1
|
Petchimuthu P, Ala C, Kunjiappan S, Pavadai P, Sankaranarayanan M, Ram Kumar Pandian S, Sundar K. Pharmacoinformatics-based identification of phytochemicals from Solanum torvum Swartz. fruits as potential inhibitors for MAPK14 protein. J Biomol Struct Dyn 2024; 42:7795-7811. [PMID: 37583290 DOI: 10.1080/07391102.2023.2246562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/21/2023] [Indexed: 08/17/2023]
Abstract
Plants and phytocompounds gained more attention because of their unrivalled variety of chemical diversity. In this view, the present study was executed to predict the anticancer potential of Solanum torvum Swartz. fruits derived phytocompounds against one of the breast cancer target proteins (MAPK14, PDB ID: 5ETA, resolution: 2.80 Å) through pharmacoinformatics-based screening and molecular dynamics simulation tools. Initially, a graph theoretical network approach was used to visualize the genes, enzymes, and proteins involved in the signalling pathway of breast cancer and identify the significant target protein (MAPK14). A total of thirty-three active compounds were selected from S. torvum sw. through the IMPPAT database, and their structures were drawn by Chemsketch software. The drug-like behaviours of the compounds were assessed through pharmacokinetics and physicochemical characterization studies. Five compounds, namely chlorogenin (-10.90 kcal × mol-1), corosolic acid (-10.80 kcal × mol-1), solaspigenin (-10.80 kcal × mol-1), paniculogenin (-10.70 kcal × mol-1), spirostane-3,6-dione (-10.70 kcal × mol-1) exhibited top binding score against MAPK14, these are higher than that of the standard drug (Doxorubicin) (-8.60 kcal × mol-1). Additionally, the five top-binding compounds revealed better drug-likeness traits and the lowest toxicity profiles. MD simulation studies confirmed the stability of the top five scored compounds with the MAPK14 binding pockets. According to these findings, the selected five compounds might be used as significant MAPK14 inhibitors and can be used as new medicines for the treatment of breast cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Priya Petchimuthu
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, India
| | - Chandu Ala
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, India
| | - Parasuraman Pavadai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru, India
| | - Murugesan Sankaranarayanan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani, India
| | | | - Krishnan Sundar
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, India
| |
Collapse
|
2
|
Worzakowska M, Sztanke K, Sztanke M. Studies on the Thermal Decomposition Course of Nitrogen-Rich Heterocyclic Esters as Potential Drug Candidates and Evaluation of Their Thermal Stability and Properties. Int J Mol Sci 2024; 25:4768. [PMID: 38731989 PMCID: PMC11084317 DOI: 10.3390/ijms25094768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Drug candidates must undergo thermal evaluation as early as possible in the preclinical phase of drug development because undesirable changes in their structure and physicochemical properties may result in decreased pharmacological activity or enhanced toxicity. Hence, the detailed evaluation of nitrogen-rich heterocyclic esters as potential drug candidates, i.e., imidazolidinoannelated triazinylformic acid ethyl esters 1-3 (where R1 = 4-CH3 or 4-OCH3 or 4-Cl, and R2 = -COOC2H5) and imidazolidinoannelated triazinylacetic acid methyl esters 4-6 (where R1 = 4-CH3 or 4-OCH3 or 4-Cl, and R2 = -CH2COOCH3)-in terms of their melting points, melting enthalpy values, thermal stabilities, pyrolysis, and oxidative decomposition course-has been carried out, using the simultaneous thermal analysis methods (TG/DTG/DSC) coupled with spectroscopic techniques (FTIR and QMS). It was found that the melting process (documented as one sharp peak related to the solid-liquid phase transition) of the investigated esters proceeded without their thermal decomposition. It was confirmed that the melting points of the tested compounds increased in relation to R1 and R2 as follows: 2 (R1 = 4-OCH3; R2 = -COOC2H5) < 6 (R1 = 4-Cl; R2 = -CH2COOCH3) < 5 (R1 = 4-OCH3; R2 = -CH2COOCH3) < 3 (R1 = 4-Cl; R2 = -COOC2H5) < 1 (R1 = 4-CH3; R2 = -COOC2H5) < 4 (R1 = 4-CH3; R2 = -CH2COOCH3). All polynitrogenated heterocyclic esters proved to be thermally stable up to 250 °C in inert and oxidising conditions, although 1-3 were characterised by higher thermal stability compared to 4-6. The results confirmed that both the pyrolysis and the oxidative decomposition of heterocyclic ethyl formates/methyl acetates with para-substitutions at the phenyl moiety proceed according to the radical mechanism. In inert conditions, the pyrolysis process of the studied molecules occurred with the homolytic breaking of the C-C, C-N, and C-O bonds. This led to the emission of alcohol (ethanol in the case of 1-3 or methanol in the case of 4-6), NH3, HCN, HNCO, aldehydes, CO2, CH4, HCl, aromatics, and H2O. In turn, in the presence of air, cleavage of the C-C, C-N, and C-O bonds connected with some oxidation and combustion processes took place. This led to the emission of the corresponding alcohol depending on the analysed class of heterocyclic esters, NH3, HCN, HNCO, aldehydes, N2, NO/NO2, CO, CO2, HCl, aromatics, and H2O. Additionally, after some biological tests, it was proven that all nitrogen-rich heterocyclic esters-as potential drug candidates-are safe for erythrocytes, and some of them are able to protect red blood cells from oxidative stress-induced damage.
Collapse
Affiliation(s)
- Marta Worzakowska
- Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, 33 Gliniana Street, 20-614 Lublin, Poland;
| | - Krzysztof Sztanke
- Laboratory of Bioorganic Compounds Synthesis and Analysis, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland;
| | - Małgorzata Sztanke
- Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland
| |
Collapse
|
3
|
Malta CP, Barcelos RCS, Fernandes PS, Martins MO, Sagrillo MR, Bier CAS, Morgental RD. In silico toxicity and immunological interactions of components of calcium silicate-based and epoxy resin-based endodontic sealers. Clin Oral Investig 2024; 28:148. [PMID: 38353803 DOI: 10.1007/s00784-024-05548-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
OBJECTIVES The present study aimed to determine in silico toxicity predictions of test compounds from hydraulic calcium silicate-based sealers (HCSBS) and AH Plus and computationally simulate the interaction between these substances and mediators of periapical inflammation via molecular docking. MATERIALS AND METHODS All chemical information of the test compounds was obtained from the PubChem site. Predictions for bioavailability and toxicity analyses were determined by the Molinspiration Cheminformatics, pkCSM, ProTox-II and OSIRIS Property Explorer platforms. Molecular docking was performed using the Autodock4 AMDock v.1.5.2 program to analyse interactions between proteins (IL-1β, IL-6, IL-8, IL-10 and TNF-α) and ligands (calcium silicate hydrate, zirconium oxide, bisphenol-A epoxy resin, dibenzylamine, iron oxide and calcium tungstate) to establish the affinity and bonding mode between systems. RESULTS Bisphenol-A epoxy resin had the lowest maximum dose tolerated in humans and was the test compound with the largest number of toxicological properties (hepatotoxicity, carcinogenicity and irritant). All systems had favourable molecular docking. However, the ligands bisphenol-A epoxy resin and dibenzylamine had the greatest affinity with the cytokines tested. CONCLUSION In silico predictions and molecular docking pointed the higher toxicity and greater interaction with mediators of periapical inflammation of the main test compounds from AH Plus compared to those from HCSBS. CLINICAL RELEVANCE This is the first in silico study involving endodontic materials and may serve as the basis for further research that can generate more data, producing knowledge on the interference of each chemical compound in the composition of different root canal sealers.
Collapse
Affiliation(s)
- Cristiana Pereira Malta
- Graduate Program in Dental Sciences, Universidade Federal de Santa Maria - UFSM, Av. Roraima 1000, Bairro Camobi, Prédio 26F (Odontologia), Santa Maria, RS, 97105-900, Brazil.
| | - Raquel Cristine Silva Barcelos
- Graduate Program in Dental Sciences, Universidade Federal de Santa Maria - UFSM, Av. Roraima 1000, Bairro Camobi, Prédio 26F (Odontologia), Santa Maria, RS, 97105-900, Brazil
| | - Pâmella Schramm Fernandes
- Graduate Program in Nanosciences, Universidade Franciscana - UFN, Rua dos Andradas 1614, Bairro Centro, Santa Maria, RS, 97010-030, Brazil
| | - Mirkos Ortiz Martins
- Graduate Program in Nanosciences, Universidade Franciscana - UFN, Rua dos Andradas 1614, Bairro Centro, Santa Maria, RS, 97010-030, Brazil
| | - Michele Rorato Sagrillo
- Graduate Program in Nanosciences, Universidade Franciscana - UFN, Rua dos Andradas 1614, Bairro Centro, Santa Maria, RS, 97010-030, Brazil
| | - Carlos Alexandre Souza Bier
- Graduate Program in Dental Sciences, Universidade Federal de Santa Maria - UFSM, Av. Roraima 1000, Bairro Camobi, Prédio 26F (Odontologia), Santa Maria, RS, 97105-900, Brazil
| | - Renata Dornelles Morgental
- Graduate Program in Dental Sciences, Universidade Federal de Santa Maria - UFSM, Av. Roraima 1000, Bairro Camobi, Prédio 26F (Odontologia), Santa Maria, RS, 97105-900, Brazil
| |
Collapse
|
4
|
Janicka M, Sztanke M, Sztanke K. Modeling the Blood-Brain Barrier Permeability of Potential Heterocyclic Drugs via Biomimetic IAM Chromatography Technique Combined with QSAR Methodology. Molecules 2024; 29:287. [PMID: 38257200 PMCID: PMC11154582 DOI: 10.3390/molecules29020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Penetration through the blood-brain barrier (BBB) is desirable in the case of potential pharmaceuticals acting on the central nervous system (CNS), but is undesirable in the case of drug candidates acting on the peripheral nervous system because it may cause CNS side effects. Therefore, modeling of the permeability across the blood-brain barrier (i.e., the logarithm of the brain to blood concentration ratio, log BB) of potential pharmaceuticals should be performed as early as possible in the preclinical phase of drug development. Biomimetic chromatography with immobilized artificial membrane (IAM) and the quantitative structure-activity relationship (QSAR) methodology were successful in modeling the blood-brain barrier permeability of 126 drug candidates, whose experimentally-derived lipophilicity indices and computationally-derived molecular descriptors (such as molecular weight (MW), number of rotatable bonds (NRB), number of hydrogen bond donors (HBD), number of hydrogen bond acceptors (HBA), topological polar surface area (TPSA), and polarizability (α)) varied by class. The QSARs model established by multiple linear regression showed a positive effect of the lipophilicity (log kw, IAM) and molecular weight of the compound, and a negative effect of the number of hydrogen bond donors and acceptors, on the log BB values. The model has been cross-validated, and all statistics indicate that it is very good and has high predictive ability. The simplicity of the developed model, and its usefulness in screening studies of novel drug candidates that are able to cross the BBB by passive diffusion, are emphasized.
Collapse
Affiliation(s)
- Małgorzata Janicka
- Department of Physical Chemistry, Faculty of Chemistry, Institute of Chemical Science, Maria Curie-Skłodowska University, 20-031 Lublin, Poland;
| | - Małgorzata Sztanke
- Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland;
| | - Krzysztof Sztanke
- Laboratory of Bioorganic Compounds Synthesis and Analysis, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland
| |
Collapse
|
5
|
Worzakowska M, Sztanke M, Sztanke K. Experimental Studies on the Thermal Properties and Decomposition Course of a Novel Class of Heterocyclic Anticancer Drug Candidates. Int J Mol Sci 2023; 24:ijms24076190. [PMID: 37047158 PMCID: PMC10094111 DOI: 10.3390/ijms24076190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
The experimental studies on the thermal properties and decomposition course of a novel class of potential anticancer drugs (1–5) containing in their heterobicyclic structures the asymmetrical triazine template were performed with the use of differential scanning calorimetry (DSC) and simultaneous thermogravimetry/differential scanning calorimetry (TG/DTG/DSC) coupled online with Fourier transform infrared spectroscopy (FTIR) and quadrupole mass spectrometry (QMS) in inert and oxidizing conditions. All the compounds were thermally characterized in detail for the first time in this article. The DSC studies proved that the melting points of the tested compounds depended on the position and type of the substituent at the phenyl moiety, whereas they did not depend on the furnace atmosphere. All the tested polynitrogenated heterocycles proved to be molecules with high thermal stability in both atmospheres, and most of them (1, 3–5) were more stable in oxidizing conditions, which indicated the formation of a more thermally stable form of the compounds when interacting with oxygen. The simultaneous TG/FTIR/QMS analyses confirmed that their pyrolysis process occurred in one main stage resulting in the emission of volatiles such as NH3, HNCO, HCN, CO, CO2, H2O, NO2, aromatic amine derivatives, alkenes (for compounds 1–5), and HCl (for the compound 5). On the other hand, the oxidative decomposition process was more complicated and proceeded in two main stages leading to the emission of NH3, CO2, CO, HCN, HNCO, H2O, some aromatics (for compounds 1–5), HCl (for compounds 3–5) as well as the additional volatiles such as N2, NO2, NH2OH, and (CN)2. The type of the formed volatiles indicated that the decomposition process of the studied heterocycles under the influence of heating was initiated by the radical mechanism. Their decomposition was related to the symmetric cleavage of C–N and C–C bonds (inert conditions) and additional reaction of the volatiles and residues with oxygen (oxidizing conditions).
Collapse
|
6
|
Wardecki D, Dołowy M, Bober-Majnusz K. Assessment of Lipophilicity Parameters of Antimicrobial and Immunosuppressive Compounds. Molecules 2023; 28:molecules28062820. [PMID: 36985792 PMCID: PMC10059999 DOI: 10.3390/molecules28062820] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/11/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Lipophilicity in addition to the solubility, acid-base character and stability is one of the most important physicochemical parameters of a compound required to assess the ADMET properties (absorption, distribution, metabolism, excretion and toxicity) of a bioactive molecule. Therefore, the subject of this work was to determine the lipophilicity parameters of selected antimicrobial and immunosuppressive compounds such as delafloxacin, linezolid, sutezolid, ceftazidime, everolimus and zotarolimus using thin-layer chromatography in reversed phase system (RP-TLC). The chromatographic parameters of lipophilicity (RMW) for tested compounds were determined on different stationary phases: RP18F254, RP18WF254 and RP2F254 using ethanol, acetonitrile, and propan-2-ol as organic modifiers of mobile phases used. Chromatographically established RMW values were compared with partition coefficients obtained by different computational methods (AlogPs, AClogP, AlogP, MlogP, XlogP2, XlogP3, logPKOWWIN, ACD/logP, milogP). Both cluster and principal component analysis (CA and PCA) of the received results allowed us to compare the lipophilic nature of the studied compounds. The sum of ranking differences analysis (SRD) of all lipophilicity parameters was helpful to select the most effective method of determining the lipophilicity of the investigated compounds. The presented results demonstrate that RP-TLC method may be a good tool in determining the lipophilic properties of studied substances. Obtained lipophilic parameters of the compounds can be valuable in the design of their new derivatives as efficient antimicrobial and immunosuppressive agents.
Collapse
Affiliation(s)
- Dawid Wardecki
- Faculty of Pharmaceutical Sciences in Sosnowiec, Doctoral School, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Małgorzata Dołowy
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Katarzyna Bober-Majnusz
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| |
Collapse
|
7
|
Combined Micellar Liquid Chromatography Technique and QSARs Modeling in Predicting the Blood-Brain Barrier Permeation of Heterocyclic Drug-like Compounds. Int J Mol Sci 2022; 23:ijms232415887. [PMID: 36555527 PMCID: PMC9786067 DOI: 10.3390/ijms232415887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
The quantitative structure-activity relationship (QSAR) methodology was used to predict the blood-brain permeability (log BB) for 65 synthetic heterocyclic compounds tested as promising drug candidates. The compounds were characterized by different descriptors: lipophilicity, parachor, polarizability, molecular weight, number of hydrogen bond acceptors, number of rotatable bonds, and polar surface area. Lipophilic properties of the compounds were evaluated experimentally by micellar liquid chromatography (MLC). In the experiments, sodium dodecyl sulfate (SDS) as the effluent component and the ODS-2 column were used. Using multiple linear regression and leave-one-out cross-validation, we derived the statistically significant and highly predictive quantitative structure-activity relationship models. Thus, this study provides valuable information on the expected properties of the substances that can be used as a support tool in the design of new therapeutic agents.
Collapse
|
8
|
Predicting skin permeability of pharmaceutical and cosmetic compounds using retention on octadecyl, cholesterol-bonded and immobilized artificial membrane columns. J Chromatogr A 2022; 1676:463271. [DOI: 10.1016/j.chroma.2022.463271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022]
|
9
|
Predicting pharmacokinetic properties of potential anti-cancer agents using micellar thin-layer chromatography. JPC-J PLANAR CHROMAT 2022. [DOI: 10.1007/s00764-022-00174-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Anti-Tumor Active Isopropylated Fused Azaisocytosine-Containing Congeners Are Safe for Developing Danio rerio as Well as Red Blood Cells and Activate Apoptotic Caspases in Human Breast Carcinoma Cells. Molecules 2022; 27:molecules27041211. [PMID: 35209001 PMCID: PMC8876100 DOI: 10.3390/molecules27041211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 12/04/2022] Open
Abstract
New isopropylated fused azaisocytosine-containing congeners (I-VI) have previously been reported as promising anticancer drug candidates, so further research on these molecules in the preclinical development phase is fully justified and necessary. For this reason, in the present paper, we assess the toxicity/safety profiles of all the compounds using Danio rerio and red blood cell models, and examine the effect of the most selective congeners on the activation of apoptotic caspases in cancer and normal cells. In order to evaluate the effect of each molecule on the development of zebrafish embryos/larvae and to select the safest compounds for further study, various phenotypic parameters (i.e., mortality, hatchability, heart rate, heart oedema, yolk sac utilization, swim bladder development and body shape) were observed, and the half maximal lethal concentration, the maximal non-lethal concentration and no observed adverse effect concentration for each compound were established. The effect of all the isopropylated molecules was compared to that of an anticancer agent pemetrexed. The lipophilicity-dependent structure-toxicity correlations were also determined. To establish the possible interaction of the compounds with red blood cells, an ex vivo hemolysis test was performed. It was shown that almost all of the investigated isopropylated congeners have no adverse phenotypic effect on zebrafish development during five-day exposure at concentrations up to 50 μM (I-III) or up to 20 μM (IV-V), and that they are less toxic for embryos/larvae than pemetrexed, demonstrating their safety. At the same time, all the molecules did not adversely affect the red blood cells, which confirms their very good hemocompatibility. Moreover, they proved to be activators of apoptotic caspases, as they increased caspase-3, -7 and -9 levels in human breast carcinoma cells. The conducted research allows us to select-from among the anticancer active drug candidates-compounds that are safe for developing zebrafish and red blood cells, suitable for further in vivo pharmacological tests.
Collapse
|