1
|
Rizzi G, Digiovanni S, Degani G, Barbiroli A, Di Pisa F, Popolo L, Visentin C, Vanoni MA, Ricagno S. Site-directed mutagenesis reveals the interplay between stability, structure, and enzymatic activity in RidA from Capra hircus. Protein Sci 2024; 33:e5036. [PMID: 38801230 PMCID: PMC11129622 DOI: 10.1002/pro.5036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024]
Abstract
Reactive intermediate deaminase A (RidA) is a highly conserved enzyme that catalyzes the hydrolysis of 2-imino acids to the corresponding 2-keto acids and ammonia. RidA thus prevents the accumulation of such potentially harmful compounds in the cell, as exemplified by its role in the degradation of 2-aminoacrylate, formed during the metabolism of cysteine and serine, catalyzing the conversion of its stable 2-iminopyruvate tautomer into pyruvate. Capra hircus (goat) RidA (ChRidA) was the first mammalian RidA to be isolated and described. It has the typical homotrimeric fold of the Rid superfamily, characterized by remarkably high thermal stability, with three active sites located at the interface between adjacent subunits. ChRidA exhibits a broad substrate specificity with a preference for 2-iminopyruvate and other 2-imino acids derived from amino acids with non-polar non-bulky side chains. Here we report a biophysical and biochemical characterization of eight ChRidA variants obtained by site-directed mutagenesis to gain insight into the role of specific residues in protein stability and catalytic activity. Each mutant was produced in Escherichia coli cells, purified and characterized in terms of quaternary structure, thermal stability and substrate specificity. The results are rationalized in the context of the high-resolution structures obtained by x-ray crystallography.
Collapse
Affiliation(s)
- Giulia Rizzi
- Dipartimento di BioscienzeUniversità degli Studi di MilanoMilanItaly
| | | | - Genny Degani
- Dipartimento di BioscienzeUniversità degli Studi di MilanoMilanItaly
| | - Alberto Barbiroli
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'AmbienteUniversità degli Studi di MilanoMilanItaly
| | - Flavio Di Pisa
- Istituto di BiofisicaConsiglio Nazionale delle RicercheMilanItaly
| | - Laura Popolo
- Dipartimento di BioscienzeUniversità degli Studi di MilanoMilanItaly
| | - Cristina Visentin
- Dipartimento di BioscienzeUniversità degli Studi di MilanoMilanItaly
| | | | - Stefano Ricagno
- Dipartimento di BioscienzeUniversità degli Studi di MilanoMilanItaly
- Institute of Molecular and Translational CardiologyI.R.C.C.S. Policlinico San DonatoSan Donato MilaneseItaly
| |
Collapse
|
2
|
Hou X, Zhu L, Xu H, Shi J, Ji S. Dysregulation of protein succinylation and disease development. Front Mol Biosci 2024; 11:1407505. [PMID: 38882606 PMCID: PMC11176430 DOI: 10.3389/fmolb.2024.1407505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
As a novel post-translational modification of proteins, succinylation is widely present in both prokaryotes and eukaryotes. By regulating protein translocation and activity, particularly involved in regulation of gene expression, succinylation actively participates in diverse biological processes such as cell proliferation, differentiation and metabolism. Dysregulation of succinylation is closely related to many diseases. Consequently, it has increasingly attracted attention from basic and clinical researchers. For a thorough understanding of succinylation dysregulation and its implications for disease development, such as inflammation, tumors, cardiovascular and neurological diseases, this paper provides a comprehensive review of the research progress on abnormal succinylation. This understanding of association of dysregulation of succinylation with pathological processes will provide valuable directions for disease prevention/treatment strategies as well as drug development.
Collapse
Affiliation(s)
- Xiaoli Hou
- Center for Molecular Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
| | - Lijuan Zhu
- Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Haiying Xu
- Center for Molecular Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
| | - Jie Shi
- Zhoukou Vocational and Technical College, Zhoukou, Henan, China
| | - Shaoping Ji
- Center for Molecular Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
- Department of Biochemistry and Molecular Biology, Medical School, Henan University, Kaifeng, Henan, China
| |
Collapse
|
3
|
Hou X, Chen Y, Li X, Gu X, Dong W, Shi J, Ji S. Protein succinylation: regulating metabolism and beyond. Front Nutr 2024; 11:1336057. [PMID: 38379549 PMCID: PMC10876795 DOI: 10.3389/fnut.2024.1336057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Modifications of protein post-translation are critical modulatory processes, which alters target protein biological activity,function and/or location, even involved in pathogenesis of some diseases. So far, there are at least 16 types of post-translation modifications identified, particularly through recent mass spectrometry analysis. Among them, succinylation (Ksuc) on protein lysine residues causes a variety of biological changes. Succinylation of proteins contributes to many cellular processes such as proliferation, growth, differentiation, metabolism and even tumorigenesis. Mechanically, Succinylation leads to conformation alteration of chromatin or remodeling. As a result, transcription/expression of target genes is changed accordingly. Recent research indicated that succinylation mainly contributes to metabolism modulations, from gene expression of metabolic enzymes to their activity modulation. In this review, we will conclude roles of succinylation in metabolic regulation of glucose, fat, amino acids and related metabolic disease launched by aberrant succinylation. Our goal is to stimulate extra attention to these still not well researched perhaps important succinylation modification on proteins and cell processes.
Collapse
Affiliation(s)
- Xiaoli Hou
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, China
| | - Yiqiu Chen
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, China
| | - Xiao Li
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, China
| | - Xianliang Gu
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, China
| | - Weixia Dong
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, China
| | - Jie Shi
- Zhoukou Vocational and Technical College, Zhoukou, China
| | - Shaoping Ji
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, China
- Department of Biochemistry and Molecular Biology, Medical School, Henan University, Kaifeng, China
| |
Collapse
|
4
|
Spiramycin Disarms Pseudomonas aeruginosa without Inhibiting Growth. Antibiotics (Basel) 2023; 12:antibiotics12030499. [PMID: 36978366 PMCID: PMC10044227 DOI: 10.3390/antibiotics12030499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Spiramycin is a 16-membered macrolide antibiotic currently used in therapy to treat infections caused by Gram-positive bacteria responsible for respiratory tract infections, and it is also effective against some Gram-negative bacteria and against Toxoplasma spp. In contrast, Pseudomonas aeruginosa, which is one of the pathogens of most concern globally, is intrinsically resistant to spiramycin. In this study we show that spiramycin inhibits the expression of virulence determinants in P. aeruginosa in the absence of any significant effect on bacterial multiplication. In vitro experiments demonstrated that production of pyoverdine and pyocyanin by an environmental strain of P. aeruginosa was markedly reduced in the presence of spiramycin, as were biofilm formation, swarming motility, and rhamnolipid production. Moreover, treatment of P. aeruginosa with spiramycin sensitized the bacterium to H2O2 exposure. The ability of spiramycin to dampen the virulence of the P. aeruginosa strain was confirmed in a Galleria mellonella animal model. The results demonstrated that when G. mellonella larvae were infected with P. aeruginosa, the mortality after 24 h was >90%. In contrast, when the spiramycin was injected together with the bacterium, the mortality dropped to about 50%. Furthermore, marked reduction in transcript levels of the antimicrobial peptides gallerimycin, gloverin and moricin, and lysozyme was found in G. mellonella larvae infected with P. aeruginosa and treated with spiramycin, compared to the larvae infected without spiramycin treatment suggesting an immunomodulatory activity of spiramycin. These results lay the foundation for clinical studies to investigate the possibility of using the spiramycin as an anti-virulence and anti-inflammatory drug for a more effective treatment of P. aeruginosa infections, in combination with other antibiotics.
Collapse
|
5
|
Abstract
Lysine succinylation is a novel, broad-spectrum, dynamic, non-enzymatic protein post-translational modification (PTM). Succinylation is essential for the regulation of protein function and control of various signaling and regulatory pathways. It is involved in several life activities, including glucose metabolism, amino acid metabolism, fatty acid metabolism, ketone body synthesis, and reactive oxygen species clearance, by regulating protease activity and gene expression. The level of succinylation is mainly regulated by succinyl donor, succinyltransferase, and desuccinylase. Many studies have confirmed that succinylation plays a role in tumorigenesis by creating tissue heterogeneity, and can promote or inhibit various cancers via the regulation of different substrate targets or signaling pathways. The mechanism of action of some antineoplastic drugs is related to succinylation. To better understand the role of succinylation modification in cancer development and treatment, the present study reviewed the current research content and latest progress of succinylation modification in cancer, which might provide a new direction and target for the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Keer Lu
- Department of Prescription Science, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Dongwei Han
- Department of Prescription Science, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- *Correspondence: Dongwei Han, Department of Prescription Science, Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Harbin, Heilongjiang 150040, China (e-mail: )
| |
Collapse
|
6
|
Luis E, Lara Figueroa CO, Durán Pastén ML, Azorín Vega EP. Role of gamma radiation on functional expression of the voltage-gated potassium channel Kv10.1 and its importance in the radiobiological response. Appl Radiat Isot 2022; 187:110331. [DOI: 10.1016/j.apradiso.2022.110331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/02/2022]
|
7
|
Rid7C, a member of the YjgF/YER057c/UK114 (Rid) protein family, is a novel endoribonuclease that regulates the expression of a specialist RNA polymerase involved in differentiation in Nonomuraea gerenzanensis. J Bacteriol 2021; 204:e0046221. [PMID: 34694905 DOI: 10.1128/jb.00462-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The YjgF/YER057c/UK114 (Rid) is a protein family breadth conserved in all domains of life and includes the widely distributed archetypal RidA (YjgF) subfamily and seven other subfamilies (Rid1 to Rid7). Among these subfamilies, RidA is the only family to have been biochemically well characterized and is involved in the deamination of the reactive enamine/imine intermediates. In this study, we have characterized a protein of the Rid7 subfamily, named Rid7C, in Nonomuraea gerenzanensis, an actinomycete that is characterized by the presence of two types of RNA polymerases. This is due to the co-existence in its genome of two RNAP β chain-encoding genes: rpoB(S) (the wild-type rpoB gene) and rpoB(R) (a specialist, mutant-type rpoB gene) that controls A40926 antibiotic production and a wide range of metabolic adaptive behaviors. Here, we found that expression of rpoB(R) is regulated post-transcriptionally by RNA processing in the 5'-UTR of rpoB(R) mRNA, and that the endoribonuclease activity of Rid7C is responsible for mRNA processing thereby overseeing several tracts of morphological and biochemical differentiation. We also provide evidence that Rid7C may be associated with ribonuclease P M1 RNA, although M1 RNA is not required for rpoB(R) mRNA processing in vitro, and that Rid7C endoribonuclease activity is inhibited by A40926 suggesting the existence of a negative feedback loop on A40926 production, and a role of the endogenous synthesis of A40926 in the modulation of biochemical differentiation in this microorganism. Importance The YjgF/YER057c/UK114 family includes many proteins with diverse functions involved in detoxification, RNA maturation, and control of mRNA translation. We found that Rid7C is an endoribonuclease that is involved in processing of rpoB(R) mRNA, coding for a specialized RNA polymerase beta subunit that oversees morphological differentiation and A40926 antibiotic production in Nonomuraea gerenzanensis. Rid7C-mediated processing promotes rpoB(R) mRNA translation and antibiotic production, while Rid7C endoribonuclease activity is inhibited by A40926 suggesting a role of the endogenous synthesis of A40926 in modulation of biochemical differentiation in this microorganism. Finally, we show that recombinant Rid7C co-purified with M1 RNA (the RNA subunit of ribonuclease P) from Escherichia coli extract, suggesting a functional interaction between Rid7C and M1 RNA activities.
Collapse
|