1
|
Lee J, Peesh P, Quaicoe V, Tan C, Banerjee A, Mooz P, Ganesh BP, Petrosino J, Bryan RM, McCullough LD, Venna VR. Estradiol mediates colonic epithelial protection in aged mice after stroke and is associated with shifts in the gut microbiome. Gut Microbes 2023; 15:2271629. [PMID: 37910478 PMCID: PMC10730206 DOI: 10.1080/19490976.2023.2271629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023] Open
Abstract
The gut is a major source of bacteria and antigens that contribute to neuroinflammation after brain injury. Colonic epithelial cells (ECs) are responsible for secreting major cellular components of the innate defense system, including antimicrobial proteins (AMP) and mucins. These cells serve as a critical regulator of gut barrier function and maintain host-microbe homeostasis. In this study, we determined post-stroke host defense responses at the colonic epithelial surface in mice. We then tested if the enhancement of these epithelial protective mechanisms is beneficial in young and aged mice after stroke. AMPs were significantly increased in the colonic ECs of young males, but not in young females after experimental stroke. In contrast, mucin-related genes were enhanced in young females and contributed to mucus formation that maintains the distance between the host and gut bacteria. Bacterial community profiling was done using universal amplification of 16S rRNA gene sequences. The sex-specific colonic epithelial defense responses after stroke in young females were reversed with ovariectomy and led to a shift from a predominately mucin response to the enhanced AMP expression seen in males after stroke. Estradiol (E2) replacement prior to stroke in aged females increased mucin gene expression in the colonic ECs. Interestingly, we found that E2 treatment reduced stroke-associated neuronal hyperactivity in the insular cortex, a brain region that interacts with visceral organs such as the gut, in parallel to an increase in the composition of Lactobacillus and Bifidobacterium in the gut microbiota. This is the first study demonstrating sex differences in host defense mechanisms in the gut after brain injury.
Collapse
Affiliation(s)
- Juneyoung Lee
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Pedram Peesh
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Victoria Quaicoe
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Chunfeng Tan
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Anik Banerjee
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Patrick Mooz
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bhanu P. Ganesh
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joseph Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Robert M. Bryan
- Department of Anesthesiology, Baylor College of Medicine, Houston, TX, USA
| | - Louise D. McCullough
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Neurology, Memorial Hermann Hospital-Texas Medical Center, Houston, TX, USA
| | - Venugopal Reddy Venna
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
2
|
MicroRNA Profiles in Intestinal Epithelial Cells in a Mouse Model of Sepsis. Cells 2023; 12:cells12050726. [PMID: 36899862 PMCID: PMC10001189 DOI: 10.3390/cells12050726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Sepsis is a systemic inflammatory disorder that leads to the dysfunction of multiple organs. In the intestine, the deregulation of the epithelial barrier contributes to the development of sepsis by triggering continuous exposure to harmful factors. However, sepsis-induced epigenetic changes in gene-regulation networks within intestinal epithelial cells (IECs) remain unexplored. In this study, we analyzed the expression profile of microRNAs (miRNAs) in IECs isolated from a mouse model of sepsis generated via cecal slurry injection. Among 239 miRNAs, 14 miRNAs were upregulated, and 9 miRNAs were downregulated in the IECs by sepsis. Upregulated miRNAs in IECs from septic mice, particularly miR-149-5p, miR-466q, miR-495, and miR-511-3p, were seen to exhibit complex and global effects on gene regulation networks. Interestingly, miR-511-3p has emerged as a diagnostic marker in this sepsis model due to its increase in blood in addition to IECs. As expected, mRNAs in the IECs were remarkably altered by sepsis; specifically, 2248 mRNAs were decreased, while 612 mRNAs were increased. This quantitative bias may be possibly derived, at least partly, from the direct effects of the sepsis-increased miRNAs on the comprehensive expression of mRNAs. Thus, current in silico data indicate that there are dynamic regulatory responses of miRNAs to sepsis in IECs. In addition, the miRNAs that were increased with sepsis had enriched downstream pathways including Wnt signaling, which is associated with wound healing, and FGF/FGFR signaling, which has been linked to chronic inflammation and fibrosis. These modifications in miRNA networks in IECs may lead to both pro- and anti-inflammatory effects in sepsis. The four miRNAs discovered above were shown to putatively target LOX, PTCH1, COL22A1, FOXO1, or HMGA2, via in silico analysis, which were associated with Wnt or inflammatory pathways and selected for further study. The expressions of these target genes were downregulated in sepsis IECs, possibly through posttranscriptional modifications of these miRNAs. Taken together, our study suggests that IECs display a distinctive miRNA profile which is capable of comprehensively and functionally reshaping the IEC-specific mRNA landscape in a sepsis model.
Collapse
|
3
|
Park EJ, Shimaoka M, Kiyono H. Functional Flexibility of Exosomes and MicroRNAs of Intestinal Epithelial Cells in Affecting Inflammation. Front Mol Biosci 2022; 9:854487. [PMID: 35647030 PMCID: PMC9130772 DOI: 10.3389/fmolb.2022.854487] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/13/2022] [Indexed: 12/13/2022] Open
Abstract
Intestinal epithelial cells (IECs) are a mucosal immune barrier essential to coordinate host-microbe crosstalk. Sepsis is a systemic inflammatory syndrome with dysfunction in multiple organs including the intestine whose epithelial barrier is deregulated. Thus, IECs are a main contributor to intestinal permeability and inflammation in sepsis. Exosomes emerge as a mediator of intercellular and inter-organic communications. Recently, IEC-derived exosomes and their cargoes, such as microRNAs (miRNAs), in sepsis were shown to regulate the expression of proinflammatory mediators in the inflamed gut tissues. It is a compelling hypothesis that these IEC exosomes exhibit their dynamic activity to deliver their functional miRNA cargoes to immune cells in local and distant organs to regulate proinflammatory responses and alleviate tissue injury. Also, epithelial tight junction (TJ) proteins are downregulated on gut inflammation. Some of the IEC miRNAs were reported to deteriorate the epithelial integrity by diminishing TJ expressions in intestines during sepsis and aging. Thus, it is worth revisiting and discussing the diverse functions of IEC exosomes and miRNAs in reshaping inflammations. This review includes both iterative and hypothetical statements based on current knowledge in this field.
Collapse
Affiliation(s)
- Eun Jeong Park
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hiroshi Kiyono
- Department of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Future Medicine Education and Research Organization, Chiba University, Chiba, Japan
- CU-UCSD Center for Mucosal Immunology, Allergy, and Vaccine (cMAV), Division of Gastroenterology, Department of Medicine, University of California, San Diego, CA, United States
| |
Collapse
|
4
|
Zeng J, Liang Y, Sun R, Huang S, Wang Z, Xiao L, Lu J, Yu H, Yao P. Hematopoietic stem cell transplantation ameliorates maternal diabetes–mediated gastrointestinal symptoms and autism‐like behavior in mouse offspring. Ann N Y Acad Sci 2022; 1512:98-113. [PMID: 35220596 PMCID: PMC9307016 DOI: 10.1111/nyas.14766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/16/2022] [Indexed: 01/16/2023]
Abstract
Epidemiological studies have shown that maternal diabetes is associated with autism spectrum disorder development, although the detailed mechanism remains unclear. We have previously found that maternal diabetes induces persistent epigenetic changes and gene suppression in neurons, subsequently triggering autism‐like behavior (ALB). In this study, we investigated the potential role and effect of hematopoietic stem cells (HSCs) on maternal diabetes–mediated gastrointestinal (GI) dysfunction and ALB in a mouse model. We show in vitro that transient hyperglycemia induced persistent epigenetic changes and gene suppression of tight junction proteins. In vivo, maternal diabetes–mediated oxidative stress induced gene suppression and inflammation in both peripheral blood mononuclear cells and intestine epithelial cells, subsequently triggering GI dysfunction with increased intestinal permeability and altered microbiota compositions, as well as suppressed gene expression in neurons and subsequent ALB in offspring; HSC transplantation (HSCT) ameliorates this effect by systematically reversing maternal diabetes–mediated oxidative stress. We conclude that HSCT can ameliorate maternal diabetes–mediated GI symptoms and autism‐like behavior in mouse offspring.
Collapse
Affiliation(s)
- Jiaying Zeng
- Department of Child HealthCare, Affiliated Foshan Maternity & Child Healthcare Hospital The Second School of Clinical Medicine of Southern Medical University Foshan P. R. China
| | - Yujie Liang
- Department of Child Psychiatry, Kangning Hospital of Shenzhen Shenzhen Mental Health Center Shenzhen P. R. China
| | - Ruoyu Sun
- Department of Child HealthCare, Affiliated Foshan Maternity & Child Healthcare Hospital The Second School of Clinical Medicine of Southern Medical University Foshan P. R. China
| | - Saijun Huang
- Department of Child HealthCare, Affiliated Foshan Maternity & Child Healthcare Hospital The Second School of Clinical Medicine of Southern Medical University Foshan P. R. China
| | - Zichen Wang
- Department of Child Psychiatry, Kangning Hospital of Shenzhen Shenzhen Mental Health Center Shenzhen P. R. China
| | - Li Xiao
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital The Second School of Clinical Medicine of Southern Medical University Foshan P. R. China
| | - Jianpin Lu
- Department of Child Psychiatry, Kangning Hospital of Shenzhen Shenzhen Mental Health Center Shenzhen P. R. China
| | - Hong Yu
- Department of Child HealthCare, Affiliated Foshan Maternity & Child Healthcare Hospital The Second School of Clinical Medicine of Southern Medical University Foshan P. R. China
| | - Paul Yao
- Department of Child HealthCare, Affiliated Foshan Maternity & Child Healthcare Hospital The Second School of Clinical Medicine of Southern Medical University Foshan P. R. China
- Department of Child Psychiatry, Kangning Hospital of Shenzhen Shenzhen Mental Health Center Shenzhen P. R. China
| |
Collapse
|
5
|
Xiao L, Wang M, Zhang W, Song Y, Zeng J, Li H, Yu H, Li L, Gao P, Yao P. Maternal diabetes-mediated RORA suppression contributes to gastrointestinal symptoms in autism-like mouse offspring. BMC Neurosci 2022; 23:8. [PMID: 35164690 PMCID: PMC8842926 DOI: 10.1186/s12868-022-00693-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Retinoic acid-related orphan receptor alpha (RORA) has been reported to be suppressed in autistic patients and is associated with autism spectrum disorders (ASD), although the potential role and mechanism of RORA on gastrointestinal (GI) symptoms in ASD patients is still not reported. In this study, we aim to investigate the contribution of RORA to GI symptoms through a maternal diabetes-mediated autism-like mouse model. RESULTS Male offspring of diabetic dams were treated with either superoxide dismutase (SOD) mimetic MnTBAP or RORA agonist SR1078, or were crossbred with intestine epithelial cells (IEC)-specific RORA knockout (RORA-/-) mouse. Gene expression, oxidative stress and inflammation were measured in brain tissues, peripheral blood mononuclear cells (PBMC) and IEC, and GI symptoms were evaluated. Our results showed that SOD mimetic MnTBAP completely, while RORA agonist SR1078 partly, reversed maternal diabetes-mediated oxidative stress and inflammation in the brain, PBMC and IEC, as well as GI symptoms, including intestine permeability and altered gut microbiota compositions. IEC-specific RORA deficiency either mimicked or worsened maternal diabetes-mediated GI symptoms as well as oxidative stress and inflammation in IEC, while there was little effect on maternal diabetes-mediated autism-like behaviors. CONCLUSIONS We conclude that RORA suppression contributes to maternal diabetes-mediated GI symptoms in autism-like mouse offspring, this study provides a potential therapeutical target for maternal diabetes-mediated GI symptoms in offspring through RORA activation.
Collapse
Affiliation(s)
- Li Xiao
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, 528000, People's Republic of China
| | - Min Wang
- Hainan Women and Children's Medical Center, Haikou, 570206, People's Republic of China
| | - Wanhua Zhang
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, 528000, People's Republic of China
| | - Yuan Song
- Hainan Women and Children's Medical Center, Haikou, 570206, People's Republic of China
| | - Jiaying Zeng
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, 528000, People's Republic of China
| | - Huilin Li
- Hainan Women and Children's Medical Center, Haikou, 570206, People's Republic of China
| | - Hong Yu
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, 528000, People's Republic of China
| | - Ling Li
- Hainan Women and Children's Medical Center, Haikou, 570206, People's Republic of China.
| | - Pingming Gao
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, 528000, People's Republic of China.
| | - Paul Yao
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, 528000, People's Republic of China. .,Hainan Women and Children's Medical Center, Haikou, 570206, People's Republic of China.
| |
Collapse
|
6
|
Zhang H, Huang Y, Li X, Han X, Hu J, Wang B, Zhang L, Zhuang P, Zhang Y. Dynamic Process of Secondary Pulmonary Infection in Mice With Intracerebral Hemorrhage. Front Immunol 2021; 12:767155. [PMID: 34868020 PMCID: PMC8639885 DOI: 10.3389/fimmu.2021.767155] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/03/2021] [Indexed: 12/26/2022] Open
Abstract
Stroke is a common central nervous system disease in clinical practice. Stroke patients often have infectious complications, such as pneumonia and infections of the urinary tract and gastrointestinal tract. Although it has been shown that translocation of the host gut microbiota to the lungs and immune dysfunction plays a vital role in the development of infection after ischemic stroke, the occurrence and mechanism of pulmonary infection at different time points after hemorrhagic cerebral remain unclear. In this study, the changes in the immune system and intestinal barrier function in mice during disease development were investigated at 1 day (M 1 d), 3 days (M 3 d) and 7 days (M 7 d) following hemorrhagic stroke to clarify the mechanism of secondary pulmonary infection. The experimental results revealed that after hemorrhagic stroke, model mice showed increased brain damage from day 1 to 3, followed by a trend of brain recovery from day 3 to 7 . After hemorrhagic stroke, the immune system was disturbed in model mice. Significant immunosuppression of the peripheral immune system was observed in the M 3 d group but improved in the M 7 d group. Staining of lung tissues with hematoxylin and eosin (H&E) and for inflammatory factors revealed considerable disease and immune disorders in the M 7 d group. Stroke seriously impaired intestinal barrier function in mice and significantly changed the small intestine structure. From 1 to 7 d after stroke, intestinal permeability was increased, whereas the levels of markers for intestinal tight junctions, mucus and immunoglobulin A were decreased. Analysis based on 16S rRNA suggested that the microflora in the lung and ileum was significantly altered after stroke. The composition of microflora in lung and ileum tissue was similar in the M 7d group, suggesting that intestinal bacteria had migrated to lung tissue and caused lung infection at this time point after hemorrhagic stroke. In stroke mice, the aggravation of intestinal barrier dysfunction and immune disorders after intracerebral hemorrhage, promoted the migration of enteric bacteria, and increased the risk of pneumonia poststroke. Our findings reveal the dynamic process of infection after hemorrhagic stroke and provide clues for the optimal timing of intervention for secondary pulmonary infection in stroke patients.
Collapse
Affiliation(s)
- Hanyu Zhang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingying Huang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, China
| | - Xiaojin Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xu Han
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Hu
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Wang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Zhang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Pengwei Zhuang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanjun Zhang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
7
|
Editorial for the Special Issue "Molecular Bases of Senescence". Int J Mol Sci 2021; 22:ijms222111873. [PMID: 34769304 PMCID: PMC8585045 DOI: 10.3390/ijms222111873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
The increasing life expectancy of populations worldwide represents the most evident success of the last century thanks to varying interacting social and medical achievements [...].
Collapse
|