1
|
Huang P, Qu C, Rao Z, Wu D, Zhao J. Bidirectional regulation mechanism of TRPM2 channel: role in oxidative stress, inflammation and ischemia-reperfusion injury. Front Immunol 2024; 15:1391355. [PMID: 39007141 PMCID: PMC11239348 DOI: 10.3389/fimmu.2024.1391355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Transient receptor potential melastatin 2 (TRPM2) is a non-selective cation channel that exhibits Ca2+ permeability. The TRPM2 channel is expressed in various tissues and cells and can be activated by multiple factors, including endogenous ligands, Ca2+, reactive oxygen species (ROS) and temperature. This article reviews the multiple roles of the TRPM2 channel in physiological and pathological processes, particularly on oxidative stress, inflammation and ischemia-reperfusion (I/R) injury. In oxidative stress, the excessive influx of Ca2+ caused by the activation of the TRPM2 channel may exacerbate cellular damage. However, under specific conditions, activating the TRPM2 channel can have a protective effect on cells. In inflammation, the activation of the TRPM2 channel may not only promote inflammatory response but also inhibit inflammation by regulating ROS production and bactericidal ability of macrophages and neutrophils. In I/R, the activation of the TRPM2 channel may worsen I/R injury to various organs, including the brain, heart, kidney and liver. However, activating the TRPM2 channel may protect the myocardium from I/R injury by regulating calcium influx and phosphorylating proline-rich tyrosine kinase 2 (Pyk2). A thorough investigation of the bidirectional role and regulatory mechanism of the TRPM2 channel in these physiological and pathological processes will aid in identifying new targets and strategies for treatment of related diseases.
Collapse
Affiliation(s)
- Peng Huang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
| | - Chaoyi Qu
- Physical Education College, Hebei Normal University, Shijiazhuang, China
| | - Zhijian Rao
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
- College of Physical Education, Shanghai Normal University, Shanghai, China
| | - Dongzhe Wu
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Jiexiu Zhao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
| |
Collapse
|
2
|
Tóth ÁV, Bartók Á. Reviewing critical TRPM2 variants through a structure-function lens. J Biotechnol 2024; 385:49-57. [PMID: 38442841 DOI: 10.1016/j.jbiotec.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024]
Abstract
The transient receptor potential melastatin 2 (TRPM2) channel plays a central role in connecting redox state with calcium signaling in living cells. This coupling makes TRPM2 essential for physiological functions such as pancreatic insulin secretion or cytokine production, but also allows it to contribute to pathological processes, including neuronal cell death or ischemia-reperfusion injury. Genetic deletion of the channel, albeit not lethal, alters physiological functions in mice. In humans, population genetic studies and whole-exome sequencing have identified several common and rare genetic variants associated with mental disorders and neurodegenerative diseases, including single nucleotide variants (SNVs) in exonic regions. In this review, we summarize available information on the four best-documented SNVs: one common (rs1556314) and three rare genetic variants (rs139554968, rs35288229, and rs145947009), manifested in amino acid substitutions D543E, R707C, R755C, and P1018L respectively. We discuss existing evidence supporting or refuting the associations between SNVs and disease. Furthermore, we aim to interpret the molecular impacts of these amino acid substitutions based on recently published structures of human TRPM2. Finally, we formulate testable hypotheses and suggest means to investigate them. Studying the function of proteins with rare mutations might provide insight into disease etiology and delineate new drug targets.
Collapse
Affiliation(s)
- Ádám V Tóth
- Department of Biochemistry, Semmelweis University, 37-47 Tűzoltó street, Budapest 1094, Hungary; HCEMM-SE Molecular Channelopathies Research Group, 37-47 Tűzoltó street, Budapest 1094, Hungary; HUN-REN-SE Ion Channel Research Group, 37-47 Tűzoltó street, Budapest 1094, Hungary
| | - Ádám Bartók
- Department of Biochemistry, Semmelweis University, 37-47 Tűzoltó street, Budapest 1094, Hungary; HCEMM-SE Molecular Channelopathies Research Group, 37-47 Tűzoltó street, Budapest 1094, Hungary; HUN-REN-SE Ion Channel Research Group, 37-47 Tűzoltó street, Budapest 1094, Hungary.
| |
Collapse
|
3
|
Bartók Á, Csanády L. TRPM2 - An adjustable thermostat. Cell Calcium 2024; 118:102850. [PMID: 38237549 DOI: 10.1016/j.ceca.2024.102850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 02/27/2024]
Abstract
The Transient Receptor Potential Melastatin 2 (TRPM2) channel is a homotetrameric ligand-gated cation channel opened by the binding of cytosolic ADP ribose (ADPR) and Ca2+. In addition, strong temperature dependence of its activity has lately become a center of attention for both physiological and biophysical studies. TRPM2 temperature sensitivity has been affirmed to play a role in central and peripheral thermosensation, pancreatic insulin secretion, and immune cell function. On the other hand, a number of different underlying mechanisms have been proposed from studies in intact cells. This review summarizes available information on TRPM2 temperature sensitivity, with a focus on recent mechanistic insight obtained in a cell-free system. Those biophysical results outline TRPM2 as a channel with an intrinsically endothermic opening transition, a temperature threshold strongly modulated by cytosolic agonist concentrations, and a response steepness greatly enhanced through a positive feedback loop generated by Ca2+ influx through the channel's pore. Complex observations in intact cells and apparent discrepancies between studies using in vivo and in vitro models are discussed and interpreted in light of the intrinsic biophysical properties of the channel protein.
Collapse
Affiliation(s)
- Ádám Bartók
- Department of Biochemistry, Semmelweis University, Budapest, Hungary; HCEMM-SE Molecular Channelopathies Research Group, Budapest, Hungary; HUN-REN-SE Ion Channel Research Group, Budapest, Hungary
| | - László Csanády
- Department of Biochemistry, Semmelweis University, Budapest, Hungary; HCEMM-SE Molecular Channelopathies Research Group, Budapest, Hungary; HUN-REN-SE Ion Channel Research Group, Budapest, Hungary.
| |
Collapse
|
4
|
Pick J, Sander S, Etzold S, Rosche A, Tidow H, Guse AH, Fliegert R. 2'-deoxy-ADPR activates human TRPM2 faster than ADPR and thereby induces higher currents at physiological Ca 2+ concentrations. Front Immunol 2024; 15:1294357. [PMID: 38318185 PMCID: PMC10838996 DOI: 10.3389/fimmu.2024.1294357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
TRPM2 is a Ca2+ permeable, non-selective cation channel in the plasma membrane that is involved in the innate immune response regulating, for example, chemotaxis in neutrophils and cytokine secretion in monocytes and macrophages. The intracellular adenine nucleotides ADP-ribose (ADPR) and 2'-deoxy-ADPR (2dADPR) activate the channel, in combination with their co-agonist Ca2+. Interestingly, activation of human TRPM2 (hsTRPM2) by 2dADPR is much more effective than activation by ADPR. However, the underlying mechanism of the nucleotides' differential effect on the channel is not yet fully understood. In this study, we performed whole-cell patch clamp experiments with HEK293 cells heterologously expressing hsTRPM2. We show that 2dADPR has an approx. 4-fold higher Ca2+ sensitivity than ADPR (EC50 = 190 and 690 nM). This allows 2dADPR to activate the channel at lower and thus physiological intracellular Ca2+ concentrations. Kinetic analysis of our data reveals that activation by 2dADPR is faster than activation by ADPR. Mutation in a calmodulin binding N-terminal IQ-like motif in hsTRPM2 completely abrogated channel activation by both agonists. However, mutation of a single amino acid residue (W1355A) in the C-terminus of hsTRPM2, at a site of extensive inter-domain interaction, resulted in slower activation by 2dADPR and neutralized the difference in rate of activation between the two agonists. Taken together, we propose a mechanism by which 2dADPR induces higher hsTRPM2 currents than ADPR by means of faster channel activation. The finding that 2dADPR has a higher Ca2+ sensitivity than ADPR may indicate that 2dADPR rather than ADPR activates hsTRPM2 in physiological contexts such as the innate immune response.
Collapse
Affiliation(s)
- Jelena Pick
- The Calcium Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon Sander
- The Hamburg Advanced Research Center for Bioorganic Chemistry (HARBOR) & Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Stefanie Etzold
- The Calcium Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anette Rosche
- The Calcium Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Henning Tidow
- The Hamburg Advanced Research Center for Bioorganic Chemistry (HARBOR) & Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Andreas H. Guse
- The Calcium Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Fliegert
- The Calcium Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
5
|
Szollosi A, Almássy J. Functional characterization of the transient receptor potential melastatin 2 (TRPM2) cation channel from Nematostella vectensis reconstituted into lipid bilayer. Sci Rep 2023; 13:11471. [PMID: 37454209 PMCID: PMC10349829 DOI: 10.1038/s41598-023-38640-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
Transient receptor potential melastatin 2 (TRPM2) cation channel activity is required for insulin secretion, immune cell activation and body heat control. Channel activation upon oxidative stress is involved in the pathology of stroke and neurodegenerative disorders. Cytosolic Ca2+, ADP-ribose (ADPR) and phosphatidylinositol-4,5-bisphosphate (PIP2) are the obligate activators of the channel. Several TRPM2 cryo-EM structures have been resolved to date, yet functionality of the purified protein has not been tested. Here we reconstituted overexpressed and purified TRPM2 from Nematostella vectensis (nvTRPM2) into lipid bilayers and found that the protein is fully functional. Consistent with the observations in native membranes, nvTRPM2 in lipid bilayers is co-activated by cytosolic Ca2+ and either ADPR or ADPR-2'-phosphate (ADPRP). The physiological metabolite ADPRP has a higher apparent affinity than ADPR. In lipid bilayers nvTRPM2 displays a large linear unitary conductance, its open probability (Po) shows little voltage dependence and is stable over several minutes. Po is high without addition of exogenous PIP2, but is largely blunted by treatment with poly-L-Lysine, a polycation that masks PIP2 headgroups. These results indicate that PIP2 or some other activating phosphoinositol lipid co-purifies with nvTRPM2, suggesting a high PIP2 binding affinity of nvTRPM2 under physiological conditions.
Collapse
Affiliation(s)
- Andras Szollosi
- Department of Biochemistry, Semmelweis University, Tuzolto u. 37-47, Budapest, 1094, Hungary.
- ELKH-SE Ion Channel Research Group, Semmelweis University, Tuzolto u. 37-47, Budapest, 1094, Hungary.
- HCEMM-SE Molecular Channelopathies Research Group, Semmelweis University, Tuzolto u. 37-47, Budapest, 1094, Hungary.
| | - János Almássy
- Department of Physiology, Semmelweis University, Tuzolto u. 37-47, Budapest, 1094, Hungary
| |
Collapse
|
6
|
Rosenbaum T, Morales-Lázaro SL. Regulation of ThermoTRP Channels by PIP2 and Cholesterol. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:245-277. [PMID: 36988884 DOI: 10.1007/978-3-031-21547-6_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Transient receptor potential (TRP) ion channels are proteins that are expressed by diverse tissues and that play pivotal functions in physiology. These channels are polymodal and are activated by several stimuli. Among TRPs, some members of this family of channels respond to changes in ambient temperature and are known as thermoTRPs. These proteins respond to heat or cold in the noxious range and some of them to temperatures considered innocuous, as well as to mechanical, osmotic, and/or chemical stimuli. In addition to this already complex ability to respond to different signals, the activity of these ion channels can be fine-tuned by lipids. Two lipids well known to modulate ion channel activity are phosphatidylinositol 4,5-bisphosphate (PIP2) and cholesterol. These lipids can either influence the function of these proteins through direct interaction by binding to a site in the structure of the ion channel or through indirect mechanisms, which can include modifying membrane properties, such as curvature and rigidity, by regulating their expression or by modulating the actions of other molecules or signaling pathways that affect the physiology of ion channels. Here, we summarize the key aspects of the regulation of thermoTRP channels by PIP2 and cholesterol.
Collapse
Affiliation(s)
- Tamara Rosenbaum
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Sara L Morales-Lázaro
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
7
|
Kawai T, Okamura Y. Spotlight on the Binding Affinity of Ion Channels for Phosphoinositides: From the Study of Sperm Flagellum. Front Physiol 2022; 13:834180. [PMID: 35197868 PMCID: PMC8859416 DOI: 10.3389/fphys.2022.834180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/07/2022] [Indexed: 11/21/2022] Open
Abstract
The previous studies revealed that many types of ion channels have sensitivity to PtdIns(4,5)P2, which has been mainly shown using heterologous expression system. On the other hand, there remains few evidence showing that PtdIns(4,5)P2 natively regulate the ion channel activities in physiological context. Our group recently discovered that a sperm specific K+ channel, Slo3, is natively regulated by PtdIns(4,5)P2 in sperm flagellum. Very interestingly, a principal piece, to which Slo3 specifically localized, had extremely low density of PtdIns(4,5)P2 compared to the regular cell plasma membrane. Furthermore, our studies and the previous ones also revealed that Slo3 had much stronger PtdIns(4,5)P2 affinity than KCNQ2/3 channels, which are widely regulated by endogenous PtdIns(4,5)P2 in neurons. Thus, the high-PtdIns(4,5)P2 affinity of Slo3 is well-adapted to the specialized PtdIns(4,5)P2 environment in the principal piece. This study sheds light on the relationship between PtdIns(4,5)P2-affinity of ion channels and their PtdIns(4,5)P2 environment in native cells. We discuss the current understanding about PtdIns(4,5)P2 affinity of diverse ion channels and their possible regulatory mechanism in native cellular environment.
Collapse
Affiliation(s)
- Takafumi Kawai
- Integrative Physiology Program, Graduate School of Medicine, Osaka University, Suita, Japan
- *Correspondence: Takafumi Kawai,
| | - Yasushi Okamura
- Integrative Physiology Program, Graduate School of Medicine, Osaka University, Suita, Japan
- Graduate School of Frontier Bioscience, Osaka University, Suita, Japan
| |
Collapse
|
8
|
van Breemen C, Fameli N, Groschner K. Two-Dimensional Interfacial Exchange Diffusion Has the Potential to Augment Spatiotemporal Precision of Ca 2+ Signaling. Int J Mol Sci 2022; 23:ijms23020850. [PMID: 35055032 PMCID: PMC8775956 DOI: 10.3390/ijms23020850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/19/2021] [Accepted: 01/11/2022] [Indexed: 12/10/2022] Open
Abstract
Nano-junctions between the endoplasmic reticulum and cytoplasmic surfaces of the plasma membrane and other organelles shape the spatiotemporal features of biological Ca2+ signals. Herein, we propose that 2D Ca2+ exchange diffusion on the negatively charged phospholipid surface lining nano-junctions participates in guiding Ca2+ from its source (channel or carrier) to its target (transport protein or enzyme). Evidence provided by in vitro Ca2+ flux experiments using an artificial phospholipid membrane is presented in support of the above proposed concept, and results from stochastic simulations of Ca2+ trajectories within nano-junctions are discussed in order to substantiate its possible requirements. Finally, we analyze recent literature on Ca2+ lipid interactions, which suggests that 2D interfacial Ca2+ diffusion may represent an important mechanism of signal transduction in biological systems characterized by high phospholipid surface to aqueous volume ratios.
Collapse
Affiliation(s)
- Cornelis van Breemen
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Correspondence: (C.v.B.); (K.G.)
| | - Nicola Fameli
- Independent Researcher, Vancouver, BC V5Z 1R1, Canada;
| | - Klaus Groschner
- Gottfried Schatz Research Center—Division of Biophysics, Medical University of Graz, 8036 Graz, Austria
- Correspondence: (C.v.B.); (K.G.)
| |
Collapse
|
9
|
TRPM2 Non-Selective Cation Channels in Liver Injury Mediated by Reactive Oxygen Species. Antioxidants (Basel) 2021; 10:antiox10081243. [PMID: 34439491 PMCID: PMC8389341 DOI: 10.3390/antiox10081243] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
TRPM2 channels admit Ca2+ and Na+ across the plasma membrane and release Ca2+ and Zn2+ from lysosomes. Channel activation is initiated by reactive oxygen species (ROS), leading to a subsequent increase in ADP-ribose and the binding of ADP-ribose to an allosteric site in the cytosolic NUDT9 homology domain. In many animal cell types, Ca2+ entry via TRPM2 channels mediates ROS-initiated cell injury and death. The aim of this review is to summarise the current knowledge of the roles of TRPM2 and Ca2+ in the initiation and progression of chronic liver diseases and acute liver injury. Studies to date provide evidence that TRPM2-mediated Ca2+ entry contributes to drug-induced liver toxicity, ischemia–reperfusion injury, and the progression of non-alcoholic fatty liver disease to cirrhosis, fibrosis, and hepatocellular carcinoma. Of particular current interest are the steps involved in the activation of TRPM2 in hepatocytes following an increase in ROS, the downstream pathways activated by the resultant increase in intracellular Ca2+, and the chronology of these events. An apparent contradiction exists between these roles of TRPM2 and the role identified for ROS-activated TRPM2 in heart muscle and in some other cell types in promoting Ca2+-activated mitochondrial ATP synthesis and cell survival. Inhibition of TRPM2 by curcumin and other “natural” compounds offers an attractive strategy for inhibiting ROS-induced liver cell injury. In conclusion, while it has been established that ROS-initiated activation of TRPM2 contributes to both acute and chronic liver injury, considerable further research is needed to elucidate the mechanisms involved, and the conditions under which pharmacological inhibition of TRPM2 can be an effective clinical strategy to reduce ROS-initiated liver injury.
Collapse
|