1
|
Albendea-Gomez T, Mendoza-Tamajon S, Castro-Mecinas R, Escobar B, Ferreira Rocha S, Urra-Balduz S, Nicolas-Avila JA, Oliver E, Villalba-Orero M, Martin-Puig S. Vascular HIF2 Signaling Prevents Cardiomegaly, Alveolar Congestion, and Capillary Remodeling During Chronic Hypoxia. Arterioscler Thromb Vasc Biol 2025; 45:e78-e98. [PMID: 39846162 DOI: 10.1161/atvbaha.124.321780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND Hypoxia is associated with the onset of cardiovascular diseases including cardiac hypertrophy and pulmonary hypertension. HIF2 (hypoxia inducible factor 2) signaling in the endothelium mediates pulmonary arterial remodeling and subsequent elevation of the right ventricular systolic pressure during chronic hypoxia. Thus, novel therapeutic opportunities for pulmonary hypertension based on specific HIF2 inhibitors have been proposed. Nevertheless, HIF2 relevance beyond the pulmonary endothelium or in the cardiac adaptation to hypoxia remains elusive. Wt1 (Wilms tumor 1) lineage contributes to the heart and lung vascular compartments, including pericytes, endothelial cells, and smooth muscle cells. METHODS Here, we describe the response to chronic hypoxia of a novel HIF2 mutant mouse model in the Wt1 lineage (Hif2/Wt1 cKO [conditional knockout]), characterizing structural and functional aspects of the heart and lungs by means of classical histology, immunohistochemistry, flow cytometry, echocardiography, and lung ultrasound analysis. RESULTS Hif2/Wt1 cKO is protected against pulmonary remodeling and increased right ventricular systolic pressure induced by hypoxia, but displays alveolar congestion, inflammation, and hemorrhages associated with microvascular instability. Furthermore, lack of HIF2 in the Wt1 lineage leads to cardiomegaly, capillary remodeling, right and left ventricular hypertrophy, systolic dysfunction, and left ventricular dilation, suggesting pulmonary-independent cardiac direct roles of HIF2 in hypoxia. These structural defects are partially restored upon reoxygenation, while cardiac functional parameters remain altered. CONCLUSIONS Our results indicate that cardiopulmonary HIF2 signaling prevents excessive vascular proliferation during chronic hypoxia and define novel protective roles of HIF2 to warrant stable microvasculature and organ function.
Collapse
MESH Headings
- Animals
- Hypoxia/metabolism
- Hypoxia/physiopathology
- Vascular Remodeling
- Signal Transduction
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Mice, Knockout
- Disease Models, Animal
- Chronic Disease
- Cardiomegaly/metabolism
- Cardiomegaly/physiopathology
- Cardiomegaly/pathology
- Cardiomegaly/genetics
- Capillaries/metabolism
- Capillaries/pathology
- Capillaries/physiopathology
- Pulmonary Alveoli/metabolism
- Pulmonary Alveoli/pathology
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/physiopathology
- Hypertrophy, Right Ventricular/genetics
- Hypertrophy, Right Ventricular/pathology
- Hypertrophy, Right Ventricular/etiology
- Hypertrophy, Right Ventricular/prevention & control
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/genetics
- Ventricular Function, Right
- Mice
- Male
- Mice, Inbred C57BL
- Ventricular Remodeling
- Ventricular Function, Left
- Pulmonary Artery/metabolism
- Pulmonary Artery/physiopathology
- Pulmonary Artery/pathology
- Transcription Factors
Collapse
Affiliation(s)
- Teresa Albendea-Gomez
- Metabolic and Immune Diseases Department, Instituto de Investigaciones Biomedicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain (T.A.-G., S.M.-T., R.C.-M., S.U.-B., S.M.-P.)
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares, Carlos III (CNIC), Madrid, Spain (T.A.-G., S.M.-T., B.E., S.F.R., J.A.N.-A., E.O., M.V.-O., S.M.-P.)
- School of Medicine, Universidad Francisco de Vitoria, Madrid, Spain (T.A.-G., S.M.-P.)
| | - Susana Mendoza-Tamajon
- Metabolic and Immune Diseases Department, Instituto de Investigaciones Biomedicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain (T.A.-G., S.M.-T., R.C.-M., S.U.-B., S.M.-P.)
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares, Carlos III (CNIC), Madrid, Spain (T.A.-G., S.M.-T., B.E., S.F.R., J.A.N.-A., E.O., M.V.-O., S.M.-P.)
| | - Rosana Castro-Mecinas
- Metabolic and Immune Diseases Department, Instituto de Investigaciones Biomedicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain (T.A.-G., S.M.-T., R.C.-M., S.U.-B., S.M.-P.)
| | - Beatriz Escobar
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares, Carlos III (CNIC), Madrid, Spain (T.A.-G., S.M.-T., B.E., S.F.R., J.A.N.-A., E.O., M.V.-O., S.M.-P.)
- Mouse Genome Editing Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain (B.E.)
| | - Susana Ferreira Rocha
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares, Carlos III (CNIC), Madrid, Spain (T.A.-G., S.M.-T., B.E., S.F.R., J.A.N.-A., E.O., M.V.-O., S.M.-P.)
| | - Sonia Urra-Balduz
- Metabolic and Immune Diseases Department, Instituto de Investigaciones Biomedicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain (T.A.-G., S.M.-T., R.C.-M., S.U.-B., S.M.-P.)
| | - Jose Angel Nicolas-Avila
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares, Carlos III (CNIC), Madrid, Spain (T.A.-G., S.M.-T., B.E., S.F.R., J.A.N.-A., E.O., M.V.-O., S.M.-P.)
- Cardiovascular Research Institute & Department of Microbiology and Immunology, University of California San Francisco (J.A.N.-A.)
| | - Eduardo Oliver
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares, Carlos III (CNIC), Madrid, Spain (T.A.-G., S.M.-T., B.E., S.F.R., J.A.N.-A., E.O., M.V.-O., S.M.-P.)
- Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB), Madrid, Spain (E.O.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Spain (E.O.)
| | - Maria Villalba-Orero
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares, Carlos III (CNIC), Madrid, Spain (T.A.-G., S.M.-T., B.E., S.F.R., J.A.N.-A., E.O., M.V.-O., S.M.-P.)
- Department of Animal Medicine and Surgery, Universidad Complutense de Madrid, Madrid, Spain (M.V.-O.)
| | - Silvia Martin-Puig
- Metabolic and Immune Diseases Department, Instituto de Investigaciones Biomedicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain (T.A.-G., S.M.-T., R.C.-M., S.U.-B., S.M.-P.)
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares, Carlos III (CNIC), Madrid, Spain (T.A.-G., S.M.-T., B.E., S.F.R., J.A.N.-A., E.O., M.V.-O., S.M.-P.)
- School of Medicine, Universidad Francisco de Vitoria, Madrid, Spain (T.A.-G., S.M.-P.)
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Spain (S.M.-P.)
| |
Collapse
|
2
|
Díaz del Moral S, Wagner N, Wagner KD. The Wilms' Tumor Suppressor WT1 in Cardiomyocytes: Implications for Cardiac Homeostasis and Repair. Cells 2024; 13:2078. [PMID: 39768169 PMCID: PMC11674098 DOI: 10.3390/cells13242078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/11/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
The Wilms' tumor suppressor WT1 is essential for the development of the heart, among other organs such as the kidneys and gonads. The Wt1 gene encodes a zinc finger transcription factor that regulates proliferation, cellular differentiation processes, and apoptosis. WT1 is also involved in cardiac homeostasis and repair. In adulthood, WT1-expression levels are lower compared to those observed through development, and WT1 expression is restricted to a few cell types. However, its systemic deletion in adult mice is lethal, demonstrating that its presence is also key for organ maintenance. In response to injury, the epicardium re-activates the expression of WT1, but little is known about the roles it plays in cardiomyocytes, which are the main cell type affected after myocardial infarction. The fact that cardiomyocytes exhibit a low proliferation rate in the adult heart in mammals highlights the need to explore new approaches for cardiac regeneration. The aim of this review is to emphasize the functions carried out by WT1 in cardiomyocytes in cardiac homeostasis and heart regeneration.
Collapse
Affiliation(s)
| | | | - Kay-Dietrich Wagner
- Université Côte d’Azur, CNRS, INSERM, iBV, 06107 Nice, France; (S.D.d.M.); (N.W.)
| |
Collapse
|
3
|
Kolahdouzmohammadi M, Pahlavan S, Sotoodehnejadnematalahi F, Tahamtani Y, Totonchi M. Activation of AMPK promotes cardiac differentiation by stimulating the autophagy pathway. J Cell Commun Signal 2023; 17:939-955. [PMID: 37040028 PMCID: PMC10409960 DOI: 10.1007/s12079-023-00744-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/22/2023] [Indexed: 04/12/2023] Open
Abstract
Autophagy, a critical catabolic process for cell survival against different types of stress, has a role in the differentiation of various cells, such as cardiomyocytes. Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) is an energy-sensing protein kinase involved in the regulation of autophagy. In addition to its direct role in regulating autophagy, AMPK can also influence other cellular processes by regulating mitochondrial function, posttranslational acetylation, cardiomyocyte metabolism, mitochondrial autophagy, endoplasmic reticulum stress, and apoptosis. As AMPK is involved in the control of various cellular processes, it can influence the health and survival of cardiomyocytes. This study investigated the effects of an AMPK inducer (Metformin) and an autophagy inhibitor (Hydroxychloroquine) on the differentiation of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs). The results showed that autophagy was upregulated during cardiac differentiation. Furthermore, AMPK activation increased the expression of CM-specific markers in hPSC-CMs. Additionally, autophagy inhibition impaired cardiomyocyte differentiation by targeting autophagosome-lysosome fusion. These results indicate the significance of autophagy in cardiomyocyte differentiation. In conclusion, AMPK might be a promising target for the regulation of cardiomyocyte generation by in vitro differentiation of pluripotent stem cells.
Collapse
Affiliation(s)
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | - Yaser Tahamtani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mehdi Totonchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
4
|
Rawat H, Kornherr J, Zawada D, Bakhshiyeva S, Kupatt C, Laugwitz KL, Bähr A, Dorn T, Moretti A, Nowak-Imialek M. Recapitulating porcine cardiac development in vitro: from expanded potential stem cell to embryo culture models. Front Cell Dev Biol 2023; 11:1111684. [PMID: 37261075 PMCID: PMC10227949 DOI: 10.3389/fcell.2023.1111684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/21/2023] [Indexed: 06/02/2023] Open
Abstract
Domestic pigs (Sus scrofa) share many genetic, anatomical, and physiological traits with humans and therefore constitute an excellent preclinical animal model. Fundamental understanding of the cellular and molecular processes governing early porcine cardiogenesis is critical for developing advanced porcine models used for the study of heart diseases and new regenerative therapies. Here, we provide a detailed characterization of porcine cardiogenesis based on fetal porcine hearts at various developmental stages and cardiac cells derived from porcine expanded pluripotent stem cells (pEPSCs), i.e., stem cells having the potential to give rise to both embryonic and extraembryonic tissue. We notably demonstrate for the first time that pEPSCs can differentiate into cardiovascular progenitor cells (CPCs), functional cardiomyocytes (CMs), epicardial cells and epicardial-derived cells (EPDCs) in vitro. Furthermore, we present an enhanced system for whole-embryo culture which allows continuous ex utero development of porcine post-implantation embryos from the cardiac crescent stage (ED14) up to the cardiac looping (ED17) stage. These new techniques provide a versatile platform for studying porcine cardiac development and disease modeling.
Collapse
Affiliation(s)
- Hilansi Rawat
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Jessica Kornherr
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Dorota Zawada
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Sara Bakhshiyeva
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Christian Kupatt
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Karl-Ludwig Laugwitz
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Andrea Bähr
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Tatjana Dorn
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Alessandra Moretti
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
| | - Monika Nowak-Imialek
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| |
Collapse
|
5
|
Díaz del Moral S, Benaouicha M, Villa del Campo C, Torres M, Wagner N, Wagner KD, Muñoz-Chápuli R, Carmona R. Cardiomyocyte-Specific Wt1 Is Involved in Cardiac Metabolism and Response to Damage. J Cardiovasc Dev Dis 2023; 10:211. [PMID: 37233178 PMCID: PMC10219250 DOI: 10.3390/jcdd10050211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/23/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
The Wilms tumor suppressor gene (Wt1) encodes a C2H2-type zinc-finger transcription factor that participates in transcriptional regulation, RNA metabolism, and protein-protein interactions. WT1 is involved in the development of several organs, including the kidneys and gonads, heart, spleen, adrenal glands, liver, diaphragm, and neuronal system. We previously provided evidence of transient WT1 expression in about 25% of cardiomyocytes of mouse embryos. Conditional deletion of Wt1 in the cardiac troponin T lineage caused abnormal cardiac development. A low expression of WT1 has also been reported in adult cardiomyocytes. Therefore, we aimed to explore its function in cardiac homeostasis and in the response to pharmacologically induced damage. Silencing of Wt1 in cultured neonatal murine cardiomyocytes provoked alterations in mitochondrial membrane potential and changes in the expression of genes related to calcium homeostasis. Ablation of WT1 in adult cardiomyocytes by crossing αMHCMerCreMer mice with homozygous WT1-floxed mice induced hypertrophy, interstitial fibrosis, altered metabolism, and mitochondrial dysfunction. In addition, conditional deletion of WT1 in adult cardiomyocytes increased doxorubicin-induced damage. These findings suggest a novel role of WT1 in myocardial physiology and protection against damage.
Collapse
Affiliation(s)
- Sandra Díaz del Moral
- Department of Animal Biology, Faculty of Science, University of Málaga, 29071 Málaga, Spain; (S.D.d.M.); (R.M.-C.)
| | - Maha Benaouicha
- Department of Cell Biology, Genetics and Physiology, Faculty of Science, University of Málaga, 29071 Málaga, Spain;
| | - Cristina Villa del Campo
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, 28029 Madrid, Spain; (C.V.d.C.); (M.T.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Miguel Torres
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, 28029 Madrid, Spain; (C.V.d.C.); (M.T.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Nicole Wagner
- Université Côte d’Azur, CNRS, INSERM, iBV, 06108 Nice, France; (N.W.); (K.-D.W.)
| | - Kay-Dietrich Wagner
- Université Côte d’Azur, CNRS, INSERM, iBV, 06108 Nice, France; (N.W.); (K.-D.W.)
| | - Ramón Muñoz-Chápuli
- Department of Animal Biology, Faculty of Science, University of Málaga, 29071 Málaga, Spain; (S.D.d.M.); (R.M.-C.)
| | - Rita Carmona
- Department of Human Anatomy, Legal Medicine and History of Science, Faculty of Medicine, University of Málaga, 29071 Málaga, Spain
| |
Collapse
|
6
|
Shikonin as a WT1 Inhibitor Promotes Promyeloid Leukemia Cell Differentiation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238264. [PMID: 36500358 PMCID: PMC9735585 DOI: 10.3390/molecules27238264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
This study aims to observe the differentiating effect of shikonin on Wilms' tumor 1 (WT1)-positive HL-60 cells and investigate the fate of the differentiated leukemia cells. WT1 overexpression unaffected cell viability but promoted resistance to H2O2-induced DNA injury and cell apoptosis. The binding of shikonin to the WT1 protein was confirmed by molecular docking and drug affinity reaction target stability (DARTS). Shikonin at the non-cytotoxic concentration could decrease the WT1 protein and simultaneously reduced the CD34 protein and increased the CD11b protein in a dose-dependent manner in normal HL-60 cells but not in WT1-overexpressed HL-60 cells. Shikonin unaffected HL-60 cell viability in 48 h. However, it lasted for 10 days; could attenuate cell proliferation, mitochondrial membrane potential (MMP), and self-renewal; prevent the cell cycle; promote cell apoptosis. In a mouse leukemia model, shikonin could decrease the WT1 protein to prevent leukemia development in a dose-dependent manner. In this study, we also confirmed preliminarily the protein-protein interactions between WT1 and CD34 in molecular docking and CO-IP assay. Our results suggest that: 1. shikonin can down-regulate the WT1 protein level for leukemia differentiation therapy, and 2. the interaction between WT1 and CD34 proteins may be responsible for granulocyte/monocyte immaturity in HL-60 cells.
Collapse
|
7
|
Safwan-Zaiter H, Wagner N, Wagner KD. P16INK4A-More Than a Senescence Marker. Life (Basel) 2022; 12:1332. [PMID: 36143369 PMCID: PMC9501954 DOI: 10.3390/life12091332] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Aging is a biological feature that is characterized by gradual degeneration of function in cells, tissues, organs, or an intact organism due to the accumulation of environmental factors and stresses with time. Several factors have been attributed to aging such as oxidative stress and augmented production or exposure to reactive oxygen species, inflammatory cytokines production, telomere shortening, DNA damage, and, importantly, the deposit of senescent cells. These are irreversibly mitotically inactive, yet metabolically active cells. The reason underlying their senescence lies within the extrinsic and the intrinsic arms. The extrinsic arm is mainly characterized by the expression and the secretory profile known as the senescence-associated secretory phenotype (SASP). The intrinsic arm results from the impact of several genes meant to regulate the cell cycle, such as tumor suppressor genes. P16INK4A is a tumor suppressor and cell cycle regulator that has been linked to aging and senescence. Extensive research has revealed that p16 expression is significantly increased in senescent cells, as well as during natural aging or age-related pathologies. Based on this fact, p16 is considered as a specific biomarker for detecting senescent cells and aging. Other studies have found that p16 is not only a senescence marker, but also a protein with many functions outside of senescence and aging. In this paper, we discuss and shed light on several studies that show the different functions of p16 and provide insights in its role in several biological processes besides senescence and aging.
Collapse
Affiliation(s)
| | - Nicole Wagner
- CNRS, INSERM, iBV, Université Côte d’Azur, 06107 Nice, France
| | | |
Collapse
|
8
|
Wagner KD, Wagner N. The Senescence Markers p16INK4A, p14ARF/p19ARF, and p21 in Organ Development and Homeostasis. Cells 2022; 11:cells11121966. [PMID: 35741095 PMCID: PMC9221567 DOI: 10.3390/cells11121966] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
It is widely accepted that senescent cells accumulate with aging. They are characterized by replicative arrest and the release of a myriad of factors commonly called the senescence-associated secretory phenotype. Despite the replicative cell cycle arrest, these cells are metabolically active and functional. The release of SASP factors is mostly thought to cause tissue dysfunction and to induce senescence in surrounding cells. As major markers for aging and senescence, p16INK4, p14ARF/p19ARF, and p21 are established. Importantly, senescence is also implicated in development, cancer, and tissue homeostasis. While many markers of senescence have been identified, none are able to unambiguously identify all senescent cells. However, increased levels of the cyclin-dependent kinase inhibitors p16INK4A and p21 are often used to identify cells with senescence-associated phenotypes. We review here the knowledge of senescence, p16INK4A, p14ARF/p19ARF, and p21 in embryonic and postnatal development and potential functions in pathophysiology and homeostasis. The establishment of senolytic therapies with the ultimate goal to improve healthy aging requires care and detailed knowledge about the involvement of senescence and senescence-associated proteins in developmental processes and homeostatic mechanism. The review contributes to these topics, summarizes open questions, and provides some directions for future research.
Collapse
|
9
|
van Amerongen RA, Hagedoorn RS, Remst DFG, Assendelft DC, van der Steen DM, Wouters AK, van de Meent M, Kester MGD, de Ru AH, Griffioen M, van Veelen PA, Falkenburg JHF, Heemskerk MHM. WT1-specific TCRs directed against newly identified peptides install antitumor reactivity against acute myeloid leukemia and ovarian carcinoma. J Immunother Cancer 2022; 10:jitc-2021-004409. [PMID: 35728869 PMCID: PMC9214430 DOI: 10.1136/jitc-2021-004409] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2022] [Indexed: 12/24/2022] Open
Abstract
Background Transcription factor Wilms’ tumor gene 1 (WT1) is an ideal tumor target based on its expression in a wide range of tumors, low-level expression in normal tissues and promoting role in cancer progression. In clinical trials, WT1 is targeted using peptide-based or dendritic cell-based vaccines and T-cell receptor (TCR)-based therapies. Antitumor reactivities were reported, but T-cell reactivity is hampered by self-tolerance to WT1 and limited number of WT1 peptides, which were thus far selected based on HLA peptide binding algorithms. Methods In this study, we have overcome both limitations by searching in the allogeneic T-cell repertoire of healthy donors for high-avidity WT1-specific T cells, specific for WT1 peptides derived from the HLA class I associated ligandome of primary leukemia and ovarian carcinoma samples. Results Using broad panels of malignant cells and healthy cell subsets, T-cell clones were selected that demonstrated potent and specific anti-WT1 T-cell reactivity against five of the eight newly identified WT1 peptides. Notably, T-cell clones for WT1 peptides previously used in clinical trials lacked reactivity against tumor cells, suggesting limited processing and presentation of these peptides. The TCR sequences of four T-cell clones were analyzed and TCR gene transfer into CD8+ T cells installed antitumor reactivity against WT1-expressing solid tumor cell lines, primary acute myeloid leukemia (AML) blasts, and ovarian carcinoma patient samples. Conclusions Our approach resulted in a set of naturally expressed WT1 peptides and four TCRs that are promising candidates for TCR gene transfer strategies in patients with WT1-expressing tumors, including AML and ovarian carcinoma.
Collapse
Affiliation(s)
- Rosa A van Amerongen
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Renate S Hagedoorn
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Dennis F G Remst
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Danique C Assendelft
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Dirk M van der Steen
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anne K Wouters
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marian van de Meent
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michel G D Kester
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arnoud H de Ru
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Mirjam H M Heemskerk
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
10
|
Marques IJ, Ernst A, Arora P, Vianin A, Hetke T, Sanz-Morejón A, Naumann U, Odriozola A, Langa X, Andrés-Delgado L, Zuber B, Torroja C, Osterwalder M, Simões FC, Englert C, Mercader N. Wt1 transcription factor impairs cardiomyocyte specification and drives a phenotypic switch from myocardium to epicardium. Development 2022; 149:274789. [DOI: 10.1242/dev.200375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/16/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
During development, the heart grows by addition of progenitor cells to the poles of the primordial heart tube. In the zebrafish, Wilms tumor 1 transcription factor a (wt1a) and b (wt1b) genes are expressed in the pericardium, at the venous pole of the heart. From this pericardial layer, the proepicardium emerges. Proepicardial cells are subsequently transferred to the myocardial surface and form the epicardium, covering the myocardium. We found that while wt1a and wt1b expression is maintained in proepicardial cells, it is downregulated in pericardial cells that contribute cardiomyocytes to the developing heart. Sustained wt1b expression in cardiomyocytes reduced chromatin accessibility of specific genomic loci. Strikingly, a subset of wt1a- and wt1b-expressing cardiomyocytes changed their cell-adhesion properties, delaminated from the myocardium and upregulated epicardial gene expression. Thus, wt1a and wt1b act as a break for cardiomyocyte differentiation, and ectopic wt1a and wt1b expression in cardiomyocytes can lead to their transdifferentiation into epicardial-like cells.
Collapse
Affiliation(s)
- Ines J. Marques
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
| | - Alexander Ernst
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
| | - Prateek Arora
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
| | - Andrej Vianin
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
| | - Tanja Hetke
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
| | - Andrés Sanz-Morejón
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
- Centro Nacional de Investigaciones Cardiovasculares CNIC, Madrid 28029, Spain
| | - Uta Naumann
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena 07745, Germany
| | - Adolfo Odriozola
- Department of Microscopic Anatomy and Structural Biology, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
| | - Xavier Langa
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
| | | | - Benoît Zuber
- Department of Microscopic Anatomy and Structural Biology, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
| | - Carlos Torroja
- Centro Nacional de Investigaciones Cardiovasculares CNIC, Madrid 28029, Spain
| | - Marco Osterwalder
- Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
- Department of Cardiology, Bern University Hospital, 3010 Bern, Switzerland
| | - Filipa C. Simões
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
- Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Christoph Englert
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena 07745, Germany
- Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Jena 07745, Germany
| | - Nadia Mercader
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
- Centro Nacional de Investigaciones Cardiovasculares CNIC, Madrid 28029, Spain
| |
Collapse
|
11
|
Transcriptional Regulation of Cardiac Development and Disease. Int J Mol Sci 2022; 23:ijms23062945. [PMID: 35328365 PMCID: PMC8953235 DOI: 10.3390/ijms23062945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 02/01/2023] Open
|
12
|
Dynamic Spatiotemporal Expression Pattern of the Senescence-Associated Factor p16Ink4a in Development and Aging. Cells 2022; 11:cells11030541. [PMID: 35159350 PMCID: PMC8833900 DOI: 10.3390/cells11030541] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 02/01/2023] Open
Abstract
A plethora of factors have been attributed to underly aging, including oxidative stress, telomere shortening and cellular senescence. Several studies have shown a significant role of the cyclin-dependent kinase inhibitor p16ink4a in senescence and aging. However, its expression in development has been less well documented. Therefore, to further clarify a potential role of p16 in development and aging, we conducted a developmental expression study of p16, as well as of p19ARF and p21, and investigated their expression on the RNA level in brain, heart, liver, and kidney of mice at embryonic, postnatal, adult, and old ages. P16 expression was further assessed on the protein level by immunohistochemistry. Expression of p16 was highly dynamic in all organs in embryonic and postnatal stages and increased dramatically in old mice. Expression of p19 and p21 was less variable and increased to a moderate extent at old age. In addition, we observed a predominant expression of p16 mRNA and protein in liver endothelial cells versus non-endothelial cells of old mice, which suggests a functional role specifically in liver endothelium of old subjects. Thus, p16 dynamic spatiotemporal expression might implicate p16 in developmental and physiological processes in addition to its well-known function in the build-up of senescence.
Collapse
|
13
|
Díaz Del Moral S, Barrena S, Hernández-Torres F, Aránega A, Villaescusa JM, Gómez Doblas JJ, Franco D, Jiménez-Navarro M, Muñoz-Chápuli R, Carmona R. Deletion of the Wilms' Tumor Suppressor Gene in the Cardiac Troponin-T Lineage Reveals Novel Functions of WT1 in Heart Development. Front Cell Dev Biol 2021; 9:683861. [PMID: 34368133 PMCID: PMC8339973 DOI: 10.3389/fcell.2021.683861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Expression of Wilms’ tumor suppressor transcription factor (WT1) in the embryonic epicardium is essential for cardiac development, but its myocardial expression is little known. We have found that WT1 is expressed at low levels in 20–25% of the embryonic cardiomyocytes. Conditional ablation of WT1 using a cardiac troponin T driver (Tnnt2Cre) caused abnormal sinus venosus and atrium development, lack of pectinate muscles, thin ventricular myocardium and, in some cases, interventricular septum and cardiac wall defects, ventricular diverticula and aneurisms. Coronary development was normal and there was not embryonic lethality, although survival of adult mutant mice was reduced probably due to perinatal mortality. Adult mutant mice showed electrocardiographic anomalies, including increased RR and QRS intervals, and decreased PR intervals. RNASeq analysis identified differential expression of 137 genes in the E13.5 mutant heart as compared to controls. GO functional enrichment analysis suggested that both calcium ion regulation and modulation of potassium channels are deeply altered in the mutant myocardium. In summary, together with its essential function in the embryonic epicardium, myocardial WT1 expression is also required for normal cardiac development.
Collapse
Affiliation(s)
| | - Silvia Barrena
- Department of Animal Biology, University of Málaga, Málaga, Spain
| | - Francisco Hernández-Torres
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Granada, Spain.,Medina Foundation, Technology Park of Health Sciences, Granada, Spain
| | - Amelia Aránega
- Medina Foundation, Technology Park of Health Sciences, Granada, Spain.,Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - José Manuel Villaescusa
- Heart Area Clinical Management Unit, University Hosp tal Virgen de la Victoria, CIBERCV Enfermedades Cardiovasculares Health Institute Carlos III, Biomedical Research Institute of Malaga (IBIMA), University of Málaga, Málaga, Spain
| | - Juan José Gómez Doblas
- Heart Area Clinical Management Unit, University Hosp tal Virgen de la Victoria, CIBERCV Enfermedades Cardiovasculares Health Institute Carlos III, Biomedical Research Institute of Malaga (IBIMA), University of Málaga, Málaga, Spain
| | - Diego Franco
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - Manuel Jiménez-Navarro
- Heart Area Clinical Management Unit, University Hosp tal Virgen de la Victoria, CIBERCV Enfermedades Cardiovasculares Health Institute Carlos III, Biomedical Research Institute of Malaga (IBIMA), University of Málaga, Málaga, Spain
| | | | - Rita Carmona
- Department of Animal Biology, University of Málaga, Málaga, Spain
| |
Collapse
|
14
|
Every Beat You Take-The Wilms' Tumor Suppressor WT1 and the Heart. Int J Mol Sci 2021; 22:ijms22147675. [PMID: 34299295 PMCID: PMC8306835 DOI: 10.3390/ijms22147675] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 12/23/2022] Open
Abstract
Nearly three decades ago, the Wilms’ tumor suppressor Wt1 was identified as a crucial regulator of heart development. Wt1 is a zinc finger transcription factor with multiple biological functions, implicated in the development of several organ systems, among them cardiovascular structures. This review summarizes the results from many research groups which allowed to establish a relevant function for Wt1 in cardiac development and disease. During development, Wt1 is involved in fundamental processes as the formation of the epicardium, epicardial epithelial-mesenchymal transition, coronary vessel development, valve formation, organization of the cardiac autonomous nervous system, and formation of the cardiac ventricles. Wt1 is further implicated in cardiac disease and repair in adult life. We summarize here the current knowledge about expression and function of Wt1 in heart development and disease and point out controversies to further stimulate additional research in the areas of cardiac development and pathophysiology. As re-activation of developmental programs is considered as paradigm for regeneration in response to injury, understanding of these processes and the molecules involved therein is essential for the development of therapeutic strategies, which we discuss on the example of WT1.
Collapse
|