1
|
Hodaei A, Werbrouck SPO. Unlocking Nature's Clock: CRISPR Technology in Flowering Time Engineering. PLANTS (BASEL, SWITZERLAND) 2023; 12:4020. [PMID: 38068655 PMCID: PMC10708119 DOI: 10.3390/plants12234020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2024]
Abstract
Flowering is a crucial process in the life cycle of most plants as it is essential for the reproductive success and genetic diversity of the species. There are situations in which breeders want to expedite, delay, or prevent flowering, for example, to shorten or prolong vegetative growth, to prevent unwanted pollination, to reduce the risk of diseases or pests, or to modify the plant's phenotypes. This review aims to provide an overview of the current state of knowledge to use CRISPR/Cas9, a powerful genome-editing technology to modify specific DNA sequences related to flowering induction. We discuss the underlying molecular mechanisms governing the regulation of the photoperiod, autonomous, vernalization, hormonal, sugar, aging, and temperature signal pathways regulating the flowering time. In addition, we are investigating the most effective strategies for nominating target genes. Furthermore, we have collected a dataset showing successful applications of CRISPR technology to accelerate flowering in several plant species from 2015 up to date. Finally, we explore the opportunities and challenges of using the potential of CRISPR technology in flowering time engineering.
Collapse
Affiliation(s)
| | - Stefaan P. O. Werbrouck
- Laboratory for Applied In Vitro Plant Biotechnology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| |
Collapse
|
2
|
Liu X, Wang Q, Jiang G, Wan Q, Dong B, Lu M, Deng J, Zhong S, Wang Y, Khan IA, Xiao Z, Fang Q, Zhao H. Temperature-responsive module of OfAP1 and OfLFY regulates floral transition and floral organ identity in Osmanthus fragrans. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108076. [PMID: 37832366 DOI: 10.1016/j.plaphy.2023.108076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/14/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023]
Abstract
The MADS-box transcription factor APETELA1 (AP1) is crucially important for reproductive developmental processes. The function of AP1 and the classic LFY-AP1 interaction in woody plants are not widely known. Here, the OfAP1-a gene from the continuously flowering plant Osmanthus fragrans 'Sijigui' was characterized, and its roles in regulating flowering time, petal number robustness and floral organ identity were determined using overexpression in Arabidopsis thaliana and Nicotiana tabacum. The expression of OfAP1-a was significantly induced by low ambient temperature and was upregulated with the floral transition process. Ectopic expression OfAP1-a revealed its classic function in flowering and flower ABC models. The expression of OfAP1-a is inhibited by LEAFY (OfLFY) through direct promoter binding, as confirmed by yeast one-hybrid and dual luciferase assays. Arabidopsis plants overexpressing OfAP1-a exhibited accelerated flowering and altered floral organ identities. Moreover, OfAP1-a-overexpressing plants displayed variable petal numbers. Likewise, the overexpression of OfLFY in Arabidopsis and Nicotiana altered petal number robustness and inflorescence architecture, partially by regulating native AP1 in transformed plants. Furthermore, we performed RNA-seq analysis of transgenic Nicotiana plants. DEGs were identified by transcriptome analysis, and we found that the expression of several floral homeotic genes was altered in both OfAP1-a and OfLFY-overexpressing transgenic lines. Our results suggest that OfAP1-a may play important roles during floral transition and development in response to ambient temperature. OfAP1-a functions as a petal number modulator and may directly activate a subset of flowers to regulate floral organ formation. OfAP1-a and OfLFY mutually regulate the expression of each other and coregulate genes that might be involved in these phenotypes related to flowering. The results provide valuable data for understanding the function of the LFY-AP1 module in the reproductive process and shaping floral structures in woody plants.
Collapse
Affiliation(s)
- Xiaohan Liu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China; Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Hangzhou, 311300, China
| | - Qianqian Wang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China; Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Hangzhou, 311300, China
| | - Gege Jiang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China; Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Hangzhou, 311300, China
| | - Qianqian Wan
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China; Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Hangzhou, 311300, China
| | - Bin Dong
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China; Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Hangzhou, 311300, China
| | - Mei Lu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China; Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Hangzhou, 311300, China
| | - Jinping Deng
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China; Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Hangzhou, 311300, China
| | - Shiwei Zhong
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China; Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Hangzhou, 311300, China
| | - Yiguang Wang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China; Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Hangzhou, 311300, China
| | - Irshad Ahmad Khan
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China; Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Hangzhou, 311300, China
| | - Zheng Xiao
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China; Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Hangzhou, 311300, China
| | - Qiu Fang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China; Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Hangzhou, 311300, China.
| | - Hongbo Zhao
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China; Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Hangzhou, 311300, China.
| |
Collapse
|
3
|
Jiang X, Cui H, Wang Z, Kang J, Yang Q, Guo C. Genome-Wide Analysis of the LATERAL ORGAN BOUNDARIES Domain ( LBD) Members in Alfalfa and the Involvement of MsLBD48 in Nitrogen Assimilation. Int J Mol Sci 2023; 24:4644. [PMID: 36902075 PMCID: PMC10003661 DOI: 10.3390/ijms24054644] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 03/04/2023] Open
Abstract
The LATERAL ORGAN BOUNDARIES DOMAIN (LBD) proteins, a transcription factor family specific to the land plants, have been implicated in multiple biological processes including organ development, pathogen response and the uptake of inorganic nitrogen. The study focused on LBDs in legume forage Alfalfa. The genome-wide analysis revealed that in Alfalfa 178 loci across 31 allelic chromosomes encoded 48 unique LBDs (MsLBDs), and the genome of its diploid progenitor M. sativa spp. Caerulea encoded 46 LBDs. Synteny analysis indicated that the expansion of AlfalfaLBDs was attributed to the whole genome duplication event. The MsLBDs were divided into two major phylogenetic classes, and the LOB domain of the Class I members was highly conserved relative to that of the Class II. The transcriptomic data demonstrated that 87.5% of MsLBDs were expressed in at least one of the six test tissues, and Class II members were preferentially expressed in nodules. Moreover, the expression of Class II LBDs in roots was upregulated by the treatment of inorganic nitrogen such as KNO3 and NH4Cl (0.3 mM). The overexpression of MsLBD48, a Class II member, in Arabidopsis resulted in growth retardance with significantly declined biomass compared with the non-transgenic plants, and the transcription level of the genes involved in nitrogen uptake or assimilation, including NRT1.1, NRT2.1, NIA1 and NIA2 was repressed. Therefore, the LBDs in Alfalfa are highly conserved with their orthologs in embryophytes. Our observations that ectopic expression of MsLBD48 inhibited Arabidopsis growth by repressing nitrogen adaption suggest the negative role of the transcription factor in plant uptake of inorganic nitrogen. The findings imply the potential application of MsLBD48 in Alfalfa yield improvement via gene editing.
Collapse
Affiliation(s)
- Xu Jiang
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Huiting Cui
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhen Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Junmei Kang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Qingchuan Yang
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Changhong Guo
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
4
|
Lee A, Jung H, Park HJ, Jo SH, Jung M, Kim YS, Cho HS. Their C-termini divide Brassica rapa FT-like proteins into FD-interacting and FD-independent proteins that have different effects on the floral transition. FRONTIERS IN PLANT SCIENCE 2023; 13:1091563. [PMID: 36714709 PMCID: PMC9878124 DOI: 10.3389/fpls.2022.1091563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Members of the FLOWERING LOCUS T (FT)-like clade of phosphatidylethanolamine-binding proteins (PEBPs) induce flowering by associating with the basic leucine zipper (bZIP) transcription factor FD and forming regulatory complexes in angiosperm species. However, the molecular mechanism of the FT-FD heterocomplex in Chinese cabbage (Brassica rapa ssp. pekinensis) is unknown. In this study, we identified 12 BrPEBP genes and focused our functional analysis on four BrFT-like genes by overexpressing them individually in an FT loss-of-function mutant in Arabidopsis thaliana. We determined that BrFT1 and BrFT2 promote flowering by upregulating the expression of floral meristem identity genes, whereas BrTSF and BrBFT, although close in sequence to their Arabidopsis counterparts, had no clear effect on flowering in either long- or short-day photoperiods. We also simultaneously genetically inactivated BrFT1 and BrFT2 in Chinese cabbage using CRISPR/Cas9-mediated genome editing, which revealed that BrFT1 and BrFT2 may play key roles in inflorescence organogenesis as well as in the transition to flowering. We show that BrFT-like proteins, except for BrTSF, are functionally divided into FD interactors and non-interactors based on the presence of three specific amino acids in their C termini, as evidenced by the observed interconversion when these amino acids are mutated. Overall, this study reveals that although BrFT-like homologs are conserved, they may have evolved to exert functionally diverse functions in flowering via their potential to be associated with FD or independently from FD in Brassica rapa.
Collapse
Affiliation(s)
- Areum Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Haemyeong Jung
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Hyun Ji Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Seung Hee Jo
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Min Jung
- Department of Biotechnology, NongWoo Bio, Anseong, Republic of Korea
| | - Youn-Sung Kim
- Department of Biotechnology, Jenong S&T, Anseong, Republic of Korea
| | - Hye Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
5
|
CRISPR/Cas9-Mediated Mutagenesis of BrLEAFY Delays the Bolting Time in Chinese Cabbage ( Brassica rapa L. ssp. pekinensis). Int J Mol Sci 2022; 24:ijms24010541. [PMID: 36613993 PMCID: PMC9820718 DOI: 10.3390/ijms24010541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Chinese cabbage has unintended bolting in early spring due to sudden climate change. In this study, late-bolting Chinese cabbage lines were developed via mutagenesis of the BrLEAFY (BrLFY) gene, a transcription factor that determines floral identity, using the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9) system. Double-strand break of the target region via gene editing based on nonhomologous end joining (NHEJ) was applied to acquire useful traits in plants. Based on the 'CT001' pseudomolecule, a single guide RNA (sgRNA) was designed and the gene-editing vector was constructed. Agrobacterium-mediated transformation was used to generate a Chinese cabbage line in which the sequence of the BrLFY paralogs was edited. In particular, single base inserted mutations occurred in the BrLFY paralogs of the LFY-7 and LFY-13 lines, and one copy of T-DNA was inserted into the intergenic region. The selected LFY-edited lines displayed continuous vegetative growth and late bolting compared to the control inbred line, 'CT001'. Further, some LFY-edited lines showing late bolting were advanced to the next generation. The T-DNA-free E1LFY-edited lines bolted later than the inbred line, 'CT001'. Overall, CRISPR/Cas9-mediated mutagenesis of the BrLFY gene was found to delay the bolting time. Accordingly, CRISPR/Cas9 is considered an available method for the molecular breeding of crops.
Collapse
|
6
|
Wang Q, Gao G, Chen X, Liu X, Dong B, Wang Y, Zhong S, Deng J, Fang Q, Zhao H. Genetic studies on continuous flowering in woody plant Osmanthus fragrans. FRONTIERS IN PLANT SCIENCE 2022; 13:1049479. [PMID: 36407607 PMCID: PMC9671776 DOI: 10.3389/fpls.2022.1049479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Continuous flowering is a key horticultural trait in ornamental plants, whereas the specific molecular regulation mechanism remains largely unknown. In sweet osmanthus (Osmanthus fragrans Lour.), plants based on their flowering characteristics are divided into once-flowering (OF) habit and continuous flowering (CF) habit. Here, we first described the flowering phenology shifts of OF and CF habits in sweet osmanthus through paraffin section and microscope assay. Phenotypic characterization showed that CF plants had constant new shoot growth, floral transition, and blooming for 1 year, which might lead to a continuous flowering trait. We performed the transcriptome sequencing of OF and CF sweet osmanthus and analyzed the transcriptional activity of flowering-related genes. Among the genes, three floral integrators, OfFT, OfTFL1, and OfBFT, had a differential expression during the floral transition process in OF and CF habits. The expression patterns of the three genes in 1 year were revealed. The results suggested that their accumulations corresponded to the new shoots occurring and the floral transition process. Function studies suggested that OfFT acted as a flowering activator, whereas OfBFT was a flowering inhibitor. Yeast one-hybrid assay indicated that OfSPL8 was a common upstream transcription factor of OfFT and OfBFT, suggesting the vital role of OfSPL8 in continuous flowering regulation. These results provide a novel insight into the molecular mechanism of continuous flowering.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qiu Fang
- *Correspondence: Hongbo Zhao, ; Qiu Fang,
| | | |
Collapse
|
7
|
Integrative Analyses of Transcriptomes and Metabolomes Reveal Associated Genes and Metabolites with Flowering Regulation in Common Vetch ( Vicia sativa L.). Int J Mol Sci 2022; 23:ijms23126818. [PMID: 35743262 PMCID: PMC9224626 DOI: 10.3390/ijms23126818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 11/26/2022] Open
Abstract
As an important source of protein for livestock and human consumption, Vicia sativa is cultivated worldwide, but its seed production is hampered at high altitudes because of the short frost-free period. Flowering represents the transition from a vegetative to a reproductive period, and early flowering benefits plant seed production at high altitudes. However, the molecular mechanisms of flowering regulation in V. sativa remain elusive. In the present study, two V. sativa accessions with different flowering characteristics were used: Lan3 (early-flowering) was cultivated by our laboratory, and 503 (late-flowering) was selected from 222 V. sativa accessions after three years of field experiments. The shoot samples (shoot tip length = 10 cm) of these two accessions were collected 63, 70, and 77 days after sowing, and the molecular regulatory mechanism of the flowering process was identified by integrative analyses of the transcriptomes and metabolomes. Kyoto Encyclopedia of Genes and Genomes enrichment showed that the synthesis and signal transduction of plant hormone pathways were the most enriched pathways in 4274 differentially expressed genes (DEGs) and in 259 differential metabolites between Lan3 and 503. Moreover, the contents of three metabolites related to salicylic acid biosynthesis and the transcription levels of two DEGs related to salicylic acid signal transduction in Lan3 were higher than those in 503. Further verification in various accessions indicated that salicylic acid metabolism may be involved in the flowering regulation process of V. sativa. These findings provide valuable information for understanding the flowering mechanism and for promoting breeding research in V. sativa.
Collapse
|