1
|
Wei F, Gao X, Wang Y, Zhou Y, Chen Z, Wang D, Wang J, Chen C, Xu H, Zhao Y. Controlling lamination and directional growth of β-sheets via hydrophobic interactions: The strategies and insights. J Colloid Interface Sci 2025; 678:854-865. [PMID: 39270386 DOI: 10.1016/j.jcis.2024.09.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/28/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024]
Abstract
The self-assembling morphologies of proteins, nucleic acids, and peptides are well correlated with their functioning in biological systems. In spite of extensive studies for the morphologies regulating, the directional control of the assembly morphology structure for the peptides still remains challenging. Here, the directional structure control of a bola-like peptide Ac-KIIF-CONH2 (KIIF) was realized by introducing different amount of acetonitrile to the system. The morphologies were characterized by transmission electron microscopy (TEM) and atomic force microscopy (AFM), and the secondary structure was evaluated by circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR). The results demonstrated that the introducing of different amount of acetonitrile has significantly tuned the hydrophobic interactions amongst the side chains, thus affecting the self-assembling morphologies. As acetonitrile content increased, the assemblies changed from nanotubes to helical/twisted ribbons and then to thin fibrils, with a steady decrease in the width. In contrast, the assemblies changed from thin fibrils to helical/twisted ribbons, and then to matured nanotubes, exhibiting a steady increase in the width with peptide concentration increasing. Complementary molecular dynamics (MD) simulations demonstrated the important role of acetonitrile in controlling the hydrophobic interactions, providing microscopic evidence for the structure transition process. We believe such observations provide important insights into the design and fabrication of functional materials with controlled shape and size.
Collapse
Affiliation(s)
- Feng Wei
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Xinxin Gao
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Yan Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Yilin Zhou
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Zhaoyu Chen
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Dong Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Cuixia Chen
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China.
| | - Yurong Zhao
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China.
| |
Collapse
|
2
|
Yoshida K, Fujita S, Matsusaki M. Analysis of Homo- and Heterotriple Helix Formation of Collagen Model Peptides and Evaluation of Their Stability in a Biological Environment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38316021 DOI: 10.1021/acs.langmuir.3c03673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Self-assembled materials have attracted attention and have been extensively studied because the reversibility of noncovalent interactions allows them to possess various properties, such as stimulus responsiveness and self-healing. Collagen model peptides have an amino acid sequence characteristic of the triple helix region of collagen and exhibit repeatable triple helix formation. Many studies of their applications have used homotrimers, and although some studies on heterotrimers have been reported, few have clarified the details. If the characteristics of heterotrimers can be revealed, they are expected to be applied as new self-assembled materials. In this study, we analyzed the detailed self-assembling properties of hetero- and homohelices formed by (proline-proline-glycine)10 (PPG)10 and (proline-hydroxyproline-glycine)10 (POG)10 to evaluate the potential of the helices for biomedical application. Fluorescein isothiocyanate-labeled (PPG)10 (F(PPG)10) and (POG)10 (F(POG)10) were synthesized to analyze the heterotriple helix formation using concentration quenching based on triple helix formation. When (PPG)10 was added to F(POG)10, the fluorescence intensity did not reach a plateau, while the fluorescence intensity reached about 100% in the other pairs such as (POG)10-F(POG)10, (PPG)10-F(PPG)10, and (POG)10-F(PPG)10. The critical triple helix formation concentration was 7 μM for the heterotrimer prepared under 1:2 mixing conditions of (PPG)10 and (POG)10, 320 μM for [(PPG)10]3, and 4 μM for [(POG)10]3, indicating that the triple helix formation concentration of the heterotrimer is almost half that of [(POG)10]3 but 45 times higher than [(PPG)10]3. Furthermore, the heterotrimer formed at 37 °C was stable after 5 days, which was the same as [(POG)10]3. These results suggest that heterotrimers have different association properties from homotrimers and are expected to be applied in nanotechnology and biomaterials as new self-assembled materials.
Collapse
Affiliation(s)
- Kazuki Yoshida
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satoshi Fujita
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Michiya Matsusaki
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Design, Synthesis, and Photo-Responsive Properties of a Collagen Model Peptide Bearing an Azobenzene. ORGANICS 2022. [DOI: 10.3390/org3040027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Collagen is a vital component of the extracellular matrix in animals. Collagen forms a characteristic triple helical structure and plays a key role in supporting connective tissues and cell adhesion. The ability to control the collagen triple helix structure is useful for medical and conformational studies because the physicochemical properties of the collagen rely on its conformation. Although some photo-controllable collagen model peptides (CMPs) have been reported, satisfactory photo-control has not yet been achieved. To achieve this objective, detailed investigation of the isomerization behavior of the azobenzene moiety in CMPs is required. Herein, two CMPs were attached via an azobenzene linker to control collagen triple helix formation by light irradiation. Azo-(PPG)10 with two (Pro-Pro-Gly)10 CMPs linked via a photo-responsive azobenzene moiety was designed and synthesized. Conformational changes were evaluated by circular dichroism and the cis-to-trans isomerization rate calculated from the absorption of the azobenzene moiety indicated that the collagen triple helix structure was partially disrupted by isomerization of the internal azobenzene.
Collapse
|
4
|
Huang H, Kiick KL. Peptide-based assembled nanostructures that can direct cellular responses. Biomed Mater 2022; 17. [DOI: 10.1088/1748-605x/ac92b5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/16/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Natural originated materials have been well-studied over the past several decades owing to their higher biocompatibility compared to the traditional polymers. Peptides, consisting of amino acids, are among the most popular programable building blocks, which is becoming a growing interest in nanobiotechnology. Structures assembled using those biomimetic peptides allow the exploration of chemical sequences beyond those been routinely used in biology. In this Review, we discussed the most recent experimental discoveries on the peptide-based assembled nanostructures and their potential application at the cellular level such as drug delivery. In particular, we explored the fundamental principles of peptide self-assembly and the most recent development in improving their interactions with biological systems. We believe that as the fundamental knowledge of the peptide assemblies evolves, the more sophisticated and versatile nanostructures can be built, with promising biomedical applications.
Collapse
|
5
|
Koga T, Ikejiri A, Higashi N. Narcissistic Self-Sorting of Amphiphilic Collagen-Inspired Peptides in Supramolecular Vesicular Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2294-2300. [PMID: 35129979 DOI: 10.1021/acs.langmuir.1c02978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Herein, we describe the hierarchical self-assembly accompanying self-sorting of collagen-inspired peptides (CPs). The two amphiphilic CPs used in this study contained an azobenzene (Az) moiety at the N-terminal, connected through a flexible spacer, but with different lengths of the (Gly-Pro-Hyp)n triplet (n = 5 and 7). When the CP aqueous solution (60 °C) was cooled to 4 °C, both CPs formed a triple helix structure and the pre-organized helices subsequently self-assembled into highly ordered vesicles with a diameter of 50-200 nm. Interestingly, narcissistic self-sorting was observed in both triple helix- and matured vesicle-formation processes, when the two CPs were mixed. Owing to the difference in the propensity for triple helix formation with temperature, the two CPs discriminate each other in response to a temperature change and form two kinds of triple helix foldamers, each containing a single component. The resulting differences in the amphiphilic balance and molecular length between the foldamers appear to allow individual self-sorting to form distinct vesicles. Furthermore, such vesicular assemblies were found to disassemble upon UV irradiation via trans-cis isomerization of the Az-groups. These findings offer important insights into the design of new complex but ordered, peptide self-assembly systems with potential applications in nanobiotechnology.
Collapse
Affiliation(s)
- Tomoyuki Koga
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Aika Ikejiri
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Nobuyuki Higashi
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| |
Collapse
|
6
|
Sinha NJ, Langenstein MG, Pochan DJ, Kloxin CJ, Saven JG. Peptide Design and Self-assembly into Targeted Nanostructure and Functional Materials. Chem Rev 2021; 121:13915-13935. [PMID: 34709798 DOI: 10.1021/acs.chemrev.1c00712] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peptides have been extensively utilized to construct nanomaterials that display targeted structure through hierarchical assembly. The self-assembly of both rationally designed peptides derived from naturally occurring domains in proteins as well as intuitively or computationally designed peptides that form β-sheets and helical secondary structures have been widely successful in constructing nanoscale morphologies with well-defined 1-d, 2-d, and 3-d architectures. In this review, we discuss these successes of peptide self-assembly, especially in the context of designing hierarchical materials. In particular, we emphasize the differences in the level of peptide design as an indicator of complexity within the targeted self-assembled materials and highlight future avenues for scientific and technological advances in this field.
Collapse
Affiliation(s)
- Nairiti J Sinha
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Matthew G Langenstein
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Darrin J Pochan
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Christopher J Kloxin
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States.,Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Jeffery G Saven
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
7
|
Gleaton J, Curtis RW, Chmielewski J. Formation of Microcages from a Collagen Mimetic Peptide via Metal-Ligand Interactions. Molecules 2021; 26:molecules26164888. [PMID: 34443477 PMCID: PMC8401520 DOI: 10.3390/molecules26164888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022] Open
Abstract
Here, the hierarchical assembly of a collagen mimetic peptide (CMP) displaying four bipyridine moieties is described. The CMP was capable of forming triple helices followed by self-assembly into disks and domes. Treatment of these disks and domes with metal ions such as Fe(II), Cu(II), Zn(II), Co(II), and Ru(III) triggered the formation of microcages, and micron-sized cup-like structures. Mechanistic studies suggest that the formation of the microcages proceeds from the disks and domes in a metal-dependent fashion. Fluorescently-labeled dextrans were encapsulated within the cages and displayed a time-dependent release using thermal conditions.
Collapse
|