1
|
Al-Shuhaib MBS, Al-Shuhaib JMB. Assessing Therapeutic Value and Side Effects of Key Botanical Compounds for Optimized Medical Treatments. Chem Biodivers 2024:e202401754. [PMID: 39316731 DOI: 10.1002/cbdv.202401754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
Due to the significance of variable chemical groups across a wide spectrum of modern medicine, it is imperative to determine what is the most widely used group in medical applications with the fewest side effects. Ten compounds from ten chemical groups that are most commonly known for their medical uses were compared in terms of their therapeutic potential and side effects. The comparison among the selected compounds indicated the superiority of the flavonoids over other groups in the multitude of their utilizations and the lower side effects. Kaempferol and quercetin showed higher medical utilization with lower side effects. Whereas alkaloid compounds showed the lowest levels of medical use and the highest levels of side effects. Based on the comparison conducted, it is concluded to give priority to flavonoid compounds being used in medical applications because they exhibit the highest medical uses with the lowest side effects. Within flavonoids, kaempferol and quercetin are the two compounds that are highly recommended to be used in the widest range of medical applications. Serious caution should be considered before applying alkaloids to any medical service. Understanding the characteristics of these compounds can aid in developing safer and more effective treatments for medicinal plants.
Collapse
Affiliation(s)
- Mohammed Baqur S Al-Shuhaib
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, 8 Babil, Al-Qasim, 51013, Iraq
| | | |
Collapse
|
2
|
Xia T, Zhu R. Multiple molecular and cellular mechanisms of the antitumour effect of dihydromyricetin (Review). Biomed Rep 2024; 20:82. [PMID: 38628627 PMCID: PMC11019658 DOI: 10.3892/br.2024.1769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
Dihydromyricetin (DHM) is a natural flavonoid compound with multiple antitumour effects, including inhibition of proliferation, promotion of apoptosis, inhibition of invasion and migration, clearance of reactive oxygen species (ROS) and induction of autophagy. For example, DHM can effectively block the progression of the tumour cell cycle and inhibit cell proliferation. In different types of cancer cells, DHM can regulate the PI3K/Akt pathway, mTOR, and NF-κB pathway components, such as p53, and endoplasmic reticulum stress can alter the accumulation of ROS or induce autophagy to promote the apoptosis of tumour cells. In addition, when DHM is used in combination with various known chemotherapy drugs, such as paclitaxel, nedaplatin, doxorubicin, oxaliplatin and vinblastine, it can increase the sensitivity of tumour cells to DHM and increase the therapeutic effect of chemotherapy drugs. In the present review, the multiple molecular and cellular mechanisms underlying the antitumour effect of DHM, as well as its ability to increase the effects of various traditional antitumour drugs were summarized. Through the present review, it is expected by the authors to draw attention to the potential of DHM as an antitumour drug and provide valuable references for the clinical translation of DHM research and the development of related treatment strategies.
Collapse
Affiliation(s)
- Tian Xia
- National Clinical Research Center for Child Health, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, P.R. China
| | - Runzhi Zhu
- National Clinical Research Center for Child Health, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, P.R. China
| |
Collapse
|
3
|
Wu S, Tan Y, Li F, Han Y, Zhang S, Lin X. CD44: a cancer stem cell marker and therapeutic target in leukemia treatment. Front Immunol 2024; 15:1354992. [PMID: 38736891 PMCID: PMC11082360 DOI: 10.3389/fimmu.2024.1354992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/11/2024] [Indexed: 05/14/2024] Open
Abstract
CD44 is a ubiquitous leukocyte adhesion molecule involved in cell-cell interaction, cell adhesion, migration, homing and differentiation. CD44 can mediate the interaction between leukemic stem cells and the surrounding extracellular matrix, thereby inducing a cascade of signaling pathways to regulate their various behaviors. In this review, we focus on the impact of CD44s/CD44v as biomarkers in leukemia development and discuss the current research and prospects for CD44-related interventions in clinical application.
Collapse
Affiliation(s)
- Shuang Wu
- Laboratory Animal Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yicheng Tan
- Laboratory Animal Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key laboratory of Hematology, Wenzhou, Zhejiang, China
| | - Fanfan Li
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key laboratory of Hematology, Wenzhou, Zhejiang, China
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yixiang Han
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key laboratory of Hematology, Wenzhou, Zhejiang, China
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shenghui Zhang
- Laboratory Animal Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key laboratory of Hematology, Wenzhou, Zhejiang, China
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaofei Lin
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
4
|
Zeng T, Song Y, Qi S, Zhang R, Xu L, Xiao P. A comprehensive review of vine tea: Origin, research on Materia Medica, phytochemistry and pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116788. [PMID: 37343650 DOI: 10.1016/j.jep.2023.116788] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/24/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Vine tea is a popular folk tea that has been consumed in China for more than 1200 years. It is often used in ethnic medicine by ethnic groups in southwest China with at least 35 aliases in 10 provinces. In coastal areas, vine tea is mostly used to treat heatstroke, aphtha, aphonia, toothache, etc. In contrast, in the southwest inland regions, vine tea is mostly used to clear away heat and toxic materials, antiphlogosis and relieving sore-throat, lowering blood pressure and lipid levels, and alleviating fatigue. Three main species have been used as the source of vine tea, Nekemias grossedentata, Nekemias cantonensis and Nekemias megalophylla. Among them, the leaves of Nekemias grossedentata were considered as new food resource in complicance with regulations, according to the Food Safety Standards published by the Monitoring and Evaluation Department of the National Health and Family Planning Commission in China. AIM OF THE STUDY At present, the comprehensively summary of Materia Medica on the history and source of vine tea is currently unavailable. The current article summed up the Materia Medica, species origin and pharmacological effects of all 3 major species used in vine tea to fill the knowledge gaps. We also aim to provide a reference for future research on historical textual, resource development and medicinal utilization of vine tea. MATERIALS AND METHODS Adhering to the literature screening methodology outlined by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), this review encompasses 148 scholarly research papers from three database, paper ancient books, local chronicles and folklore through field investigations. We then comprehensively summarized and discussed research progresses in scientific and application studies of vine tea. RESULTS The historical records indicated that vine tea could have been used as early as Southern and Northern Dynasties (AC 420-589). Nekemias grossedentata, Nekemias cantonensis and Nekemias megalophylla, were used to considered as vine tea in the ethnic medicine. The main phytochemicals found in three plants are flavonoids, polyphenols and terpenoids, among which dihydromyricetin (DHM) is the most important and most studied active substance. The key words "Ampelopsis grossedentata" (Synonym of Nekemias grossedentata) and "dihydromyricetin/DHM" showed the highest frequency over the last 27 year based on the research trend analysis. And the ethnopharmacology studies drawn the main activities of vine tea are antioxidant, antibacterial, hepatoprotective, neuroprotective and anti-atherosclerosis activities. CONCLUSIONS This review systematically summarized and discussed vine tea from the following five aspects, history, genetic relationship, phytochemistry, research trend and ethnopharmacology. Vine tea has a long historical usage in Chinese ethnic medicine. Its outstanding therapeutic efficacies have attracted extensive attention in other places in the world at present. Nekemias cantonensis and Nekemias megalophylla are quite similar to Nekemias grossedentata in terms of many aspects. However, the current research has a narrow focus on mainly Nekemias grossedentata and DHM. We propose that future studies could be carried out to determine the synergistic effect of multi-components and multi-targets of vine tea including all 3 species to provide valuable knowledge.
Collapse
Affiliation(s)
- Tiexin Zeng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Yanjun Song
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Shunyao Qi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Ruyue Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Lijia Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| |
Collapse
|
5
|
Park SJ, Jung HJ. Bufotalin Suppresses Proliferation and Metastasis of Triple-Negative Breast Cancer Cells by Promoting Apoptosis and Inhibiting the STAT3/EMT Axis. Molecules 2023; 28:6783. [PMID: 37836626 PMCID: PMC10574664 DOI: 10.3390/molecules28196783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/10/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive type of breast cancer and has a poor prognosis. As standardized TNBC treatment regimens cause drug resistance and tumor recurrence, the development of new TNBC treatment strategies is urgently required. Bufotalin is a bufadienolide isolated from the skin and parotid venom glands of the toad Bufo gargarizan, and has several pharmacological properties, including antiviral, anti-inflammatory, and anticancer activities. However, the anticancer effect and underlying molecular mechanisms of action of bufotalin in TNBC have not been fully studied. In the current study, we investigated the effects of bufotalin on the growth and metastasis of MDA-MB-231 and HCC1937 TNBC cells. Bufotalin potently inhibited the proliferation of both TNBC cell lines by promoting cell cycle arrest and caspase-mediated apoptosis. Furthermore, bufotalin effectively suppressed the migration and invasion of both TNBC cell lines by regulating the expression of key epithelial-mesenchymal transition (EMT) biomarkers, matrix metalloproteinases (MMPs), and integrin α6. Notably, the anticancer effect of bufotalin in TNBC cells was associated with the downregulation of the signal transducer and activator of the transcription 3 (STAT3) signaling pathway. Collectively, our results suggest that the natural compound bufotalin may exert antiproliferative and antimetastatic activities in TNBC cells by modulating the apoptotic pathway and the STAT3/EMT axis.
Collapse
Affiliation(s)
- So Jin Park
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan 31460, Republic of Korea;
| | - Hye Jin Jung
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan 31460, Republic of Korea;
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan 31460, Republic of Korea
- Genome-Based BioIT Convergence Institute, Sun Moon University, Asan 31460, Republic of Korea
| |
Collapse
|
6
|
Mazurakova A, Koklesova L, Vybohova D, Samec M, Kudela E, Biringer K, Šudomová M, Hassan STS, Kello M, Büsselberg D, Golubnitschaja O, Kubatka P. Therapy-resistant breast cancer in focus: Clinically relevant mitigation by flavonoids targeting cancer stem cells. Front Pharmacol 2023; 14:1160068. [PMID: 37089930 PMCID: PMC10115970 DOI: 10.3389/fphar.2023.1160068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/27/2023] [Indexed: 04/09/2023] Open
Abstract
Significant limitations of the reactive medical approach in breast cancer management are clearly reflected by alarming statistics recorded worldwide. According to the WHO updates, breast malignancies become the leading cancer type. Further, the portion of premenopausal breast cancer cases is permanently increasing and demonstrates particularly aggressive patterns and poor outcomes exemplified by young patients with triple-negative breast cancer that lacks targeted therapy. Accumulating studies suggest the crucial role of stem cells in tumour biology, high metastatic activity, and therapy resistance of aggressive breast cancer. Therefore, targeting breast cancer stem cells is a promising treatment approach in secondary and tertiary breast cancer care. To this end, naturally occurring substances demonstrate high potential to target cancer stem cells which, however, require in-depth analysis to identify effective anti-cancer agents for cost-effective breast cancer management. The current article highlights the properties of flavonoids particularly relevant for targeting breast cancer stem cells to mitigate therapy resistance. The proposed approach is conformed with the principles of 3P medicine by applying predictive diagnostics, patient stratification and treatments tailored to the individualised patient profile. Expected impacts are very high, namely, to overcome limitations of reactive medical services improving individual outcomes and the healthcare economy in breast cancer management. Relevant clinical applications are exemplified in the paper.
Collapse
Affiliation(s)
- Alena Mazurakova
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
- *Correspondence: Peter Kubatka, ; Alena Mazurakova,
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Desanka Vybohova
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Marek Samec
- Department of Pathological Physiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Erik Kudela
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | | | - Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Qatar Foundation, Doha, Qatar
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
- *Correspondence: Peter Kubatka, ; Alena Mazurakova,
| |
Collapse
|
7
|
Li X, Zhou L, Wang R, Zhang Y, Li W. Dihydromyricetin suppresses tumor growth via downregulation of the EGFR/Akt/survivin signaling pathway. J Biochem Mol Toxicol 2023:e23328. [PMID: 36807944 DOI: 10.1002/jbt.23328] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/23/2022] [Accepted: 02/09/2023] [Indexed: 02/22/2023]
Abstract
Deregulation of epidermal growth factor receptor (EGFR) signaling is frequently observed in non-small cell lung cancer (NSCLC). The present study aimed to determine the impact of dihydromyricetin (DHM) on NSCLC, a natural compound extracted from Ampelopsis grossedentata with various pharmacological activities. Results of the present study demonstrated that DHM may act as a promising antitumor agent for NSCLC therapy, inhibiting the growth of cancer cells in vitro and in vivo. Mechanistically, results of the present study demonstrated that exposure to DHM downregulated the activity of wild-type (WT) and mutant EGFRs (mutations, exon 19 deletion, and L858R/T790M mutation). Moreover, western blot analysis indicated that DHM induced cell apoptosis via suppression of the antiapoptotic protein, survivin. Results of the present study further demonstrated that depletion or activation of EGFR/Akt signaling may regulate survivin expression though modulating ubiquitination. Collectively, these results suggested that DHM may act as a potential EGFR inhibitor, and may provide a novel choice of treatment strategy for patients with NSCLC.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Li Zhou
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, China.,Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ruike Wang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yangnan Zhang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Wang P, Deng Z, Li A, Li R, Huang W, Cui J, Chen S, Li B, Zhang S. β-Catenin promotes long-term survival and angiogenesis of peripheral blood mesenchymal stem cells via the Oct4 signaling pathway. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1434-1449. [PMID: 36050404 PMCID: PMC9535028 DOI: 10.1038/s12276-022-00839-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 04/06/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022]
Abstract
Stem cell therapy has been extensively studied to improve heart function following myocardial infarction; however, its therapeutic potency is limited by low rates of engraftment, survival, and differentiation. Here, we aimed to determine the roles of the β-catenin/Oct4 signaling axis in the regulation of long-term survival and angiogenesis of peripheral blood mesenchymal stem cells (PBMSCs). These cells were obtained from rat abdominal aortic blood. We showed that β-catenin promotes the self-renewal, antiapoptotic effects, and long-term survival of PBMSCs by activating the Oct4 pathway through upregulation of the expression of the antiapoptotic factors Bcl2 and survivin and the proangiogenic cytokine bFGF and suppression of the levels of the proapoptotic factors Bax and cleaved caspase-3. β-Catenin overexpression increased Oct4 expression. β-Catenin knockdown suppressed Oct4 expression in PBMSCs. However, β-catenin levels were not affected by Oct4 overexpression or knockdown. Chromatin immunoprecipitation assays proved that β-catenin directly regulates Oct4 transcription in PBMSCs. In vivo, PBMSCs overexpressing β-catenin showed high survival in infarcted hearts and resulted in better myocardial repair. Further functional analysis identified Oct4 as the direct upstream regulator of Ang1, bFGF, HGF, VEGF, Bcl2, and survivin, which cooperatively drive antiapoptosis and angiogenesis of engrafted PBMSCs. These findings revealed the regulation of β-catenin in PBMSCs by the Oct4-mediated antiapoptotic/proangiogenic signaling axis and provide a breakthrough point for improving the long-term survival and therapeutic effects of PBMSCs. Boosting expression of a specific gene has allowed researchers to generate stem cells with increased capacity for tissue repair after a heart attack. Several studies have shown that treatment with a population of circulating cells known as ‘peripheral blood mesenchymal stem cells’ (PBMSCs) can regenerate cardiac tissue. These cells generally have a short lifespan when used therapeutically, but researchers led by Shaoheng Zhang at Jinan University in Guangzhou China have increased long-term survival and performance by boosting expression of the gene encoding β-catenin, a protein that promotes cell survival and proliferation. PBMSCs expressing increased levels of β-catenin preserved heart function in a rat model of heart attack, stimulating blood vessel growth and improving animal survival. This study also reveals proteins regulated by β-catenin, which could potentially be exploited for finer control of PBMSC function.
Collapse
Affiliation(s)
- Pengzhen Wang
- Department of Cardiology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, 510220, P.R. China.,Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, 510220, P.R. China
| | - Zhanyu Deng
- Department of Cardiology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, 510220, P.R. China
| | - Aiguo Li
- Department of Orthopaedics, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, 510220, P.R. China
| | - Rongsen Li
- Department of Cardiology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, 510220, P.R. China
| | - Weiguang Huang
- Department of Cardiology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, 510220, P.R. China
| | - Jin Cui
- Department of Cardiology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, 510220, P.R. China
| | - Songsheng Chen
- Department of Cardiology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, 510220, P.R. China
| | - Biao Li
- Department of Cardiology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, 510220, P.R. China
| | - Shaoheng Zhang
- Department of Cardiology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, 510220, P.R. China.
| |
Collapse
|
9
|
Li Y, Kumar PS, Tan S, Huang C, Xiang Z, Qiu J, Tan X, Luo J, He M. Anticancer and antibacterial flavonoids from the callus of Ampelopsis grossedentata; a new weapon to mitigate the proliferation of cancer cells and bacteria. RSC Adv 2022; 12:24130-24138. [PMID: 36128517 PMCID: PMC9403658 DOI: 10.1039/d2ra03437a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/17/2022] [Indexed: 12/21/2022] Open
Abstract
A new flavonoid angelioue (1) together with five known compounds cuminatanol (2), myricetin (3), epigallocatechin (4), taxifolin (5) and dihydromyricetin (6) was isolated from the callus extract of Ampelopsis grossedentata (Hand.-Mazz.) W. T. Wang and the structures were elucidated based on their detailed spectroscopic data. Among the compounds, the new compound angelioue (1) displayed significant antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) with the MIC value of 6.68 μg mL-1 and MBC value of 53.42 μg mL-1; in contrast the other compounds showed moderate to no antibacterial activity. In addition, known dihydromyricetin (6) exhibited potent cytotoxic activities against mouse breast cancer cells (4T1), human lung adenocarcinoma (A549) and human non-small cell lung cancer (NCI-H1975) tumor cell lines with GI50 values of 17.47, 18.91 and 20.50 μM mL-1, respectively. The compounds 1-5 exhibited low micro-molar inhibitory activities. Moreover, the structure-activity relationships of the most active compounds for antibacterial and cytotoxic activities are discussed. The present findings clearly suggest that the A. grossedentata callus is a good source of bioactive compounds.
Collapse
Affiliation(s)
- Yu Li
- Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences Enshi 445000 China
| | | | - Shengquan Tan
- Department of Central Hospital of Tujia and Miao Autonomous Prefecture Enshi 445000 China
| | - Chuying Huang
- Department of Central Hospital of Tujia and Miao Autonomous Prefecture Enshi 445000 China
| | - Zhixin Xiang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University Wuhan 430072 China
| | - Jiao Qiu
- Department of Central Hospital of Tujia and Miao Autonomous Prefecture Enshi 445000 China
| | - Xuhui Tan
- Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences Enshi 445000 China
| | - Jianqun Luo
- Enshi Selenium Commander and Ecological Agriculture Company Enshi 445000 China
| | - Meijun He
- Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences Enshi 445000 China
| |
Collapse
|
10
|
Peng F, Liao M, Qin R, Zhu S, Peng C, Fu L, Chen Y, Han B. Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct Target Ther 2022; 7:286. [PMID: 35963853 PMCID: PMC9376115 DOI: 10.1038/s41392-022-01110-y] [Citation(s) in RCA: 259] [Impact Index Per Article: 129.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023] Open
Abstract
Regulated cell death (RCD), also well-known as programmed cell death (PCD), refers to the form of cell death that can be regulated by a variety of biomacromolecules, which is distinctive from accidental cell death (ACD). Accumulating evidence has revealed that RCD subroutines are the key features of tumorigenesis, which may ultimately lead to the establishment of different potential therapeutic strategies. Hitherto, targeting the subroutines of RCD with pharmacological small-molecule compounds has been emerging as a promising therapeutic avenue, which has rapidly progressed in many types of human cancers. Thus, in this review, we focus on summarizing not only the key apoptotic and autophagy-dependent cell death signaling pathways, but the crucial pathways of other RCD subroutines, including necroptosis, pyroptosis, ferroptosis, parthanatos, entosis, NETosis and lysosome-dependent cell death (LCD) in cancer. Moreover, we further discuss the current situation of several small-molecule compounds targeting the different RCD subroutines to improve cancer treatment, such as single-target, dual or multiple-target small-molecule compounds, drug combinations, and some new emerging therapeutic strategies that would together shed new light on future directions to attack cancer cell vulnerabilities with small-molecule drugs targeting RCD for therapeutic purposes.
Collapse
Affiliation(s)
- Fu Peng
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Minru Liao
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shiou Zhu
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Yi Chen
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
11
|
Tuli HS, Sak K, Garg VK, Kumar A, Adhikary S, Kaur G, Parashar NC, Parashar G, Mukherjee TK, Sharma U, Jain A, Mohapatra RK, Dhama K, Kumar M, Singh T. Ampelopsin targets in cellular processes of cancer: Recent trends and advances. Toxicol Rep 2022; 9:1614-1623. [PMID: 36561961 PMCID: PMC9764188 DOI: 10.1016/j.toxrep.2022.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 12/25/2022] Open
Abstract
Cancer is being considered as a serious threat to human health globally due to limited availability and efficacy of therapeutics. In addition, existing chemotherapeutic drugs possess a diverse range of toxic side effects. Therefore, more research is welcomed to investigate the chemo-preventive action of plant-based metabolites. Ampelopsin (dihydromyricetin) is one among the biologically active plant-based chemicals with promising anti-cancer actions. It modulates the expression of various cellular molecules that are involved in cancer progressions. For instance, ampelopsin enhances the expression of apoptosis inducing proteins. It regulates the expression of angiogenic and metastatic proteins to inhibit tumor growth. Expression of inflammatory markers has also been found to be suppressed by ampelopsin in cancer cells. The present review article describes various anti-tumor cellular targets of ampelopsin at a single podium which will help the researchers to understand mechanistic insight of this phytochemical.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India,Corresponding author.
| | | | - Vivek Kumar Garg
- Department of Medical Laboratory Technology, University Institute of Applied Health Sciences, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| | - Ajay Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Shubham Adhikary
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’s NMIMS, Mumbai 40056, Maharashtra, India
| | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’s NMIMS, Mumbai 40056, Maharashtra, India
| | | | - Gaurav Parashar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Tapan Kumar Mukherjee
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Uttam Sharma
- Department of Zoology, Central University of Punjab, Village-Ghudda, 151401 Punjab, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Village-Ghudda, 151401 Punjab, India
| | - Ranjan K. Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar 758002, Odisha, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh 243122, India
| | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University, Sadopur-Ambala 134007, Haryana, India
| | - Tejveer Singh
- School of life Science, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
12
|
Biliverdin/Bilirubin Redox Pair Protects Lens Epithelial Cells against Oxidative Stress in Age-Related Cataract by Regulating NF- κB/iNOS and Nrf2/HO-1 Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7299182. [PMID: 35480872 PMCID: PMC9036166 DOI: 10.1155/2022/7299182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/15/2022]
Abstract
Age-related cataract (ARC) is the leading cause of vision impairment globally. It has been widely accepted that excessive reactive oxygen species (ROS) accumulation in lens epithelial cells (LECs) is a critical risk factor for ARC formation. Biliverdin (BV)/bilirubin (BR) redox pair is the active by-product of heme degradation with robust antioxidative stress and antiapoptotic effects. Thus, we purpose that BV and BR may have a therapeutic effect on ARC. In the present study, we determine the expression levels of enzymes regulating BV and BR generation in human lens anterior capsule samples. The therapeutic effect of BV/BR redox pair on ARC was assessed in hydrogen peroxide (H2O2)-damaged mouse LECs in vitro. The NF-κB/inducible nitric oxide synthase (iNOS) and nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathways were evaluated to illustrate the molecular mechanism. The results revealed that the mRNA expressions of Nrf2, HO-1, and biliverdin reductase A (BVRA) were all decreased in human samples of age-related nuclear cataract. BV/BR redox pair pretreatment protected LECs against H2O2 damage by prohibiting NF-κB p65 nuclear trafficking, ameliorating iNOS expression, reducing intracellular and mitochondrial ROS levels, and restoring glutathione (GSH) and superoxide dismutase (SOD) levels. BV and BR pretreatment also regulated the expression of apoptotic molecules (Bax, Bcl-2, and cleaved caspase-3), thus decreasing the apoptosis of LECs. In addition, BV/BR pair promoted Nrf2 nuclear accumulation and HO-1 induction, whereas the knockdown of BVRA counteracted the effect of BV on activating Nrf2/HO-1 pathway and antiapoptosis. These findings implicated that BV/BR redox pair protects LECs against H2O2-induced apoptosis by regulating NF-κB/iNOS and Nrf2/HO-1 pathways. Moreover, BVRA is responsible for BV-mediated cytoprotection by reductive conversion of BV to BR. This trial is registered with ChiCTR2000036059.
Collapse
|
13
|
Mu D, Long S, Guo L, Liu W. High Expression of VAV Gene Family Predicts Poor Prognosis of Acute Myeloid Leukemia. Technol Cancer Res Treat 2021; 20:15330338211065877. [PMID: 34894858 PMCID: PMC8679409 DOI: 10.1177/15330338211065877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Objectives: VAV family genes (VAV1, VAV2, and
VAV3) are associated with prognosis in various cancers;
however, they have not been evaluated in acute myeloid leukemia (AML). In this
study, the prognostic value of VAV expression in AML was evaluated by a
single-center study in combination with bioinformatics analyses.
Methods: The expression and prognostic value of VAVs in
patients with AML were investigated using various databases, including GEPIA,
CCLE, EMBL-EBI, UALCAN, cBioPortal, STRING, and DAVID. Blood samples from 35
patients with AML (non-M3 subtype) and 13 benigh individuals were collected at
our center. VAV expression levels were detected by real-time quantitative PCR
(RT-qPCR) and western blotting. Clinical data were derived from medical records.
Results: Based on data from multiple databases, the expression
levels of VAV1, VAV2, and VAV3 were significantly higher in AML than in control
tissues (P < 0.05). RT-qPCR and western blotting results
showed that VAV expression in mRNA and protein levels were
higher in patients with AML that in the control group (P <
0.05). Complete remission rates were lower and risks were higher in patients
with AML with high VAV1 expression than with low
VAV1 expression (P < 0.05). High levels
of VAV2, VAV3, and VAV1 were related to a poor overall survival, and this
relationship was significant for VAV1 (P < 0.05). High
expression levels of genes correlated with VAV1, such as
SIPA1, SH2D3C, and HMHA1
were also related to a poor prognosis in AML. Functional and pathways enrichment
analyses indicated that the contribution of the VAV family to AML may be
mediated by the NF-κB, cAMP, and other pathways. Conclusion: VAVs
were highly expressed in AML. In particular, VAV1 has prognostic value and is a
promising therapeutic target for AML.
Collapse
Affiliation(s)
- Dan Mu
- 556508Department of Pediatrics Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.,556508Children Hematological Oncology and Birth Defects Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Sili Long
- 556508Department of Pediatrics Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.,556508Children Hematological Oncology and Birth Defects Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.,Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, 646000, China
| | - Ling Guo
- 556508Department of Pediatrics Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.,556508Children Hematological Oncology and Birth Defects Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.,Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, 646000, China
| | - Wenjun Liu
- 556508Department of Pediatrics Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.,556508Children Hematological Oncology and Birth Defects Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.,Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, 646000, China
| |
Collapse
|
14
|
Ampelopsin Inhibits Cell Viability and Metastasis in Renal Cell Carcinoma by Negatively Regulating the PI3K/AKT Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:4650566. [PMID: 34804180 PMCID: PMC8601800 DOI: 10.1155/2021/4650566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/17/2022]
Abstract
Background Previous studies have shown that Ampelopsin has an inhibitory effect on human tumors. However, the effect of Ampelopsin on renal cell carcinoma (RCC) is rarely reported. Therefore, this study aims to explain the role of Ampelopsin in RCC. Methods Different concentrations of Ampelopsin (0, 10, 25, 50, and 100 μM) were used to treat 786-O cells. Cell viability was detected by MTT assay, colony formation assay, and flow cytometry assay. Transwell assay and Wound healing assay were used to detect cell migration and invasion. Western blot analysis was applied to detect protein expression. Results Ampelopsin inhibited cell proliferation and induced apoptosis in RCC. And Ampelopsin can inhibit cell migration and invasion in RCC. All these results changed in a dose-dependent manner. Ampelopsin (100 uM) had the strongest inhibitory effect on cell viability and metastasis. In addition, Ampelopsin negatively regulated the PI3K/AKT signaling pathway in RCC cells. Moreover, Ampelopsin was only cytotoxic to RCC cells. Conclusion Ampelopsin inhibits cell viability and metastasis in RCC by negatively regulating the PI3K/AKT signaling pathway.
Collapse
|
15
|
Li X, Yang ZS, Cai WW, Deng Y, Chen L, Tan SL. Dihydromyricetin Inhibits Tumor Growth and Epithelial-Mesenchymal Transition through regulating miR-455-3p in Cholangiocarcinoma. J Cancer 2021; 12:6058-6070. [PMID: 34539879 PMCID: PMC8425191 DOI: 10.7150/jca.61311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/10/2021] [Indexed: 12/31/2022] Open
Abstract
Cholangiocarcinoma (CCA) leads to poor prognosis due to high aggressiveness and common chemoresistance. Dihydromyricetin (DMY), the main bioactive compound isolated from Ampelopsis grossedentata, exhibits broad anti-tumor effects. This study aimed to investigate the inhibitory effect of DMY on CCA tumor growth and epithelial-mesenchymal transition (EMT) and its underlying mechanism in CCA. DMY treatment significantly inhibited cell proliferation and EMT in CCA cell lines. The expression of ZEB1 and vimentin were down-regulated, while the level of E-cadherin was increased after DMY treatment. By analyzing the TCGA dataset, we found that miR-455 expression was significantly downregulated, while the level of ZEB1 was up-regulated in human CCA tumor tissues compared to normal samples. Mechanistic studies showed that ZEB1 was a direct target of miR-455-3p in CCA. Moreover, DMY treatment potently increased miR-455-3p expression and inhibited ZEB1 expression. Inhibition of miR-455-3p expression abolished DMY's inhibitory effects on tumor growth and EMT in both CCA cells and cell-engrafted nude mice. Finally, DMY significantly suppressed the expressions of p-PI3K and p-AKT, while silencing miR-455-3p remarkably abrogated the inhibitory effect. In conclusion, DMY suppresses tumor growth and EMT through regulating miR-455-3p in human cholangiocarcinoma, suggesting a potential option for CCA treatment.
Collapse
Affiliation(s)
- Xin Li
- Department of Vascular Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China, 410011.,The Institute of Vascular Diseases, Central South University, Changsha, Hunan, China, 410011
| | - Zhou-Sheng Yang
- Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China, 530021
| | - Wen-Wu Cai
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China, 410011
| | - Yang Deng
- Department of pharmacy, The Third Hospital of Changsha, Changsha, China, 410015
| | - Lei Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China, 410011.,Institute of Clinical Pharmacy, Central South University, Changsha, China, 410011
| | - Sheng-Lan Tan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China, 410011.,Institute of Clinical Pharmacy, Central South University, Changsha, China, 410011
| |
Collapse
|