1
|
Urlić I, Šoljić V, Vukoja M, Marijanović I, Kraljević M, Urlić M, Marić S, Vukojević K, Filipović N. Identifying an Inversin as a Novel Prognostic Marker in Patients with Clear-Cell Renal Cell Carcinoma. Int J Mol Sci 2024; 25:12120. [PMID: 39596188 PMCID: PMC11594840 DOI: 10.3390/ijms252212120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/03/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Precision medicine is a developing trend in oncology, and it includes the prognosis and treatment of advanced-stage ccRCC. New predictive factors and therapeutic targets for this disease are steadily needed. The aim of this study was to explore the tumor expression of inversin as a potential prognostic factor and/or therapeutic target in ccRCC. We compared the expression of inversin between primary ccRCC and normal renal tissues by using immunohistochemistry and rtPCR in our cohort, and we also analyzed publicly available data from the TCGA-KIRC cohort. We found that the expression of inversin was significantly lower in primary tumor tissue, in comparison to solid normal tissue. Data from the KIRC study confirmed that a lower INVS expression level in ccRCC was significantly related with the overall and disease-specific survival, as well as with a shorter progression-free interval (p < 0.05). Four out of ten inversin interactome partners were significantly related with the overall and disease-specific survival in ccRCC. A lower expression of ANKS6 was a negative survival predictor, while a higher expression of NPHP3, DVL1, or DVL3 was related with a lower survival. The expression of INVS and its interactome partners in ccRCC was correlated with the differentiation of the tumor and metastasis. The expression of INVS and its partners was also correlated with tumor leukocyte infiltration and the expression of immune checkpoint genes. The results of this study point to inversin and a distinguished group of its interactome partners as potential prognostic factors in ccRCC, with their predominant involvement in the modulation of the inflammatory infiltration of the tumor microenvironment and a strong relationship with the metastatic potential of the tumor.
Collapse
Affiliation(s)
- Ivanka Urlić
- Department of Oncology and Radiotherapy, University Hospital of Split, 21000 Split, Croatia
| | - Violeta Šoljić
- Laboratory of Morphology, Department of Histology and Embryology, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina; (V.Š.); (M.V.); (K.V.)
- Faculty of Health Studies, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Martina Vukoja
- Laboratory of Morphology, Department of Histology and Embryology, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina; (V.Š.); (M.V.); (K.V.)
| | - Inga Marijanović
- Clinic of Oncology, University Clinical Hospital Mostar, 88000 Mostar, Bosnia and Herzegovina; (I.M.); (M.K.)
| | - Marija Kraljević
- Clinic of Oncology, University Clinical Hospital Mostar, 88000 Mostar, Bosnia and Herzegovina; (I.M.); (M.K.)
| | - Marjan Urlić
- Department of Cardiac Surgery, University Hospital Centre Zagreb, 10000 Zagreb, Croatia;
| | - Sara Marić
- Odjel za Patološku Anatomiju i Citologiju, Kantonalna Bolnica Dr. Safet Mujić, 88000 Mostar, Bosnia and Herzegovina;
| | - Katarina Vukojević
- Laboratory of Morphology, Department of Histology and Embryology, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina; (V.Š.); (M.V.); (K.V.)
- Faculty of Health Studies, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia
| | - Natalija Filipović
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia
| |
Collapse
|
2
|
Perutina I, Kelam N, Maglica M, Racetin A, Ogorevc M, Filipović N, Katsuyama Y, Mišković J, Vukojević K. Disturbances in Switching between Canonical and Non-Canonical Wnt Signaling Characterize Developing and Postnatal Kidneys of Dab1-/- ( yotari) Mice. Biomedicines 2023; 11:biomedicines11051321. [PMID: 37238991 DOI: 10.3390/biomedicines11051321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/11/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
This study aims to determine the protein expression patterns of acetylated α-tubulin, inversin, dishevelled-1, Wnt5a/b, and β-catenin in developing (E13.5 and E15.5) and early postnatal (P4 and P14) kidneys of Dab1-/- (yotari) mice, their role in regulating the Wnt signaling pathway, and the possible relation to congenital anomalies of kidney and urinary tract (CAKUT). The analysis of target protein co-expression, observed in the renal vesicles/immature glomeruli, ampullae/collecting ducts, convoluted tubules, metanephric mesenchyme of developing kidneys, but proximal convoluted tubules, distal convoluted tubules and glomeruli of postnatal kidneys, was performed using double immunofluorescence and semi-quantitative methods. The overall expression of acetylated α-tubulin and inversin during normal kidney development increases with higher expression in yotari mice as the kidney acquires mature morphology. An increase in β-catenin and cytosolic DVL-1 levels, indicating a switch from non-canonical to canonical Wnt signaling, is found in the postnatal kidney of yotari mice. In contrast, healthy mouse kidney expresses inversin and Wnt5a/b in the postnatal period, thus activating non-canonical Wnt signaling. Target protein expression patterns in kidney development and the early postnatal period observed in this study could indicate that switching between canonical and non-canonical Wnt signaling is crucial for normal nephrogenesis, while the defective Dab1 gene product in yotari mice may promote CAKUT due to interfering with this process.
Collapse
Affiliation(s)
- Ilija Perutina
- Department of Anatomy, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Nela Kelam
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia
- Department of Medical Genetics, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Mirko Maglica
- Department of Anatomy, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Anita Racetin
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia
- Department of Medical Genetics, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Marin Ogorevc
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia
| | - Natalija Filipović
- Department of Anatomy, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia
| | - Yu Katsuyama
- Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Josip Mišković
- Department of Anatomy, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Katarina Vukojević
- Department of Anatomy, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia
- Department of Medical Genetics, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
- Center for Translational Research in Biomedicine, University of Split School of Medicine, 21000 Split, Croatia
| |
Collapse
|
3
|
Veljačić Visković D, Lozić M, Vukoja M, Šoljić V, Vukojević K, Glavina Durdov M, Filipović N, Lozić B. Spatio-Temporal Expression Pattern of CAKUT Candidate Genes DLG1 and KIF12 during Human Kidney Development. Biomolecules 2023; 13:biom13020340. [PMID: 36830709 PMCID: PMC9953652 DOI: 10.3390/biom13020340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
We aimed to investigate expression of the novel susceptibility genes for CAKUT, DLG1 and KIF12, proposed by a systematic in silico approach, in developing and postnatal healthy human kidneys to provide information about their spatiotemporal expression pattern. We analyzed expression of their protein products by immunohistochemistry and immunofluorescence and quantified relative mRNA levels by RT-qPCR. Statistically significant differences in expression patterns were observed between certain developmental stages. Strong expression of DLG1 was observed in the developing kidney, with a gradual decrease from the first phase of kidney development (Ph1) until the third phase (Ph3), when most nephrons are formed; at later stages, the highest expression was observed in the tubules. KIF12 was highly expressed in the developing structures, especially in Ph1, with a gradual decrease until the postnatal phase, which would indicate a significant role in nephrogenesis. Co-localization of DLG1 and KIF12 was pronounced in Ph1, especially on the apical side of the tubular epithelial cells. Thereafter, their expression gradually became weaker and was only visible as punctate staining in Ph4. The direct association of DLG1 with KIF12 as control genes of normal kidney development may reveal their new functional aspect in renal tubular epithelial cells.
Collapse
Affiliation(s)
| | - Mirela Lozić
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21 000 Split, Croatia
- Correspondence: ; Tel.: +385-21-557-800
| | - Martina Vukoja
- Laboratory of Morphology, Department of Histology and Embryology, School of Medicine, University of Mostar, 88 000 Mostar, Bosnia and Herzegovina
| | - Violeta Šoljić
- Laboratory of Morphology, Department of Histology and Embryology, School of Medicine, University of Mostar, 88 000 Mostar, Bosnia and Herzegovina
- Faculty of Health Studies, University of Mostar, 88 000 Mostar, Bosnia and Herzegovina
| | - Katarina Vukojević
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21 000 Split, Croatia
- Laboratory of Morphology, Department of Histology and Embryology, School of Medicine, University of Mostar, 88 000 Mostar, Bosnia and Herzegovina
- Faculty of Health Studies, University of Mostar, 88 000 Mostar, Bosnia and Herzegovina
- Department of Anatomy, University of Mostar, 88 000 Mostar, Bosnia and Herzegovina
- Center for Translational Research in Biomedicine, University of Split School of Medicine, 21 000 Split, Croatia
| | - Merica Glavina Durdov
- Department of Pathology, University Hospital Split, 21 000 Split, Croatia
- School of Medicine, University of Split, Šoltanska 2, 21 000 Split, Croatia
| | - Natalija Filipović
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21 000 Split, Croatia
- Department of Anatomy, University of Mostar, 88 000 Mostar, Bosnia and Herzegovina
- Center for Translational Research in Biomedicine, University of Split School of Medicine, 21 000 Split, Croatia
| | - Bernarda Lozić
- Paediatric Diseases Department, University Hospital of Split, Spinčićeva 1, 21 000 Split, Croatia
- School of Medicine, University of Split, Šoltanska 2, 21 000 Split, Croatia
| |
Collapse
|
4
|
Differences in Immunohistochemical and Ultrastructural Features between Podocytes and Parietal Epithelial Cells (PECs) Are Observed in Developing, Healthy Postnatal, and Pathologically Changed Human Kidneys. Int J Mol Sci 2022; 23:ijms23147501. [PMID: 35886848 PMCID: PMC9322852 DOI: 10.3390/ijms23147501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 02/06/2023] Open
Abstract
During human kidney development, cells of the proximal nephron gradually differentiate into podocytes and parietal epithelial cells (PECs). Podocytes are terminally differentiated cells that play a key role in both normal and pathological kidney function. Therefore, the potential of podocytes to regenerate or be replaced by other cell populations (PECs) is of great interest for the possible treatment of kidney diseases. In the present study, we analyzed the proliferation and differentiation capabilities of podocytes and PECs, changes in the expression pattern of nestin, and several early proteins including WNT4, Notch2, and Snail, as well as Ki-67, in tissues of developing, postnatal, and pathologically changed human kidneys by using immunohistochemistry and electron microscopy. Developing PECs showed a higher proliferation rate than podocytes, whereas nestin expression characterized only podocytes and pathologically changed kidneys. In the developing kidneys, WNT4 and Notch2 expression increased moderately in podocytes and strongly in PECs, whereas Snail increased only in PECs in the later fetal period. During human kidney development, WNT4, Notch2, and Snail are involved in early nephrogenesis control. In kidneys affected by congenital nephrotic syndrome of the Finnish type (CNF) and focal segmental glomerulosclerosis (FSGS), WNT4 decreased in both cell populations, whereas Notch2 decreased in FSGS. In contrast, Snail increased both in CNF and FSGS, whereas Notch2 increased only in CNF. Electron microscopy revealed cytoplasmic processes spanning the urinary space between the podocytes and PECs in developing and healthy postnatal kidneys, whereas the CNF and FSGS kidneys were characterized by numerous cellular bridges containing cells with strong expression of nestin and all analyzed proteins. Our results indicate that the mechanisms of gene control in nephrogenesis are reactivated under pathological conditions. These mechanisms could have a role in restoring glomerular integrity by potentially inducing the regeneration of podocytes from PECs.
Collapse
|
5
|
Bai Y, Wei C, Li P, Sun X, Cai G, Chen X, Hong Q. Primary cilium in kidney development, function and disease. Front Endocrinol (Lausanne) 2022; 13:952055. [PMID: 36072924 PMCID: PMC9441790 DOI: 10.3389/fendo.2022.952055] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
The primary cilium is a hair-like, microtubule-based organelle that is covered by the cell membrane and extends from the surface of most vertebrate cells. It detects and translates extracellular signals to direct various cellular signaling pathways to maintain homeostasis. It is mainly distributed in the proximal and distal tubules and collecting ducts in the kidney. Specific signaling transduction proteins localize to primary cilia. Defects in cilia structure and function lead to a class of diseases termed ciliopathies. The proper functioning of primary cilia is essential to kidney organogenesis and the maintenance of epithelial cell differentiation and proliferation. Persistent cilia dysfunction has a role in the early stages and progression of renal diseases, such as cystogenesis and acute tubular necrosis (ATN). In this review, we focus on the central role of cilia in kidney development and illustrate how defects in cilia are associated with renal disease progression.
Collapse
Affiliation(s)
- Yunfeng Bai
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Cuiting Wei
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ping Li
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xuefeng Sun
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Xiangmei Chen, ; Quan Hong,
| | - Quan Hong
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
- *Correspondence: Xiangmei Chen, ; Quan Hong,
| |
Collapse
|