1
|
van Kleeff PJM, Mastop M, Sun P, Dangol S, van Doore E, Dekker HL, Kramer G, Lee S, Ryu CM, de Vos M, Schuurink RC. Discovery of Three Bemisia tabaci Effectors and Their Effect on Gene Expression in Planta. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:380-395. [PMID: 38114195 DOI: 10.1094/mpmi-04-23-0044-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Bemisia tabaci (whitefly) is a polyphagous agroeconomic pest species complex. Two members of this species complex, Mediterranean (MED) and Middle-East-Asia Minor 1 (MEAM1), have a worldwide distribution and have been shown to manipulate plant defenses through effectors. In this study, we used three different strategies to identify three MEAM1 proteins that can act as effectors. Effector B1 was identified using a bioinformatics-driven effector-mining strategy, whereas effectors S1 and P1 were identified in the saliva of whiteflies collected from artificial diet and in phloem exudate of tomato on which nymphs were feeding, respectively. These three effectors were B. tabaci specific and able to increase whitefly fecundity when transiently expressed in tobacco plants (Nicotiana tabacum). Moreover, they reduced growth of Pseudomonas syringae pv. tabaci in Nicotiana benthamiana. All three effectors changed gene expression in planta, and B1 and S1 also changed phytohormone levels. Gene ontology and KEGG pathway enrichment analysis pinpointed plant-pathogen interaction and photosynthesis as the main enriched pathways for all three effectors. Our data thus show the discovery and validation of three new B. tabaci MEAM1 effectors that increase whitefly fecundity and modulate plant immunity. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Paula J M van Kleeff
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Marieke Mastop
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Pulu Sun
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Sarmina Dangol
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Eva van Doore
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Henk L Dekker
- Laboratory for Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Gertjan Kramer
- Laboratory for Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Soohyun Lee
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141, South Korea
| | | | - Robert C Schuurink
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
2
|
Alfaro-Quezada JF, Martínez JP, Molinett S, Valenzuela M, Montenegro I, Ramírez I, Dorta F, Ávila-Valdés A, Gharbi E, Zhou M, Dailly H, Quinet M, Lutts S, Seeger M. Rootstock increases the physiological defence of tomato plants against Pseudomonas syringae pv. tomato infection. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2891-2911. [PMID: 36723875 DOI: 10.1093/jxb/erad040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/30/2023] [Indexed: 06/06/2023]
Abstract
Climate change has intensified the infection of tomato plants by pathogens such as Pseudomonas syringae pv. tomato (Pst). Rootstocks may increase plant tolerance to leaf phytopathogens. The aim of this study was to evaluate the effects of the tolerant Poncho Negro (R) tomato rootstock on physiological defence and the role of hydrogen sulfide (H2S) in susceptible Limachino (L) tomato plant responses to Pst attack. Ungrafted (L), self-grafted (L/L), and grafted (L/R) plants were infected with Pst. Rootstock increased the concentration of antioxidant compounds including ascorbate in the scion. Tolerant rootstock induced an increase of H2S in the scion, which correlated with enhanced expression of the SlAPX2 gene. A high accumulation of salicylic acid was observed in Pst-inoculated grafted L/L and L/R plants, but this was higher in L/R plants. The increase of H2S during Pst infection was associated with a reduction of ethylene in L/R plants. Our study indicates that the Poncho Negro rootstock reduced the symptoms of bacterial speck disease in the Limachino tomato plants, conferring tolerance to Pst infection. This study provides new knowledge about the impact of rootstock in the defence of tomato plants against leaf pathogens that could be used in sustainable management of tomato cultivation.
Collapse
Affiliation(s)
- Juan Felipe Alfaro-Quezada
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Investigaciones Agropecuarias (INIA), Centro Regional La Cruz, Chorrillos 86, La Cruz, Chile
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile
- Centro de Biotecnología Dr. Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso, Chile
- Laboratorio de Fitopatología de Frutales, Instituto de Investigaciones Agropecuarias (INIA), Centro Regional Quilamapu, Avenida Vicente Méndez 515, Chillán, Chile
| | - Juan Pablo Martínez
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Investigaciones Agropecuarias (INIA), Centro Regional La Cruz, Chorrillos 86, La Cruz, Chile
| | - Sebastian Molinett
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Investigaciones Agropecuarias (INIA), Centro Regional La Cruz, Chorrillos 86, La Cruz, Chile
| | - Miryam Valenzuela
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile
- Centro de Biotecnología Dr. Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso, Chile
| | - Ivan Montenegro
- Escuela de Obstetricia y Puericultura, Facultad de Medicina, Universidad de Valparaíso, Angamos 655, Reñaca, Viña del Mar, Chile
| | - Ingrid Ramírez
- Centro de Biotecnología Dr. Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso, Chile
| | - Fernando Dorta
- Centro de Biotecnología Dr. Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso, Chile
| | - Andrea Ávila-Valdés
- Graduate School, Faculty of Agricultural Sciences & Centro de Investigación en Suelos Volcánicos, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
- Departamento de Producción Agrícola, Facultad de Ciencias Agronómicas, Universidad de Chile, Santa Rosa 11315, La Pintana, Santiago, Chile
| | - Emna Gharbi
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Mingxi Zhou
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Ceske Budejovice, 37005, Czech Republic
| | - Hélène Dailly
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Muriel Quinet
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Stanley Lutts
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Michael Seeger
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile
- Centro de Biotecnología Dr. Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso, Chile
| |
Collapse
|
3
|
Oelmüller R, Tseng YH, Gandhi A. Signals and Their Perception for Remodelling, Adjustment and Repair of the Plant Cell Wall. Int J Mol Sci 2023; 24:ijms24087417. [PMID: 37108585 PMCID: PMC10139151 DOI: 10.3390/ijms24087417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
The integrity of the cell wall is important for plant cells. Mechanical or chemical distortions, tension, pH changes in the apoplast, disturbance of the ion homeostasis, leakage of cell compounds into the apoplastic space or breakdown of cell wall polysaccharides activate cellular responses which often occur via plasma membrane-localized receptors. Breakdown products of the cell wall polysaccharides function as damage-associated molecular patterns and derive from cellulose (cello-oligomers), hemicelluloses (mainly xyloglucans and mixed-linkage glucans as well as glucuronoarabinoglucans in Poaceae) and pectins (oligogalacturonides). In addition, several types of channels participate in mechanosensing and convert physical into chemical signals. To establish a proper response, the cell has to integrate information about apoplastic alterations and disturbance of its wall with cell-internal programs which require modifications in the wall architecture due to growth, differentiation or cell division. We summarize recent progress in pattern recognition receptors for plant-derived oligosaccharides, with a focus on malectin domain-containing receptor kinases and their crosstalk with other perception systems and intracellular signaling events.
Collapse
Affiliation(s)
- Ralf Oelmüller
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Yu-Heng Tseng
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Akanksha Gandhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany
| |
Collapse
|
4
|
Shokrollahi N, Ho CL, Mohd Zainudin NAI, Abdul Wahab MAB, Wong MY. Plant Defense Inducers and Antioxidant Metabolites Produced During Oil Palm-Ganoderma boninense Interaction In Vitro. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00501-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Gondor OK, Pál M, Janda T, Szalai G. The role of methyl salicylate in plant growth under stress conditions. JOURNAL OF PLANT PHYSIOLOGY 2022; 277:153809. [PMID: 36099699 DOI: 10.1016/j.jplph.2022.153809] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Methyl salicylate is a volatile compound, the synthesis of which takes place via the salicylic acid pathway in plants. Both compounds can be involved in the development of systemic acquired resistance and they play their role partly independently. Salicylic acid transport has an important role in long-distance signalling, but methyl salicylate has also been suggested as a phloem-based mobile signal, which can be demethylated to form salicylic acid, inducing the de-novo synthesis of salicylic acid in distal tissue. Despite the fact that salicylic acid has a protective role in abiotic stress responses and tolerance, very few investigations have been reported on the similar effects of methyl salicylate. In addition, as salicylic acid and methyl salicylate are often treated simply as the volatile and non-volatile forms of the same compound, and in several cases they also act in the same way, it is hard to highlight the differences in their mode of action. The main aim of the present review is to reveal the individual role and action mechanism of methyl salicylate in systemic acquired resistance, plant-plant communication and various stress conditions in fruits and plants.
Collapse
Affiliation(s)
- Orsolya Kinga Gondor
- Eötvös Loránd Research Network, Centre for Agricultural Research, 2462 Martonvásár, H-2462, Hungary.
| | - Magda Pál
- Eötvös Loránd Research Network, Centre for Agricultural Research, 2462 Martonvásár, H-2462, Hungary
| | - Tibor Janda
- Eötvös Loránd Research Network, Centre for Agricultural Research, 2462 Martonvásár, H-2462, Hungary
| | - Gabriella Szalai
- Eötvös Loránd Research Network, Centre for Agricultural Research, 2462 Martonvásár, H-2462, Hungary
| |
Collapse
|
6
|
Deciphering the Role of Ion Channels in Early Defense Signaling against Herbivorous Insects. Cells 2021; 10:cells10092219. [PMID: 34571868 PMCID: PMC8470099 DOI: 10.3390/cells10092219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 12/14/2022] Open
Abstract
Plants and insect herbivores are in a relentless battle to outwit each other. Plants have evolved various strategies to detect herbivores and mount an effective defense system against them. These defenses include physical and structural barriers such as spines, trichomes, cuticle, or chemical compounds, including secondary metabolites such as phenolics and terpenes. Plants perceive herbivory by both mechanical and chemical means. Mechanical sensing can occur through the perception of insect biting, piercing, or chewing, while chemical signaling occurs through the perception of various herbivore-derived compounds such as oral secretions (OS) or regurgitant, insect excreta (frass), or oviposition fluids. Interestingly, ion channels or transporters are the first responders for the perception of these mechanical and chemical cues. These transmembrane pore proteins can play an important role in plant defense through the induction of early signaling components such as plasma transmembrane potential (Vm) fluctuation, intracellular calcium (Ca2+), and reactive oxygen species (ROS) generation, followed by defense gene expression, and, ultimately, plant defense responses. In recent years, studies on early plant defense signaling in response to herbivory have been gaining momentum with the application of genetically encoded GFP-based sensors for real-time monitoring of early signaling events and genetic tools to manipulate ion channels involved in plant-herbivore interactions. In this review, we provide an update on recent developments and advances on early signaling events in plant-herbivore interactions, with an emphasis on the role of ion channels in early plant defense signaling.
Collapse
|
7
|
Xu F, Chen Q, Huang L, Luo M. Advances about the Roles of Membranes in Cotton Fiber Development. MEMBRANES 2021; 11:membranes11070471. [PMID: 34202386 PMCID: PMC8307351 DOI: 10.3390/membranes11070471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/18/2022]
Abstract
Cotton fiber is an extremely elongated single cell derived from the ovule epidermis and is an ideal model for studying cell development. The plasma membrane is tremendously expanded and accompanied by the coordination of various physiological and biochemical activities on the membrane, one of the three major systems of a eukaryotic cell. This review compiles the recent progress and advances for the roles of the membrane in cotton fiber development: the functions of membrane lipids, especially the fatty acids, sphingolipids, and phytosterols; membrane channels, including aquaporins, the ATP-binding cassette (ABC) transporters, vacuolar invertase, and plasmodesmata; and the regulation mechanism of membrane proteins, such as membrane binding enzymes, annexins, and receptor-like kinases.
Collapse
Affiliation(s)
- Fan Xu
- Biotechnology Research Center, Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture, Southwest University, Chongqing 400715, China; (F.X.); (L.H.)
| | - Qian Chen
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China;
| | - Li Huang
- Biotechnology Research Center, Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture, Southwest University, Chongqing 400715, China; (F.X.); (L.H.)
| | - Ming Luo
- Biotechnology Research Center, Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture, Southwest University, Chongqing 400715, China; (F.X.); (L.H.)
- Correspondence:
| |
Collapse
|