) and double expressor diffuse large B-cell lymphomas (DLBCL), are considered addicted to MYC. In such a context, MYC targeting therapies are of special interest, as MYC withdrawal is expected to result in tumor regression. However, whether high MYC levels are always predictive of increased sensitivity to these approaches is not clear yet. Even though no MYC inhibitor has received regulatory approval to date, substantial efforts have been made to investigate avenues to render MYC a druggable target. Here, we summarize the different classes of molecules currently under development, which mostly target MYC indirectly in aggressive B-cell lymphomas, paying special attention to subtypes with MYC/BCL2 or BCL6 translocations or overexpression.
Collapse
Affiliation(s)
| | - Marie-Eve Beaulieu
- Peptomyc S.L., Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
| | - Laura Soucek
- Peptomyc S.L., Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Preclinical & Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| |
Collapse
|
14
|
Lee YG, Yang N, Chun I, Porazzi P, Carturan A, Paruzzo L, Sauter CT, Guruprasad P, Pajarillo R, Ruella M. Apoptosis: a Janus bifrons in T-cell immunotherapy. J Immunother Cancer 2023; 11:e005967. [PMID: 37055217 PMCID: PMC10106075 DOI: 10.1136/jitc-2022-005967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2023] [Indexed: 04/15/2023] Open
Abstract
Immunotherapy has revolutionized the treatment of cancer. In particular, immune checkpoint blockade, bispecific antibodies, and adoptive T-cell transfer have yielded unprecedented clinical results in hematological malignancies and solid cancers. While T cell-based immunotherapies have multiple mechanisms of action, their ultimate goal is achieving apoptosis of cancer cells. Unsurprisingly, apoptosis evasion is a key feature of cancer biology. Therefore, enhancing cancer cells' sensitivity to apoptosis represents a key strategy to improve clinical outcomes in cancer immunotherapy. Indeed, cancer cells are characterized by several intrinsic mechanisms to resist apoptosis, in addition to features to promote apoptosis in T cells and evade therapy. However, apoptosis is double-faced: when it occurs in T cells, it represents a critical mechanism of failure for immunotherapies. This review will summarize the recent efforts to enhance T cell-based immunotherapies by increasing apoptosis susceptibility in cancer cells and discuss the role of apoptosis in modulating the survival of cytotoxic T lymphocytes in the tumor microenvironment and potential strategies to overcome this issue.
Collapse
Affiliation(s)
- Yong Gu Lee
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| | - Nicholas Yang
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Inkook Chun
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Patrizia Porazzi
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Alberto Carturan
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Luca Paruzzo
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Oncology, University of Turin, Torino, Piemonte, Italy
| | - Christopher Tor Sauter
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Puneeth Guruprasad
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Raymone Pajarillo
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Marco Ruella
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Puzio M, Moreton N, Sullivan M, Scaife C, Glennon JC, O'Connor JJ. An Electrophysiological and Proteomic Analysis of the Effects of the Superoxide Dismutase Mimetic, MnTMPyP, on Synaptic Signalling Post-Ischemia in Isolated Rat Hippocampal Slices. Antioxidants (Basel) 2023; 12:antiox12040792. [PMID: 37107167 PMCID: PMC10135248 DOI: 10.3390/antiox12040792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Metabolic stress and the increased production of reactive oxygen species (ROS) are two main contributors to neuronal damage and synaptic plasticity in acute ischemic stroke. The superoxide scavenger MnTMPyP has been previously reported to have a neuroprotective effect in organotypic hippocampal slices and to modulate synaptic transmission after in vitro hypoxia and oxygen-glucose deprivation (OGD). However, the mechanisms involved in the effect of this scavenger remain elusive. In this study, two concentrations of MnTMPyP were evaluated on synaptic transmission during ischemia and post-ischemic synaptic potentiation. The complex molecular changes supporting cellular adaptation to metabolic stress, and how these are modulated by MnTMPyP, were also investigated. Electrophysiological data showed that MnTMPyP causes a decrease in baseline synaptic transmission and impairment of synaptic potentiation. Proteomic analysis performed on MnTMPyP and hypoxia-treated tissue indicated an impairment in vesicular trafficking mechanisms, including reduced expression of Hsp90 and actin signalling. Alterations of vesicular trafficking may lead to reduced probability of neurotransmitter release and AMPA receptor activity, resulting in the observed modulatory effect of MnTMPyP. In OGD, protein enrichment analysis highlighted impairments in cell proliferation and differentiation, such as TGFβ1 and CDKN1B signalling, in addition to downregulation of mitochondrial dysfunction and an increased expression of CAMKII. Taken together, our results may indicate modulation of neuronal sensitivity to the ischemic insult, and a complex role for MnTMPyP in synaptic transmission and plasticity, potentially providing molecular insights into the mechanisms mediating the effects of MnTMPyP during ischemia.
Collapse
Affiliation(s)
- Martina Puzio
- UCD School of Biomolecular & Biomedical Science, University College Dublin, Dublin 4, Ireland
- Mass Spectrometry Core Facility, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Niamh Moreton
- UCD School of Biomolecular & Biomedical Science, University College Dublin, Dublin 4, Ireland
- Mass Spectrometry Core Facility, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Mairéad Sullivan
- Mass Spectrometry Core Facility, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
- UCD School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Caitriona Scaife
- Mass Spectrometry Core Facility, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Jeffrey C Glennon
- Mass Spectrometry Core Facility, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
- UCD School of Medicine, University College Dublin, Dublin 4, Ireland
| | - John J O'Connor
- UCD School of Biomolecular & Biomedical Science, University College Dublin, Dublin 4, Ireland
- Mass Spectrometry Core Facility, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
16
|
Taghi Khani A, Kumar A, Sanchez Ortiz A, Radecki KC, Aramburo S, Lee SJ, Hu Z, Damirchi B, Lorenson MY, Wu X, Gu Z, Stohl W, Sanz I, Meffre E, Müschen M, Forman SJ, Koff JL, Walker AM, Swaminathan S. Isoform-specific knockdown of long and intermediate prolactin receptors interferes with evolution of B-cell neoplasms. Commun Biol 2023; 6:295. [PMID: 36941341 PMCID: PMC10027679 DOI: 10.1038/s42003-023-04667-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
Prolactin (PRL) is elevated in B-cell-mediated lymphoproliferative diseases and promotes B-cell survival. Whether PRL or PRL receptors drive the evolution of B-cell malignancies is unknown. We measure changes in B cells after knocking down the pro-proliferative, anti-apoptotic long isoform of the PRL receptor (LFPRLR) in vivo in systemic lupus erythematosus (SLE)- and B-cell lymphoma-prone mouse models, and the long plus intermediate isoforms (LF/IFPRLR) in human B-cell malignancies. To knockdown LF/IFPRLRs without suppressing expression of the counteractive short PRLR isoforms (SFPRLRs), we employ splice-modulating DNA oligomers. In SLE-prone mice, LFPRLR knockdown reduces numbers and proliferation of pathogenic B-cell subsets and lowers the risk of B-cell transformation by downregulating expression of activation-induced cytidine deaminase. LFPRLR knockdown in lymphoma-prone mice reduces B-cell numbers and their expression of BCL2 and TCL1. In overt human B-cell malignancies, LF/IFPRLR knockdown reduces B-cell viability and their MYC and BCL2 expression. Unlike normal B cells, human B-cell malignancies secrete autocrine PRL and often express no SFPRLRs. Neutralization of secreted PRL reduces the viability of B-cell malignancies. Knockdown of LF/IFPRLR reduces the growth of human B-cell malignancies in vitro and in vivo. Thus, LF/IFPRLR knockdown is a highly specific approach to block the evolution of B-cell neoplasms.
Collapse
Affiliation(s)
- Adeleh Taghi Khani
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Anil Kumar
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Ashly Sanchez Ortiz
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Kelly C Radecki
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Soraya Aramburo
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Sung June Lee
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Zunsong Hu
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Behzad Damirchi
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Mary Y Lorenson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Xiwei Wu
- Department of Molecular and Cellular Biology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Zhaohui Gu
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - William Stohl
- Division of Rheumatology, Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA
| | - Ignacio Sanz
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, 30322, USA
| | - Eric Meffre
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Markus Müschen
- Center of Molecular and Cellular Oncology, Yale School of Medicine, 300 George Street, 06520, New Haven, CT, USA
| | - Stephen J Forman
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, 91010, USA
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Department of Pediatrics, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Jean L Koff
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ameae M Walker
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA.
| | - Srividya Swaminathan
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA.
- Department of Pediatrics, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
17
|
Lee EF, Fairlie WD. Discovery, development and application of drugs targeting BCL-2 pro-survival proteins in cancer. Biochem Soc Trans 2021; 49:2381-2395. [PMID: 34515749 PMCID: PMC8589430 DOI: 10.1042/bst20210749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022]
Abstract
The discovery of a new class of small molecule compounds that target the BCL-2 family of anti-apoptotic proteins is one of the great success stories of basic science leading to translational outcomes in the last 30 years. The eponymous BCL-2 protein was identified over 30 years ago due to its association with cancer. However, it was the unveiling of the biochemistry and structural biology behind it and its close relatives' mechanism(s)-of-action that provided the inspiration for what are now known as 'BH3-mimetics', the first clinically approved drugs designed to specifically inhibit protein-protein interactions. Herein, we chart the history of how these drugs were discovered, their evolution and application in cancer treatment.
Collapse
Affiliation(s)
- Erinna F. Lee
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
- Cell Death and Survival Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria 3086, Australia
| | - W. Douglas Fairlie
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
- Cell Death and Survival Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria 3086, Australia
| |
Collapse
|
18
|
Zakaria MM, Derbala SA, Salem AE, El-Agroudy AE, El-Tantawy FM. Inflammatory markers in chronic kidney disease and end stage renal disease patients. Mol Biol Rep 2021; 48:6857-6862. [PMID: 34472006 DOI: 10.1007/s11033-021-06684-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/23/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Chronic kidney disease (CKD) is condition characterized by a gradual loss of kidney function, patient with CKD suffering from a variety of immune system defects. METHODS This study looked at Fas, T cell, BCl2, and P53 activity in people with CKD, end stage renal disease (ESRD), and stable controls. RESULTS The CD4+ and CD8+ levels in ESRD patients' peripheral blood were slightly lower than those in CKD patients. The CKD and ESRD groups had slightly higher Fas and FasL mRNA expression and slightly lower BCl2 mRNA gene expression than the normal control group (P < 0.05). P53 mRNA gene expression was shown to be higher in the patients than in the controls (P < 0.01). CONCLUSIONS ESRD patients have a significantly lower number of T-cell subsets than CKD patients this is related to a higher degree of apoptosis in these cells.
Collapse
Affiliation(s)
- Mahmoud M Zakaria
- Faculty of Medicine, Urology and Nephrology Center, Mansoura University, Mansoura, 35511, Egypt
| | - Safaa A Derbala
- Faculty of Medicine, Urology and Nephrology Center, Mansoura University, Mansoura, 35511, Egypt
| | - Ayman E Salem
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, 35511, Egypt
| | - Amgad E El-Agroudy
- Faculty of Medicine, Urology and Nephrology Center, Mansoura University, Mansoura, 35511, Egypt
| | - Fatma M El-Tantawy
- Faculty of Medicine, Urology and Nephrology Center, Mansoura University, Mansoura, 35511, Egypt.
| |
Collapse
|
19
|
Ahmadi SE, Rahimi S, Zarandi B, Chegeni R, Safa M. MYC: a multipurpose oncogene with prognostic and therapeutic implications in blood malignancies. J Hematol Oncol 2021; 14:121. [PMID: 34372899 PMCID: PMC8351444 DOI: 10.1186/s13045-021-01111-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/12/2021] [Indexed: 12/17/2022] Open
Abstract
MYC oncogene is a transcription factor with a wide array of functions affecting cellular activities such as cell cycle, apoptosis, DNA damage response, and hematopoiesis. Due to the multi-functionality of MYC, its expression is regulated at multiple levels. Deregulation of this oncogene can give rise to a variety of cancers. In this review, MYC regulation and the mechanisms by which MYC adjusts cellular functions and its implication in hematologic malignancies are summarized. Further, we also discuss potential inhibitors of MYC that could be beneficial for treating hematologic malignancies.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rouzbeh Chegeni
- Medical Laboratory Sciences Program, College of Health and Human Sciences, Northern Illinois University, DeKalb, IL, USA.
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Gesmundo I, Granato G, Fuentes-Fayos AC, Alvarez CV, Dieguez C, Zatelli MC, Congiusta N, Banfi D, Prencipe N, Leone S, Brunetti L, Castaño JP, Luque RM, Cai R, Sha W, Ghigo E, Schally AV, Granata R. Antagonists of Growth Hormone-Releasing Hormone Inhibit the Growth of Pituitary Adenoma Cells by Hampering Oncogenic Pathways and Promoting Apoptotic Signaling. Cancers (Basel) 2021; 13:cancers13163950. [PMID: 34439107 PMCID: PMC8393969 DOI: 10.3390/cancers13163950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Many studies have demonstrated that the antagonists of growth hormone-releasing hormone (GHRH) exert inhibitory activities in a variety of experimental cancers; however, their potential antitumor role in pituitary adenomas (PAs) remains largely unknown. Here, we show that GHRH antagonists of Miami (MIA) class, MIA-602 and MIA-690, are able to reduce the growth and promote cell death in hormone-secreting PA cell lines, through the inhibition of mechanisms implicated in tumorigenesis and cancer progression. MIA-602 and MIA-690 also decreased the viability of tumor cells derived from human pituitary tumors. Overall, these findings suggest that GHRH antagonists may represent new therapeutic tools for the treatment of PAs, both alone or in combination with standard pharmacological treatments. Abstract Pituitary adenomas (PAs) are intracranial tumors, often associated with excessive hormonal secretion and severe comorbidities. Some patients are resistant to medical therapies; therefore, novel treatment options are needed. Antagonists of growth hormone-releasing hormone (GHRH) exert potent anticancer effects, and early GHRH antagonists were found to inhibit GHRH-induced secretion of pituitary GH in vitro and in vivo. However, the antitumor role of GHRH antagonists in PAs is largely unknown. Here, we show that the GHRH antagonists of MIAMI class, MIA-602 and MIA-690, inhibited cell viability and growth and promoted apoptosis in GH/prolactin-secreting GH3 PA cells transfected with human GHRH receptor (GH3-GHRHR), and in adrenocorticotropic hormone ACTH-secreting AtT20 PA cells. GHRH antagonists also reduced the expression of proteins involved in tumorigenesis and cancer progression, upregulated proapoptotic molecules, and lowered GHRH receptor levels. The combination of MIA-690 with temozolomide synergistically blunted the viability of GH3-GHRHR and AtT20 cells. Moreover, MIA-690 reduced both basal and GHRH-induced secretion of GH and intracellular cAMP levels. Finally, GHRH antagonists inhibited cell viability in human primary GH- and ACTH-PA cell cultures. Overall, our results suggest that GHRH antagonists, either alone or in combination with pharmacological treatments, may be considered for further development as therapy for PAs.
Collapse
Affiliation(s)
- Iacopo Gesmundo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Science, University of Turin, 10126 Turin, Italy; (I.G.); (G.G.); (N.C.); (D.B.); (N.P.); (E.G.)
| | - Giuseppina Granato
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Science, University of Turin, 10126 Turin, Italy; (I.G.); (G.G.); (N.C.); (D.B.); (N.P.); (E.G.)
| | - Antonio C. Fuentes-Fayos
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Córdoba and Reina Sofia University Hospital, 14004 Córdoba, Spain; (A.C.F.-F.); (J.P.C.); (R.M.L.)
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 28029 Madrid, Spain
| | - Clara V. Alvarez
- Centro de Investigaciones Médicas (CIMUS) e Instituto de Investigaciones Sanitarias, University of Santiago de Compostela and Complexo Hospitalario Universitario of Santiago de Compostela, 14004 Santiago de Compostela, Spain; (C.V.A.); (C.D.)
| | - Carlos Dieguez
- Centro de Investigaciones Médicas (CIMUS) e Instituto de Investigaciones Sanitarias, University of Santiago de Compostela and Complexo Hospitalario Universitario of Santiago de Compostela, 14004 Santiago de Compostela, Spain; (C.V.A.); (C.D.)
| | - Maria Chiara Zatelli
- Section of Endocrinology and Internal Medicine, Department of Medical Sciences, University of Ferrara, 15706 Ferrara, Italy;
| | - Noemi Congiusta
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Science, University of Turin, 10126 Turin, Italy; (I.G.); (G.G.); (N.C.); (D.B.); (N.P.); (E.G.)
| | - Dana Banfi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Science, University of Turin, 10126 Turin, Italy; (I.G.); (G.G.); (N.C.); (D.B.); (N.P.); (E.G.)
| | - Nunzia Prencipe
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Science, University of Turin, 10126 Turin, Italy; (I.G.); (G.G.); (N.C.); (D.B.); (N.P.); (E.G.)
| | - Sheila Leone
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (S.L.); (L.B.)
| | - Luigi Brunetti
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (S.L.); (L.B.)
| | - Justo P. Castaño
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Córdoba and Reina Sofia University Hospital, 14004 Córdoba, Spain; (A.C.F.-F.); (J.P.C.); (R.M.L.)
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 28029 Madrid, Spain
| | - Raúl M. Luque
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Córdoba and Reina Sofia University Hospital, 14004 Córdoba, Spain; (A.C.F.-F.); (J.P.C.); (R.M.L.)
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 28029 Madrid, Spain
| | - Renzhi Cai
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (R.C.); (W.S.); (A.V.S.)
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, FL 33125, USA
| | - Wei Sha
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (R.C.); (W.S.); (A.V.S.)
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, FL 33125, USA
| | - Ezio Ghigo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Science, University of Turin, 10126 Turin, Italy; (I.G.); (G.G.); (N.C.); (D.B.); (N.P.); (E.G.)
| | - Andrew V. Schally
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (R.C.); (W.S.); (A.V.S.)
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, FL 33125, USA
- Comprehensive Cancer Center, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Division of Hematology/Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Riccarda Granata
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Science, University of Turin, 10126 Turin, Italy; (I.G.); (G.G.); (N.C.); (D.B.); (N.P.); (E.G.)
- Correspondence:
| |
Collapse
|