1
|
Berger S, Zeyn Y, Wagner E, Bros M. New insights for the development of efficient DNA vaccines. Microb Biotechnol 2024; 17:e70053. [PMID: 39545748 PMCID: PMC11565620 DOI: 10.1111/1751-7915.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Despite the great potential of DNA vaccines for a broad range of applications, ranging from prevention of infections, over treatment of autoimmune and allergic diseases to cancer immunotherapies, the implementation of such therapies for clinical treatment is far behind the expectations up to now. The main reason is the poor immunogenicity of DNA vaccines in humans. Consequently, the improvement of the performance of DNA vaccines in vivo is required. This mini-review provides an overview of the current state of DNA vaccines and the various strategies to enhance the immunogenic potential of DNA vaccines, including (i) the optimization of the DNA construct itself regarding size, nuclear transfer and transcriptional regulation; (ii) the use of appropriate adjuvants; and (iii) improved delivery, for example, by careful choice of the administration route, physical methods such as electroporation and nanomaterials that may allow cell type-specific targeting. Moreover, combining nanoformulated DNA vaccines with other immunotherapies and prime-boost strategies may help to enhance success of treatment.
Collapse
Affiliation(s)
- Simone Berger
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScienceLudwig‐Maximilians‐Universität (LMU) MunichMunichGermany
| | - Yanira Zeyn
- Department of DermatologyUniversity Medical Center of the Johannes Gutenberg University (JGU) MainzMainzGermany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScienceLudwig‐Maximilians‐Universität (LMU) MunichMunichGermany
| | - Matthias Bros
- Department of DermatologyUniversity Medical Center of the Johannes Gutenberg University (JGU) MainzMainzGermany
| |
Collapse
|
2
|
Lin H, Han R, Wu W. Glucans and applications in drug delivery. Carbohydr Polym 2024; 332:121904. [PMID: 38431411 DOI: 10.1016/j.carbpol.2024.121904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Glucan is a natural polysaccharide widely distributed in cereals and microorganisms that has various biological activities, including immunomodulatory, anti-infective, anti-inflammatory, and antitumor activities. In addition to wide applications in the broad fields of food, healthcare, and biomedicines, glucans hold promising potential as drug delivery carrier materials or ligands. Specifically, glucan microparticles or yeast cell wall particles are naturally enclosed vehicles with an interior cavity that can be exploited to carry and deliver drug payloads. The biological activities and targeting capacities of glucans depend largely on the recognition of glucan moieties by receptors such as dectin-1 and complement receptor 3, which are widely expressed on the cell membranes of mononuclear phagocytes, dendritic cells, neutrophils, and some lymphocytes. This review summarizes the chemical structures, sources, fundamental properties, extraction methods, and applications of these materials, with an emphasis on drug delivery. Glucans are utilized mainly as vaccine adjuvants, targeting ligands and as carrier materials for various drug entities. It is believed that glucans and glucan microparticles may be useful for the delivery of both small-molecule and macromolecular drugs, especially for potential treatment of immune-related diseases.
Collapse
Affiliation(s)
- Hewei Lin
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Rongze Han
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China; Fudan Zhangjiang Institute, Shanghai 201203, China.
| |
Collapse
|
3
|
Hieber C, Grabbe S, Bros M. Counteracting Immunosenescence-Which Therapeutic Strategies Are Promising? Biomolecules 2023; 13:1085. [PMID: 37509121 PMCID: PMC10377144 DOI: 10.3390/biom13071085] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Aging attenuates the overall responsiveness of the immune system to eradicate pathogens. The increased production of pro-inflammatory cytokines by innate immune cells under basal conditions, termed inflammaging, contributes to impaired innate immune responsiveness towards pathogen-mediated stimulation and limits antigen-presenting activity. Adaptive immune responses are attenuated as well due to lowered numbers of naïve lymphocytes and their impaired responsiveness towards antigen-specific stimulation. Additionally, the numbers of immunoregulatory cell types, comprising regulatory T cells and myeloid-derived suppressor cells, that inhibit the activity of innate and adaptive immune cells are elevated. This review aims to summarize our knowledge on the cellular and molecular causes of immunosenescence while also taking into account senescence effects that constitute immune evasion mechanisms in the case of chronic viral infections and cancer. For tumor therapy numerous nanoformulated drugs have been developed to overcome poor solubility of compounds and to enable cell-directed delivery in order to restore immune functions, e.g., by addressing dysregulated signaling pathways. Further, nanovaccines which efficiently address antigen-presenting cells to mount sustained anti-tumor immune responses have been clinically evaluated. Further, senolytics that selectively deplete senescent cells are being tested in a number of clinical trials. Here we discuss the potential use of such drugs to improve anti-aging therapy.
Collapse
Affiliation(s)
- Christoph Hieber
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
4
|
Gong W, Hong L, Qian Y. Identification and Experimental Validation of LINC00582 Associated with B Cell Immune and Development of Pulpitis: Bioinformatics and In Vitro Analysis. Diagnostics (Basel) 2023; 13:diagnostics13101678. [PMID: 37238161 DOI: 10.3390/diagnostics13101678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Pulpitis is a common oral disease. Increasing evidence has demonstrated that long non-coding RNAs (lncRNAs) can regulate the immune response in pulpitis. This study focused on finding the key immune-related lncRNAs that regulate the development of pulpitis. METHODS Differentially expressed lncRNAs were analyzed. Enrichment analysis was performed to explore the function of differentially expressed genes. Immune cell infiltration was evaluated with Immune Cell Abundance Identifier. Cell Counting Kit-8 (CCK-8) and lactate dehydrogenase release assays were conducted to measure the viability of human dental pulp cells (HDPCs) and BALL-1 cells. Transwell assay was processed to prove migration and invasion of BALL-1 cells. RESULTS Our results revealed that 17 lncRNAs were significantly upregulated. Pulpitis-related genes were mainly enriched in inflammatory relative signal pathways. The abundance of various immune cells was significantly abnormal in pulpitis tissues, among which the expression of eight lncRNAs was significantly correlated with the expression of B cell marker protein CD79B. As the most relevant lncRNA for B cells, LINC00582 could regulate the proliferation, migration, invasion, and CD79B expression of BALL-1 cells. CONCLUSIONS Our study identified eight B cell immune-related lncRNAs. Meanwhile, LINC00582 has a positive effect on B cell immunity in the development of pulpitis.
Collapse
Affiliation(s)
- Wenting Gong
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University North District, Hefei 230000, China
- Anhui Public Health Clinical Center, Hefei 230000, China
| | - Lilin Hong
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University North District, Hefei 230000, China
- Anhui Public Health Clinical Center, Hefei 230000, China
| | - Yi Qian
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University North District, Hefei 230000, China
- Anhui Public Health Clinical Center, Hefei 230000, China
| |
Collapse
|
5
|
Pusch L, Brox R, Cunningham S, Fischer D, Hackstein H. Medium supplementation with human, but not fetal calf serum facilitates endocytosis of PLGA nanoparticles by human primary B-lymphocytes via complement opsonization. Biochem Biophys Res Commun 2023; 656:10-15. [PMID: 36940638 DOI: 10.1016/j.bbrc.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023]
Abstract
The "biological identity" of nanoparticles (NPs) is governed by a shell consisting of various biomolecules that is formed upon exposure to biological media, the so-called biomolecule corona. Consequently, supplementation of cell culture media with e.g. different sera is likely to affect interactions between cells and NPs ex-vivo, especially endocytosis. We aimed to investigate the differential impact of human and fetal-bovine serum on the endocytosis of poly (lactic-co-glycolic acid) NPs by human peripheral blood mononuclear cells via flow cytometry. Furthermore, we employed different methods to inhibit endocytosis, providing mechanistic insights. The resulting biomolecule corona was characterized via denaturing gel electrophoresis. We found profound differences between human and fetal bovine serum regarding the endocytosis of fluorescently labeled PLGA nanoparticles by different classes of human leukocytes. Uptake by B-lymphocytes was particularly sensitive. We further present evidence, that these effects are mediated by a biomolecule corona. We demonstrate to our knowledge for the first time that the complement is an important contributor to the endocytosis of non-surface-engineered PLGA-nanoparticles prepared via emulsion solvent evaporation by human immune cells. Our data demonstrates that results obtained with xenogeneic culture supplements such as fetal bovine serum may have to be interpreted with caution.
Collapse
Affiliation(s)
- Lennart Pusch
- Department of Transfusion Medicine and Haemostaseology, Friedrich-Alexander University of Erlangen-Nuremberg, University Hospital of Erlangen, Erlangen, Germany.
| | - Regine Brox
- Department of Transfusion Medicine and Haemostaseology, Friedrich-Alexander University of Erlangen-Nuremberg, University Hospital of Erlangen, Erlangen, Germany.
| | - Sarah Cunningham
- Department of Transfusion Medicine and Haemostaseology, Friedrich-Alexander University of Erlangen-Nuremberg, University Hospital of Erlangen, Erlangen, Germany.
| | - Dagmar Fischer
- Department of Chemistry and Pharmacy, Division of Pharmaceutical Technology and Biopharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 4, Erlangen, 91058, Germany.
| | - Holger Hackstein
- Department of Transfusion Medicine and Haemostaseology, Friedrich-Alexander University of Erlangen-Nuremberg, University Hospital of Erlangen, Erlangen, Germany.
| |
Collapse
|
6
|
Kim W, Ly NK, He Y, Li Y, Yuan Z, Yeo Y. Protein corona: Friend or foe? Co-opting serum proteins for nanoparticle delivery. Adv Drug Deliv Rev 2023; 192:114635. [PMID: 36503885 PMCID: PMC9812987 DOI: 10.1016/j.addr.2022.114635] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
For systemically delivered nanoparticles to reach target tissues, they must first circulate long enough to reach the target and extravasate there. A challenge is that the particles end up engaging with serum proteins and undergo immune cell recognition and premature clearance. The serum protein binding, also known as protein corona formation, is difficult to prevent, even with artificial protection via "stealth" coating. Protein corona may be problematic as it can interfere with the interaction of targeting ligands with tissue-specific receptors and abrogate the so-called active targeting process, hence, the efficiency of drug delivery. However, recent studies show that serum protein binding to circulating nanoparticles may be actively exploited to enhance their downstream delivery. This review summarizes known issues of protein corona and traditional strategies to control the corona, such as avoiding or overriding its formation, as well as emerging efforts to enhance drug delivery to target organs via nanoparticles. It concludes with a discussion of prevailing challenges in exploiting protein corona for nanoparticle development.
Collapse
Affiliation(s)
- Woojun Kim
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Nhu Ky Ly
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Université Paris Cité, Faculté de Santé, 4 Avenue de l'Observatoire, 75006 Paris, France
| | - Yanying He
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Yongzhe Li
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Zhongyue Yuan
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
7
|
Panico S, Capolla S, Bozzer S, Toffoli G, Dal Bo M, Macor P. Biological Features of Nanoparticles: Protein Corona Formation and Interaction with the Immune System. Pharmaceutics 2022; 14:pharmaceutics14122605. [PMID: 36559099 PMCID: PMC9781747 DOI: 10.3390/pharmaceutics14122605] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
Nanoparticles (NPs) are versatile candidates for nanomedical applications due to their unique physicochemical properties. However, their clinical applicability is hindered by their undesirable recognition by the immune system and the consequent immunotoxicity, as well as their rapid clearance in vivo. After injection, NPs are usually covered with layers of proteins, called protein coronas (PCs), which alter their identity, biodistribution, half-life, and efficacy. Therefore, the characterization of the PC is for in predicting the fate of NPs in vivo. The aim of this review was to summarize the state of the art regarding the intrinsic factors closely related to the NP structure, and extrinsic factors that govern PC formation in vitro. In addition, well-known opsonins, including complement, immunoglobulins, fibrinogen, and dysopsonins, such as histidine-rich glycoprotein, apolipoproteins, and albumin, are described in relation to their role in NP detection by immune cells. Particular emphasis is placed on their role in mediating the interaction of NPs with innate and adaptive immune cells. Finally, strategies to reduce PC formation are discussed in detail.
Collapse
Affiliation(s)
- Sonia Panico
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Sara Capolla
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy
| | - Sara Bozzer
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
- Correspondence: ; Tel.: +39-0405588683
| |
Collapse
|
8
|
Bednarczyk M, Bolduan V, Haist M, Stege H, Hieber C, Johann L, Schelmbauer C, Blanfeld M, Karram K, Schunke J, Klaus T, Tubbe I, Montermann E, Röhrig N, Hartmann M, Schlosser J, Bopp T, Clausen BE, Waisman A, Bros M, Grabbe S. β2 Integrins on Dendritic Cells Modulate Cytokine Signaling and Inflammation-Associated Gene Expression, and Are Required for Induction of Autoimmune Encephalomyelitis. Cells 2022; 11:cells11142188. [PMID: 35883631 PMCID: PMC9322999 DOI: 10.3390/cells11142188] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 01/27/2023] Open
Abstract
Heterodimeric β2 integrin surface receptors (CD11a-d/CD18) are specifically expressed by leukocytes that contribute to pathogen uptake, cell migration, immunological synapse formation and cell signaling. In humans, the loss of CD18 expression results in leukocyte adhesion deficiency syndrome (LAD-)1, largely characterized by recurrent severe infections. All available mouse models display the constitutive and ubiquitous knockout of either α or the common β2 (CD18) subunit, which hampers the analysis of the cell type-specific role of β2 integrins in vivo. To overcome this limitation, we generated a CD18 gene floxed mouse strain. Offspring generated from crossing with CD11c-Cre mice displayed the efficient knockdown of β2 integrins, specifically in dendritic cells (DCs). Stimulated β2-integrin-deficient splenic DCs showed enhanced cytokine production and the concomitantly elevated activity of signal transducers and activators of transcription (STAT) 1, 3 and 5, as well as the impaired expression of suppressor of cytokine signaling (SOCS) 2–6 as assessed in bone marrow-derived (BM) DCs. Paradoxically, these BMDCs also showed the attenuated expression of genes involved in inflammatory signaling. In line, in experimental autoimmune encephalomyelitis mice with a conditional DC-specific β2 integrin knockdown presented with a delayed onset and milder course of disease, associated with lower frequencies of T helper cell populations (Th)1/Th17 in the inflamed spinal cord. Altogether, our mouse model may prove to be a valuable tool to study the leukocyte-specific functions of β2 integrins in vivo.
Collapse
Affiliation(s)
- Monika Bednarczyk
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (V.B.); (M.H.); (H.S.); (C.H.); (J.S.); (T.K.); (I.T.); (E.M.); (N.R.); (M.H.); (J.S.); (M.B.)
| | - Vanessa Bolduan
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (V.B.); (M.H.); (H.S.); (C.H.); (J.S.); (T.K.); (I.T.); (E.M.); (N.R.); (M.H.); (J.S.); (M.B.)
| | - Maximilian Haist
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (V.B.); (M.H.); (H.S.); (C.H.); (J.S.); (T.K.); (I.T.); (E.M.); (N.R.); (M.H.); (J.S.); (M.B.)
| | - Henner Stege
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (V.B.); (M.H.); (H.S.); (C.H.); (J.S.); (T.K.); (I.T.); (E.M.); (N.R.); (M.H.); (J.S.); (M.B.)
| | - Christoph Hieber
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (V.B.); (M.H.); (H.S.); (C.H.); (J.S.); (T.K.); (I.T.); (E.M.); (N.R.); (M.H.); (J.S.); (M.B.)
| | - Lisa Johann
- Institute for Molecular Medicine, University Medical Center, Johannes Gutenberg University of Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (L.J.); (C.S.); (M.B.); (K.K.); (B.E.C.); (A.W.)
| | - Carsten Schelmbauer
- Institute for Molecular Medicine, University Medical Center, Johannes Gutenberg University of Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (L.J.); (C.S.); (M.B.); (K.K.); (B.E.C.); (A.W.)
| | - Michaela Blanfeld
- Institute for Molecular Medicine, University Medical Center, Johannes Gutenberg University of Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (L.J.); (C.S.); (M.B.); (K.K.); (B.E.C.); (A.W.)
| | - Khalad Karram
- Institute for Molecular Medicine, University Medical Center, Johannes Gutenberg University of Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (L.J.); (C.S.); (M.B.); (K.K.); (B.E.C.); (A.W.)
- Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg University of Mainz, Langenbeckstraße 1, 55131 Mainz, Germany;
| | - Jenny Schunke
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (V.B.); (M.H.); (H.S.); (C.H.); (J.S.); (T.K.); (I.T.); (E.M.); (N.R.); (M.H.); (J.S.); (M.B.)
| | - Tanja Klaus
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (V.B.); (M.H.); (H.S.); (C.H.); (J.S.); (T.K.); (I.T.); (E.M.); (N.R.); (M.H.); (J.S.); (M.B.)
| | - Ingrid Tubbe
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (V.B.); (M.H.); (H.S.); (C.H.); (J.S.); (T.K.); (I.T.); (E.M.); (N.R.); (M.H.); (J.S.); (M.B.)
| | - Evelyn Montermann
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (V.B.); (M.H.); (H.S.); (C.H.); (J.S.); (T.K.); (I.T.); (E.M.); (N.R.); (M.H.); (J.S.); (M.B.)
| | - Nadine Röhrig
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (V.B.); (M.H.); (H.S.); (C.H.); (J.S.); (T.K.); (I.T.); (E.M.); (N.R.); (M.H.); (J.S.); (M.B.)
| | - Maike Hartmann
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (V.B.); (M.H.); (H.S.); (C.H.); (J.S.); (T.K.); (I.T.); (E.M.); (N.R.); (M.H.); (J.S.); (M.B.)
| | - Jana Schlosser
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (V.B.); (M.H.); (H.S.); (C.H.); (J.S.); (T.K.); (I.T.); (E.M.); (N.R.); (M.H.); (J.S.); (M.B.)
| | - Tobias Bopp
- Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg University of Mainz, Langenbeckstraße 1, 55131 Mainz, Germany;
- Institute of Immunology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Björn E Clausen
- Institute for Molecular Medicine, University Medical Center, Johannes Gutenberg University of Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (L.J.); (C.S.); (M.B.); (K.K.); (B.E.C.); (A.W.)
- Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg University of Mainz, Langenbeckstraße 1, 55131 Mainz, Germany;
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center, Johannes Gutenberg University of Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (L.J.); (C.S.); (M.B.); (K.K.); (B.E.C.); (A.W.)
- Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg University of Mainz, Langenbeckstraße 1, 55131 Mainz, Germany;
| | - Matthias Bros
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (V.B.); (M.H.); (H.S.); (C.H.); (J.S.); (T.K.); (I.T.); (E.M.); (N.R.); (M.H.); (J.S.); (M.B.)
- Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg University of Mainz, Langenbeckstraße 1, 55131 Mainz, Germany;
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (V.B.); (M.H.); (H.S.); (C.H.); (J.S.); (T.K.); (I.T.); (E.M.); (N.R.); (M.H.); (J.S.); (M.B.)
- Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg University of Mainz, Langenbeckstraße 1, 55131 Mainz, Germany;
- Correspondence: ; Tel.: +49-61-3117-4412
| |
Collapse
|
9
|
Lee J, Kim D, Byun J, Wu Y, Park J, Oh YK. In vivo fate and intracellular trafficking of vaccine delivery systems. Adv Drug Deliv Rev 2022; 186:114325. [PMID: 35550392 PMCID: PMC9085465 DOI: 10.1016/j.addr.2022.114325] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/22/2022] [Accepted: 05/05/2022] [Indexed: 01/12/2023]
Abstract
With the pandemic of severe acute respiratory syndrome coronavirus 2, vaccine delivery systems emerged as a core technology for global public health. Given that antigen processing takes place inside the cell, the intracellular delivery and trafficking of a vaccine antigen will contribute to vaccine efficiency. Investigations focusing on the in vivo behavior and intracellular transport of vaccines have improved our understanding of the mechanisms relevant to vaccine delivery systems and facilitated the design of novel potent vaccine platforms. In this review, we cover the intracellular trafficking and in vivo fate of vaccines administered via various routes and delivery systems. To improve immune responses, researchers have used various strategies to modulate vaccine platforms and intracellular trafficking. In addition to progress in vaccine trafficking studies, the challenges and future perspectives for designing next-generation vaccines are discussed.
Collapse
Affiliation(s)
- Jaiwoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Dongyoon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Junho Byun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yina Wu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinwon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
10
|
Zeyn Y, Harms G, Tubbe I, Montermann E, Röhrig N, Hartmann M, Grabbe S, Bros M. Inhibitors of the Actin-Bundling Protein Fascin-1 Developed for Tumor Therapy Attenuate the T-Cell Stimulatory Properties of Dendritic Cells. Cancers (Basel) 2022; 14:cancers14112738. [PMID: 35681718 PMCID: PMC9179534 DOI: 10.3390/cancers14112738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Expression of the actin-bundling protein Fascin-1 (Fscn1) is largely restricted to neuronal cells and to activated dendritic cells (DCs). DCs are important inducers of (antitumor) immune responses. In tumor cells, de novo expression of Fscn-1 correlates with their invasive and metastatic activities. Pharmacological Fscn1 inhibitors, which are currently under clinical trials for tumor therapy, were demonstrated to counteract tumor metastasis. Within this study, we were interested in better understanding the effects of Fscn1 inhibitors on DCs and discovered that two distinct Fascin-1 inhibitors affect the immune-phenotype and T-cell stimulatory activity of DCs. Our results suggest that systemic application of Fscn1 inhibitors for tumor therapy may also modulate antitumor immune responses. Abstract Background: Stimulated dendritic cells (DCs), which constitute the most potent population of antigen-presenting cells (APCs), express the actin-bundling protein Fascin-1 (Fscn1). In tumor cells, de novo expression of Fscn1 correlates with their invasive and metastatic properties. Therefore, Fscn1 inhibitors have been developed to serve as antitumor agents. In this study, we were interested in better understanding the impact of Fscn1 inhibitors on DCs. Methods: In parallel settings, murine spleen cells and bone-marrow-derived DCs (BMDCs) were stimulated with lipopolysaccharide in the presence of Fscn1 inhibitors (NP-G2-044 and BDP-13176). An analysis of surface expression of costimulatory and coinhibitory receptors, as well as cytokine production, was performed by flow cytometry. Cytoskeletal alterations were assessed by confocal microscopy. The effects on the interactions of BMDCs with antigen-specific T cells were monitored by time lapse microscopy. The T-cell stimulatory and polarizing capacity of BMDCs were measured in proliferation assays and cytokine studies. Results: Administration of Fscn1 inhibitors diminished Fscn1 expression and the formation of dendritic processes by stimulated BMDCs and elevated CD273 (PD-L2) expression. Fscn1 inhibition attenuated the interaction of DCs with antigen-specific T cells and concomitant T-cell proliferation. Conclusions: Systemic administration of Fscn1 inhibitors for tumor therapy may also modulate DC-induced antitumor immune responses.
Collapse
Affiliation(s)
- Yanira Zeyn
- Department of Dermatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (Y.Z.); (I.T.); (E.M.); (N.R.); (M.H.); (S.G.)
| | - Gregory Harms
- Cell Biology Unit, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany;
- Departments of Biology and Physics, Wilkes University, 84 W. South St., Wilkes Barre, PA 18766, USA
| | - Ingrid Tubbe
- Department of Dermatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (Y.Z.); (I.T.); (E.M.); (N.R.); (M.H.); (S.G.)
| | - Evelyn Montermann
- Department of Dermatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (Y.Z.); (I.T.); (E.M.); (N.R.); (M.H.); (S.G.)
| | - Nadine Röhrig
- Department of Dermatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (Y.Z.); (I.T.); (E.M.); (N.R.); (M.H.); (S.G.)
| | - Maike Hartmann
- Department of Dermatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (Y.Z.); (I.T.); (E.M.); (N.R.); (M.H.); (S.G.)
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (Y.Z.); (I.T.); (E.M.); (N.R.); (M.H.); (S.G.)
| | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (Y.Z.); (I.T.); (E.M.); (N.R.); (M.H.); (S.G.)
- Correspondence: ; Tel.: +49-6131-17-9846
| |
Collapse
|
11
|
Haist M, Mailänder V, Bros M. Nanodrugs Targeting T Cells in Tumor Therapy. Front Immunol 2022; 13:912594. [PMID: 35693776 PMCID: PMC9174908 DOI: 10.3389/fimmu.2022.912594] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/27/2022] [Indexed: 12/11/2022] Open
Abstract
In contrast to conventional anti-tumor agents, nano-carriers allow co-delivery of distinct drugs in a cell type-specific manner. So far, many nanodrug-based immunotherapeutic approaches aim to target and kill tumor cells directly or to address antigen presenting cells (APC) like dendritic cells (DC) in order to elicit tumor antigen-specific T cell responses. Regulatory T cells (Treg) constitute a major obstacle in tumor therapy by inducing a pro-tolerogenic state in APC and inhibiting T cell activation and T effector cell activity. This review aims to summarize nanodrug-based strategies that aim to address and reprogram Treg to overcome their immunomodulatory activity and to revert the exhaustive state of T effector cells. Further, we will also discuss nano-carrier-based approaches to introduce tumor antigen-specific chimeric antigen receptors (CAR) into T cells for CAR-T cell therapy which constitutes a complementary approach to DC-focused vaccination.
Collapse
Affiliation(s)
| | | | - Matthias Bros
- University Medical Center Mainz, Department of Dermatology, Mainz, Germany
| |
Collapse
|
12
|
Estapé Senti M, de Jongh CA, Dijkxhoorn K, Verhoef JJF, Szebeni J, Storm G, Hack CE, Schiffelers RM, Fens MH, Boross P. Anti-PEG antibodies compromise the integrity of PEGylated lipid-based nanoparticles via complement. J Control Release 2021; 341:475-486. [PMID: 34890719 DOI: 10.1016/j.jconrel.2021.11.042] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/18/2022]
Abstract
PEGylation of lipid-based nanoparticles and other nanocarriers is widely used to increase their stability and plasma half-life. However, either pre-existing or de novo formed anti-PEG antibodies can induce hypersensitivity reactions and accelerated blood clearance through binding to the nanoparticle surfaces, leading to activation of the complement system. In this study, we investigated the consequences and mechanisms of complement activation by anti-PEG antibodies interacting with different types of PEGylated lipid-based nanoparticles. By using both liposomes loaded with different (model) drugs and LNPs loaded with mRNA, we demonstrate that complement activation triggered by anti-PEG antibodies can compromise the bilayer/surface integrity, leading to premature drug release or exposure of their mRNA contents to serum proteins. Anti-PEG antibodies also can induce deposition of complement fragments onto the surface of PEGylated lipid-based nanoparticles and induce the release of fluid phase complement activation products. The role of the different complement pathways activated by lipid-based nanoparticles was studied using deficient sera and/or inhibitory antibodies. We identified a major role for the classical complement pathway in the early activation events leading to the activation of C3. Our data also confirm the essential role of amplification of C3 activation by alternative pathway components in the lysis of liposomes. Finally, the levels of pre-existing anti-PEG IgM antibodies in plasma of healthy donors correlated with the degree of complement activation (fixation and lysis) induced upon exposure to PEGylated liposomes and mRNA-LNPs. Taken together, anti-PEG antibodies trigger complement activation by PEGylated lipid-based nanoparticles, which can potentially compromise their integrity, leading to premature drug release or cargo exposure to serum proteins.
Collapse
Affiliation(s)
- Mariona Estapé Senti
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; CDL Research, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Caroline A de Jongh
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Kim Dijkxhoorn
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Johan J F Verhoef
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Janos Szebeni
- Nanomedicine Research and Education Center, Institute of Translational Medicine, Semmelweis University, Budapest, Hungary; SeroScience LCC, Budapest, Hungary; Department of Nanobiotechnology and Regenerative Medicine, Faculty of Health, Miskolc University, Miskolc, Hungary
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Department of Surgery, Nanomedicine Translational Programme, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, University of Singapore, Singapore
| | - C Erik Hack
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Raymond M Schiffelers
- CDL Research, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Marcel H Fens
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands.
| | - Peter Boross
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|