1
|
Neira JL, Palomino-Schätzlein M. Folding of the nascent polypeptide chain of a histidine phosphocarrier protein in vitro. Arch Biochem Biophys 2023; 736:109538. [PMID: 36738980 DOI: 10.1016/j.abb.2023.109538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
The phosphotransferase system (PTS), a metabolic pathway formed by five proteins, modulates the use of sugars in bacteria. The second protein in the chain is the histidine phosphocarrier, HPr, with the binding site at His15. The HPr kinase/phosphorylase (HPrK/P), involved in the bacterial use of carbon sources, phosphorylates HPr at Ser46, and it binds at its binding site. The regulator of sigma D protein (Rsd) also binds to HPr at His15. We have designed fragments of HPr, growing from its N-terminus and containing the His15. In this work, we obtained three fragments, HPr38, HPr58 and HPr70, comprising the first thirty-eight, fifty-eight and seventy residues of HPr, respectively. All fragments were mainly disordered, with evidence of a weak native-like, helical population around the binding site, as shown by fluorescence, far-ultraviolet circular dichroism, size exclusion chromatography and nuclear magnetic resonance. Although HPr38, HPr58 and HPr70 were disordered, they could bind to: (i) the N-terminal domain of first protein of the PTS, EIN; (ii) Rsd; and, (iii) HPrK/P, as shown by fluorescence and biolayer interferometry (BLI). The association constants for each protein to any of the fragments were in the low micromolar range, within the same range than those measured in the binding of HPr to each protein. Then, although acquisition of stable, native-like secondary and tertiary structures occurred at the last residues of the polypeptide, the ability to bind protein partners happened much earlier in the growing chain. Binding was related to the presence of the native-like structure around His15.
Collapse
Affiliation(s)
- José L Neira
- IDIBE, Universidad Miguel Hernández, 03202, Elche, Alicante, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Joint Units IQFR-CSIC-BIFI and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018, Zaragoza, Spain.
| | - Martina Palomino-Schätzlein
- ProtoQSAR SL, CEEI-Valencia, Parque Tecnológico de Valencia, Av. Benjamin Franklin 12 (Dep. 8), 46980, Paterna, Valencia, Spain
| |
Collapse
|
2
|
Yeak KYC, Tempelaars M, Wu JL, Westerveld W, Reder A, Michalik S, Dhople VM, Völker U, Pané-Farré J, Wells-Bennik MHJ, Abee T. SigB modulates expression of novel SigB regulon members via Bc1009 in non-stressed and heat-stressed cells revealing its alternative roles in Bacillus cereus. BMC Microbiol 2023; 23:37. [PMID: 36759782 PMCID: PMC9912610 DOI: 10.1186/s12866-023-02783-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND The Bacillus cereus Sigma B (SigB) dependent general stress response is activated via the two-component RsbKY system, which involves a phosphate transfer from RsbK to RsbY. It has been hypothesized that the Hpr-like phosphocarrier protein (Bc1009) encoded by bc1009 in the SigB gene cluster may play a role in this transfer, thereby acting as a regulator of SigB activation. Alternatively, Bc1009 may be involved in the activation of a subset of SigB regulon members. RESULTS We first investigated the potential role of bc1009 to act as a SigB regulator but ruled out this possibility as the deletion of bc1009 did not affect the expression of sigB and other SigB gene cluster members. The SigB-dependent functions of Bc1009 were further examined in B. cereus ATCC14579 via comparative proteome profiling (backed up by transcriptomics) of wt, Δbc1009 and ΔsigB deletion mutants under heat stress at 42 °C. This revealed 284 proteins displaying SigB-dependent alterations in protein expression levels in heat-stressed cells, including a subgroup of 138 proteins for which alterations were also Bc1009-dependent. Next to proteins with roles in stress defense, newly identified SigB and Bc1009-dependent proteins have roles in cell motility, signal transduction, transcription, cell wall biogenesis, and amino acid transport and metabolism. Analysis of lethal stress survival at 50 °C after pre-adaptation at 42 °C showed intermediate survival efficacy of Δbc1009 cells, highest survival of wt, and lowest survival of ΔsigB cells, respectively. Additional comparative proteome analysis of non-stressed wt and mutant cells at 30 °C revealed 96 proteins with SigB and Bc1009-dependent differences in levels: 51 were also identified under heat stress, and 45 showed significant differential expression at 30 °C. This includes proteins with roles in carbohydrate/ion transport and metabolism. Overlapping functions at 30 °C and 42 °C included proteins involved in motility, and ΔsigB and Δbc1009 cells showed reduced motility compared to wt cells in swimming assays at both temperatures. CONCLUSION Our results extend the B. cereus SigB regulon to > 300 members, with a novel role of SigB-dependent Bc1009 in the activation of a subregulon of > 180 members, conceivably via interactions with other transcriptional regulatory networks.
Collapse
Affiliation(s)
- Kah Yen Claire Yeak
- grid.419921.60000 0004 0588 7915NIZO, Kernhemseweg 2, PO Box 20, 6718 ZB Ede, The Netherlands ,grid.4818.50000 0001 0791 5666Food Microbiology, Wageningen University and Research, PO Box 8129, 6700 EV Wageningen, The Netherlands
| | - Marcel Tempelaars
- grid.4818.50000 0001 0791 5666Food Microbiology, Wageningen University and Research, PO Box 8129, 6700 EV Wageningen, The Netherlands
| | - Jia Lun Wu
- grid.4818.50000 0001 0791 5666Food Microbiology, Wageningen University and Research, PO Box 8129, 6700 EV Wageningen, The Netherlands
| | - Wouter Westerveld
- grid.4818.50000 0001 0791 5666Food Microbiology, Wageningen University and Research, PO Box 8129, 6700 EV Wageningen, The Netherlands
| | - Alexander Reder
- grid.5603.0Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Stephan Michalik
- grid.5603.0Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Vishnu M. Dhople
- grid.5603.0Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- grid.5603.0Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Jan Pané-Farré
- grid.10253.350000 0004 1936 9756Center for Synthetic Microbiology (SYNMIKRO) & Department of Chemistry, Philipps-University Marburg, Karl-Von-Frisch-Strasse 14, 35043 Marburg, Germany
| | | | - Tjakko Abee
- Food Microbiology, Wageningen University and Research, PO Box 8129, 6700 EV, Wageningen, The Netherlands.
| |
Collapse
|
3
|
Neira JL, Palomino-Schätzlein M, Hurtado-Gómez E, Ortore MG, Falcó A. An N-terminal half fragment of the histidine phosphocarrier protein, HPr, is disordered but binds to HPr partners and shows antibacterial properties. Biochim Biophys Acta Gen Subj 2021; 1865:130015. [PMID: 34537288 DOI: 10.1016/j.bbagen.2021.130015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/26/2021] [Accepted: 09/15/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The phosphotransferase system (PTS) modulates the preferential use of sugars in bacteria. It is formed by a protein cascade in which the first two proteins are general (namely enzyme I, EI, and the histidine phosphocarrier protein, HPr) and the others are sugar-specific permeases; the active site of HPr is His15. The HPr kinase/phosphorylase (HPrK/P), involved in the use of carbon sources in Gram-positive, phopshorylates HPr at a serine. The regulator of sigma D protein (Rsd) also binds to HPr. We are designing specific fragments of HPr, which can be used to interfere with those protein-protein interactions (PPIs), where the intact HPr intervenes. METHODS We obtained a fragment (HPr48) comprising the first forty-eight residues of HPr. HPr48 was disordered as shown by fluorescence, far-ultraviolet (UV) circular dichroism (CD), small angle X-ray scattering (SAXS) and nuclear magnetic resonance (NMR). RESULTS Secondary structure propensities, from the assigned backbone nuclei, further support the unfolded nature of the fragment. However, HPr48 was capable of binding to: (i) the N-terminal region of EI, EIN; (ii) the intact Rsd; and, (iii) HPrK/P, as shown by fluorescence, far-UV CD, NMR and biolayer interferometry (BLI). The association constants for each protein, as measured by fluorescence and BLI, were in the order of the low micromolar range, similar to those measured between the intact HPr and each of the other macromolecules. CONCLUSIONS Although HPr48 is forty-eight-residue long, it assisted antibiotics to exert antimicrobial activity. GENERAL SIGNIFICANCE HPr48 could be used as a lead compound in the development of new antibiotics, or, alternatively, to improve the efficiency of existing ones.
Collapse
Affiliation(s)
- José L Neira
- IDIBE, Universidad Miguel Hernández, 03202, Elche (Alicante), Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain.
| | | | | | - María G Ortore
- Dipartimento DiSVA, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Alberto Falcó
- IDIBE, Universidad Miguel Hernández, 03202, Elche (Alicante), Spain.
| |
Collapse
|
4
|
Wang Y, Cao L, Bi M, Wang S, Chen M, Chen X, Ying M, Huang L. Wobble Editing of Cre-box by Unspecific CRISPR/Cas9 Causes CCR Release and Phenotypic Changes in Bacillus pumilus. Front Chem 2021; 9:717609. [PMID: 34434920 PMCID: PMC8381255 DOI: 10.3389/fchem.2021.717609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/30/2021] [Indexed: 11/18/2022] Open
Abstract
CRISPR-associated Cas9 endonuclease (CRISPR/Cas9) systems are widely used to introduce precise mutations, such as knocking in/out at targeted genomic sites. Herein, we successfully disrupted the transcription of multiple genes in Bacillus pumilus LG3145 using a series of unspecific guide RNAs (gRNAs) and UgRNA:Cas9 system-assisted cre-box editing. The bases used as gRNAs shared 30–70% similarity with a consensus sequence, a cis-acting element (cre-box) mediating carbon catabolite repression (CCR) of many genes in Bacillus. This triggers trans-crRNA:Cas9 complex wobble cleavage up/downstream of cre sites in the promoters of multiple genes (up to 7), as confirmed by Sanger sequencing and next-generation sequencing (NGS). LG3145 displayed an obvious CCR release phenotype, including numerous secondary metabolites released into the culture broth, ∼ 1.67 g/L white flocculent protein, pigment overflow causing orange-coloured broth (absorbance = 309 nm), polysaccharide capsules appearing outside cells, improved sugar tolerance, and a two-fold increase in cell density. We assessed the relationship between carbon catabolite pathways and phenotype changes caused by unspecific UgRNA-directed cre site wobble editing. We propose a novel strategy for editing consensus targets at operator sequences that mediates transcriptional regulation in bacteria.
Collapse
Affiliation(s)
- Yingxiang Wang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China.,Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Linfeng Cao
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China.,Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Meiying Bi
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China.,Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Sicheng Wang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China.,Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Meiting Chen
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China.,Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Xingyu Chen
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China.,Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Ming Ying
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China.,Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Lei Huang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China.,Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| |
Collapse
|