1
|
Saber S, Abdelhady R, Elhemely MA, Elmorsy EA, Hamad RS, Abdel-Reheim MA, El-kott AF, AlShehri MA, Morsy K, Negm S, Kira AY. Nanoscale Systems for Local Activation of Hypoxia-Inducible Factor-1 Alpha: A New Approach in Diabetic Wound Management. Int J Nanomedicine 2024; 19:13735-13762. [PMID: 39723173 PMCID: PMC11669355 DOI: 10.2147/ijn.s497041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/03/2024] [Indexed: 12/28/2024] Open
Abstract
Chronic wounds in diabetic patients experience significant clinical challenges due to compromised healing processes. Hypoxia-inducible factor-1 alpha (HIF-1α) is a critical regulator in the cellular response to hypoxia, enhancing angiogenesis and tissue restoration. Nevertheless, the cellular response to the developed chronic hypoxia within diabetes is impaired, likely due to the destabilization of HIF-1α via degradation by prolyl hydroxylase domain (PHD) enzymes. Researchers have extensively explored HIF-1α activation as a potential pathway for diabetic wound management, focusing mainly on deferoxamine (DFO) as a potent agent to stabilize HIF-1α. This review provides an update of the other recent pharmacological agents managing HIF-1α activation, including novel PHD inhibitors (roxadustat and daprodustat) and Von Hippel-Lindau protein (VHL) antagonists, which could be potential alternatives for the local treatment of diabetic wounds. Furthermore, it highlights how localized delivery via advanced nanostructures can enhance the efficacy of these novel therapies. Importantly, by addressing these points, the current review can offer a promising area for research. Given that, these novel drugs have minimal applications in diabetic wound healing, particularly in the context of local application through nanomaterials. This gap presents an exciting opportunity for further investigation, as combining these drugs with localized nanotechnology could avoid undesired systemic side effects and sustain drug release within wound site, offering a transformative platform for diabetes wound treatment.
Collapse
Affiliation(s)
- Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| | - Rasha Abdelhady
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Fayoum University, Fayoum, 63514, Egypt
| | - Mai A Elhemely
- School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M20 4BX, UK
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62521, Egypt
| | - Elsayed A Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, 31982, Saudi Arabia
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62521, Egypt
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, 11961, Saudi Arabia
| | - Attalla F El-kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammed A AlShehri
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Kareem Morsy
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Sally Negm
- Department of Life Sciences, College of Science and Art Mahyel Aseer, King Khalid University, Abha, 62529, Saudi Arabia
| | - Ahmed Y Kira
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| |
Collapse
|
2
|
Huang L, Li T, Geng W, Xie X, Wang P, Deng Y, Gao Y, Bai D, Tang T, Cheng C. Oxygen-Bonded Amorphous Transition Metal Dichalcogenides with pH-Responsive Reactive Oxygen Biocatalysis for Combined Antibacterial and Anti-inflammatory Therapies in Diabetic Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407046. [PMID: 39469735 DOI: 10.1002/smll.202407046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/15/2024] [Indexed: 10/30/2024]
Abstract
Diabetic wound healing is a formidable challenge, often complicated by biofilms, immune dysregulation, and hindered vascularization within the wound environments. The intricate interplay of these microenvironmental factors has been a significant oversight in the evolution of therapeutic strategies. Herein, the design of an efficient and versatile oxygen-bonded amorphous transition metal dichalcogenide biocatalyst (aRuS-Or) with pH-responsive reactive oxygen biocatalysis for combined antibacterial and anti-inflammatory therapies in promoting diabetic wound healing is reported. Leveraging the incorporation of Ru─O bonds, aRuS-Or exhibits optimized adsorption/desorption behavior of oxygen intermediates, thereby enhancing both the reactive oxygen species (ROS) generation activity in acidic conditions and ROS scavenging performance in neutral environments. Remarkably, aRuS-Or demonstrates exceptional bactericidal potency within infected milieus through biocatalytic ROS generation. Beyond its antimicrobial capability, post-eradication, aRuS-Or serves a dual role in mitigating oxidative stress in inflammatory wounds, providing robust cellular protection and fostering an M2-phenotype polarization of macrophages, which is pivotal for accelerating the wound repair process. The findings underscore the multifaceted efficacy of aRuS-Or, which harmoniously integrates high antibacterial action with anti-inflammatory and pro-angiogenic properties. This triad of functionalities positions aRuS-Or as a promising candidate for the comprehensive management of complex diabetic ulcers, addressing the unmet needs in the current therapeutics.
Collapse
Affiliation(s)
- Lingyi Huang
- Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Tiantian Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Wei Geng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiaodong Xie
- Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Peiqi Wang
- Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yuting Deng
- Department of Ultrasound, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Med-X Center for Materials, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yang Gao
- Department of Ultrasound, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Med-X Center for Materials, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ding Bai
- Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Tian Tang
- Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chong Cheng
- Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
3
|
Shi S, Hu L, Hu D, Ou X, Huang Y. Emerging Nanotherapeutic Approaches for Diabetic Wound Healing. Int J Nanomedicine 2024; 19:8815-8830. [PMID: 39220193 PMCID: PMC11365536 DOI: 10.2147/ijn.s476006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024] Open
Abstract
Diabetic wounds pose a significant challenge in modern healthcare due to their chronic and complex nature, often resulting in delayed healing, infections, and, in severe cases, amputations. In recent years, nanotherapeutic approaches have emerged as promising strategies to address the unique pathophysiological characteristics of diabetic wounds. This review paper provides a comprehensive overview of the latest advancements in nanotherapeutics for diabetic wound treatment. We discuss various nanomaterials and delivery systems employed in these emerging therapies. Furthermore, we explore the integration of biomaterials to enhance the efficacy of nanotherapeutic interventions. By examining the current state-of-the-art research, challenges, and prospects, this review aims to offer valuable insights for researchers, clinicians, and healthcare professionals working in the field of diabetic wound care.
Collapse
Affiliation(s)
- Shaoyan Shi
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, 710000, People’s Republic of China
| | - Leiming Hu
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, 710000, People’s Republic of China
| | - Dong Hu
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, 710000, People’s Republic of China
| | - Xuehai Ou
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, 710000, People’s Republic of China
| | - Yansheng Huang
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, 710000, People’s Republic of China
| |
Collapse
|
4
|
Pathak D, Mazumder A. A critical overview of challenging roles of medicinal plants in improvement of wound healing technology. Daru 2024; 32:379-419. [PMID: 38225520 PMCID: PMC11087437 DOI: 10.1007/s40199-023-00502-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 12/25/2023] [Indexed: 01/17/2024] Open
Abstract
PURPOSE Chronic diseases often hinder the natural healing process, making wound infections a prevalent clinical concern. In severe cases, complications can arise, potentially leading to fatal outcomes. While allopathic treatments offer numerous options for wound repair and management, the enduring popularity of herbal medications may be attributed to their perceived minimal side effects. Hence, this review aims to investigate the potential of herbal remedies in efficiently treating wounds, presenting a promising alternative for consideration. METHODS A literature search was done including research, reviews, systematic literature review, meta-analysis, and clinical trials considered. Search engines such as Pubmed, Google Scholar, and Scopus were used while retrieving data. Keywords like Wound healing 'Wound healing and herbal combinations', 'Herbal wound dressing', Nanotechnology and Wound dressing were used. RESULT This review provides valuable insights into the role of natural products and technology-based formulations in the treatment of wound infections. It evaluates the use of herbal remedies as an effective approach. Various active principles from herbs, categorized as flavonoids, glycosides, saponins, and phenolic compounds, have shown effectiveness in promoting wound closure. A multitude of herbal remedies have demonstrated significant efficacy in wound management, offering an additional avenue for care. The review encompasses a total of 72 studies, involving 127 distinct herbs (excluding any common herbs shared between studies), primarily belonging to the families Asteraceae, Fabaceae, and Apiaceae. In research, rat models were predominantly utilized to assess wound healing activities. Furthermore, advancements in herbal-based formulations using nanotechnology-based wound dressing materials, such as nanofibers, nanoemulsions, nanofiber mats, polymeric fibers, and hydrogel-based microneedles, are underway. These innovations aim to enhance targeted drug delivery and expedite recovery. Several clinical-based experimental studies have already been documented, evaluating the efficacy of various natural products for wound care and management. This signifies a promising direction in the field of wound treatment. CONCLUSION In recent years, scientists have increasingly utilized evidence-based medicine and advanced scientific techniques to validate the efficacy of herbal medicines and delve into the underlying mechanisms of their actions. However, there remains a critical need for further research to thoroughly understand how isolated chemicals extracted from herbs contribute to the healing process of intricate wounds, which may have life-threatening consequences. This ongoing research endeavor holds great promise in not only advancing our understanding but also in the development of innovative formulations that expedite the recovery process.
Collapse
Affiliation(s)
- Deepika Pathak
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida, UP, 201306, India.
| | - Avijit Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida, UP, 201306, India
| |
Collapse
|
5
|
Iungin O, Shydlovska O, Moshynets O, Vasylenko V, Sidorenko M, Mickevičius S, Potters G. Metal-based nanoparticles: an alternative treatment for biofilm infection in hard-to-heal wounds. J Wound Care 2024; 33:xcix-cx. [PMID: 38588056 DOI: 10.12968/jowc.2024.33.sup4a.xcix] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Metal-based nanoparticles (MNPs) are promoted as effective compounds in the treatment of bacterial infections and as possible alternatives to antibiotics. These MNPs are known to affect a broad spectrum of microorganisms using a multitude of strategies, including the induction of reactive oxygen species and interaction with the inner structures of the bacterial cells. The aim of this review was to summarise the latest studies about the effect of metal-based nanoparticles on pathogenic bacterial biofilm formed in wounds, using the examples of Gram-positive bacterium Staphylococcus aureus and Gram-negative bacterium Pseudomonas aeruginosa, as well as provide an overview of possible clinical applications.
Collapse
Affiliation(s)
- Olga Iungin
- 1 Kyiv National University of Technologies and Design (KNUTD), Kyiv, Ukraine
- 2 Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Olga Shydlovska
- 1 Kyiv National University of Technologies and Design (KNUTD), Kyiv, Ukraine
| | - Olena Moshynets
- 2 Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Volodymyr Vasylenko
- 3 Vytautas Magnus University, Faculty of Natural Science, Akademija, Lithuania
| | - Marina Sidorenko
- 3 Vytautas Magnus University, Faculty of Natural Science, Akademija, Lithuania
| | - Saulius Mickevičius
- 3 Vytautas Magnus University, Faculty of Natural Science, Akademija, Lithuania
| | - Geert Potters
- 4 Antwerp Maritime Academy, Antwerp, Belgium
- 5 University of Antwerp, Antwerp, Belgium
| |
Collapse
|
6
|
Sankar S, Kodiveri Muthukaliannan G. Deciphering the crosstalk between inflammation and biofilm in chronic wound healing: Phytocompounds loaded bionanomaterials as therapeutics. Saudi J Biol Sci 2024; 31:103963. [PMID: 38425782 PMCID: PMC10904202 DOI: 10.1016/j.sjbs.2024.103963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 03/02/2024] Open
Abstract
In terms of the economics and public health, chronic wounds exert a significant detrimental impact on the health care system. Bacterial infections, which cause the formation of highly resistant biofilms that elude standard antibiotics, are the main cause of chronic, non-healing wounds. Numerous studies have shown that phytochemicals are effective in treating a variety of diseases, and traditional medicinal plants often include important chemical groups such alkaloids, phenolics, tannins, terpenes, steroids, flavonoids, glycosides, and fatty acids. These substances are essential for scavenging free radicals which helps in reducing inflammation, fending off infections, and hastening the healing of wounds. Bacterial species can survive in chronic wound conditions because biofilms employ quorum sensing as a communication technique which regulates the expression of virulence components. Fortunately, several phytochemicals have anti-QS characteristics that efficiently block QS pathways, prevent drug-resistant strains, and reduce biofilm development in chronic wounds. This review emphasizes the potential of phytocompounds as crucial agents for alleviating bacterial infections and promoting wound healing by reducing the inflammation in chronic wounds, exhibiting potential avenues for future therapeutic approaches to mitigate the healthcare burden provided by these challenging conditions.
Collapse
Affiliation(s)
- Srivarshini Sankar
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - Gothandam Kodiveri Muthukaliannan
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| |
Collapse
|
7
|
Zawrzykraj M, Deptuła M, Kondej K, Tymińska A, Pikuła M. The effect of chemotherapy and radiotherapy on stem cells and wound healing. Current perspectives and challenges for cell-based therapies. Biomed Pharmacother 2023; 168:115781. [PMID: 39491418 DOI: 10.1016/j.biopha.2023.115781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2024] Open
Abstract
Cancers are part of the group of diseases that carry a high mortality rate. According to World Health Organization in 2020 reported 10 million deaths due to cancers. Treatment of oncological patients is focused on chemotherapeutic agents, radiology, or immunology. Surgical interventions are also an important aspect of treatment. The above methods contribute to saving the patients' health and lives. However, cancer treatment possesses side effects. Commonly observed complications are hair loss, mucositis, nausea, diarrhea, or various skin damage. To improve the quality of medical care for cancer patients, new methods of reducing side effects are sought. Strategies include the use of stem cells (SCs). Due to unlimited proliferation potential and differentiating abilities, SCs are used in the treatment of many disease entities, including wounds. One of the most used types of stem cells supposed adipose-derived mesenchymal stromal cells (AD-MSCs). Clinical trials confirm the application of AD-MSCs in wound healing. Furthermore, in vivo studies considered the utilization of AD-MSCs in radiation injury. The use of stem cells in cancer treatment still involves many questions, such as the impact of treatment on SCs' condition and oncological safety. However, development in regenerative medicine research may contribute to the use of stem cells in personalized medicine, customized for the patient. This could represent a breakthrough step in preventing the side effects of cancer therapies, including chronic wounds.
Collapse
Affiliation(s)
| | - Milena Deptuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdansk, Poland
| | - Karolina Kondej
- Department of Plastic Surgery, Medical University of Gdansk, Poland
| | - Agata Tymińska
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdansk, Poland
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdansk, Poland.
| |
Collapse
|
8
|
Samie A, Alavian H, Vafaei-Pour Z, Mohammadpour AH, Jafarian AH, Danesh NM, Abnous K, Taghdisi SM. Accelerated Wound Healing with a Diminutive Scar through Cocrystal Engineered Curcumin. Mol Pharm 2023; 20:5090-5107. [PMID: 37624646 DOI: 10.1021/acs.molpharmaceut.3c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Pharmaceutical cocrystals ( Regulatory Classification of Pharmaceutical Co-Crystals Guidance for Industry; Food and Drug Administration, 2018) are crystalline solids produced through supramolecular chemistry to modulate the physicochemical properties of active pharmaceutical ingredients (APIs). Despite their extensive development in interdisciplinary sciences, this is a pioneering study on the efficacy of pharmaceutical cocrystals in wound healing and scar reducing. Curcumin-pyrogallol cocrystal (CUR-PYR) was accordingly cherry-picked since its superior physicochemical properties adequately compensate for limitative drawbacks of curcumin (CUR). CUR-PYR has been synthesized by a liquid-assisted grinding (LAG) method and characterized via FT-IR, DSC, and PXRD analyses. In vitro antibacterial study indicated that CUR-PYR cocrystal, CUR+PYR physical mixture (PM), and PYR are more effective against both Gram-negative (Pseudomonas aeruginosa and Escherichia coli) and Gram-positive (Staphylococcus aureus and Bacillus subtilis) bacteria in comparison with CUR. In vitro results also demonstrated that the viability of HDF and NIH-3T3 cells treated with CUR-PYR were improved more than those received CUR which is attributed to the effect of PYR in the form of cocrystal. The wound healing process has been monitored through a 15 day in vivo experiment on 75 male rats stratified into six groups: five groups treated by CUR-PYR+Vaseline (CUR-PYR.ung), CUR+PYR+Vaseline (CUR+PYR.ung), CUR+Vaseline (CUR.ung), PYR+Vaseline (PYR.ung), and Vaseline (VAS) ointments and a negative control group of 0.9% sodium chloride solution (NS). It was revealed that the wounds under CUR-PYR.ung treatment closed by day 12 postsurgery, while the wounds in other groups failed to reach the complete closure end point until the end of the experiment. Surprisingly, a diminutive scar (3.89 ± 0.97% of initial wound size) was observed in the CUR-PYR.ung treated wounds by day 15 after injury, followed by corresponding values for PYR.ung (12.08 ± 2.75%), CUR+PYR.ung (13.89 ± 5.02%), CUR.ung (16.24 ± 6.39%), VAS (18.97 ± 6.89%), and NS (20.33 ± 5.77%). Besides, investigating histopathological parameters including inflammation, granulation tissue, re-epithelialization, and collagen deposition signified outstandingly higher ability of CUR-PYR cocrystal in wound healing than either of its two constituents separately or their simple PM. It was concluded that desired solubility of the prepared cocrystal was essentially responsible for accelerating wound closure and promoting tissue regeneration which yielded minimal scarring. This prototype research suggests a promising application of pharmaceutical cocrystals for the purpose of wound healing.
Collapse
Affiliation(s)
- Ali Samie
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Hoda Alavian
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Zeinab Vafaei-Pour
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Amir Hooshang Mohammadpour
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Science, Mashhad 9177948954, Iran
| | - Amir Hossein Jafarian
- Cancer and Molecular Research Center, Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Noor Mohammad Danesh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Khalil Abnous
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| |
Collapse
|
9
|
Meng J, Zhang P, Liu Q, Ran P, Xie S, Wei J, Li X. Pyroelectric Janus nanomotors for synergistic electrodynamic-photothermal-antibiotic therapies of bacterial infections. Acta Biomater 2023; 162:20-31. [PMID: 36931421 DOI: 10.1016/j.actbio.2023.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/25/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
Antibacterial electrotherapy is currently activated by external electric field or self-powered generators, but usually needs complicated power management circuits. Herein, near-infrared illumination (NIR) of pyroelectric nanoparticles (NPs) produces a built-in electric field to address the effectiveness and safety concerns in the antibacterial treatment. Janus tBT@PDA NPs were obtained by capping polydopamine (PDA) on tetragonal BaTiO3 (tBT) NPs through defining the polymerization time, followed by ciprofloxacin (CIP) loading on the PDA caps to fabricate Janus tBT@PDA-Cip NPs. NIR illumination of PDA caps creates temperature variations on tBT NPs to generate photothermal and pyroelectric effects. Finite element simulation reveals a pyroelectric potential of over 1 V and sufficient reactive oxygen species (ROS) are produced to exhibit pyroelectric dynamic therapy (PEDT). The elevated temperature on one side of the Janus NPs produces thermophoretic force to drive NP motion, which enhances interactions with bacteria and overcomes limitations in the short action distance and lifespan of ROS. The pyroelectric field accelerates CIP release through weakening the π-π stacking and electrostatic interaction with PDA and also interrupts membrane potentials of bacteria to enhance CIP invasion into bacteria. The synergistic antibacterial effect of pyroelectric tBT@PDA-Cip NPs causes the fully recovery of S. aureus-infected skin wounds and regeneration of intact epidermis, blood vessels and hair follicles, while no obvious pathological change or inflammatory lesion is detected in the major organs. Thus, the pyroelectric Janus nanomotors demonstrate synergistic PEDT/photothermal/antibiotic effects to enhance antibacterial efficacy while avoiding the necessity of excessive heat, ROS and antibiotic doses. STATEMENT OF SIGNIFICANCE: Antibacterial treatment is challenged by antibiotics-derived side effects and the evolution of resistant strains. Phototherapy is commonly associated with excessive heat and oxidative stress, and their combinations with other agents are especially encouraged to strengthen antibacterial efficacy while alleviating the associated side effects. Electric field is another activator to generate antibacterial abilities, but usually requires complicated power management and bulk electrodes, making it inconvenient in a biological setup. To address these challenges, we propose a strategy to generate microelectric field on nanoparticles themselves and achieve synergistic electrodynamic-photothermal-antibiotic therapies. The pyroelectric effect weakens interactions between nanoparticles and antibiotics to accelerate drug release, and the built-in pyroelectric field increases membrane fluidity to enhance bacterial uptake of antibiotics.
Collapse
Affiliation(s)
- Jie Meng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, PR China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Peng Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Qingjie Liu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Pan Ran
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Shuang Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, PR China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Junwu Wei
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, PR China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Xiaohong Li
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, PR China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China.
| |
Collapse
|
10
|
Du P, Diao L, Lu Y, Liu C, Li J, Chen Y, Chen J, Lv G, Chen X. Heparin-based sericin hydrogel-encapsulated basic fibroblast growth factor for in vitro and in vivo skin repair. Heliyon 2023; 9:e13554. [PMID: 36851964 PMCID: PMC9958445 DOI: 10.1016/j.heliyon.2023.e13554] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
The treatment of full-thickness cutaneous wounds remains a significant challenge in clinical therapeutics. Exogenous growth factor (GF) has been applied in clinics to promote wound healing. However, the retention of GF on the wound bed after its direct application to the wound surface is difficult. Moreover, growth factors (GFs) are always inactivated in the complex wound healing microenvironment due to various factors, which significantly decrease the therapeutic effect. Sericin hydrogel (S) can be used as an effective carrier for GFs owing to its low immunogenicity, good biocompatibility, and good healing-promoting ability. Here, we designed a heparin-based sericin hydrogel (HS) -encapsulated basic fibroblast growth factor (bFGF-HS) to facilitate wound healing and skin regeneration. The hydrogel exhibited a three-dimensional (3D) microporous structure, excellent biodegradability, good adhesiveness, and low cytotoxicity. In vitro release of bFGF from bFGF-HS coacervates revealed that bFGF-HS might control the release of bFGF within 25 days through heparin regulation. bFGF-HS significantly promoted vascularization and re-epithelialization and improved collagen deposition, ultimately accelerating wound healing in vivo in mice. bFGF-HS treated wounds were also found to have more hair follicles and milder inflammatory reactions. Overall, this study provides a new therapeutic approach for full-thickness skin defect wounds using bFGF-HS.
Collapse
Affiliation(s)
- Pan Du
- Wuxi Medical School, Jiangnan University, Wuxi, 214122, China
| | - Ling Diao
- The Affifiliated Hospital of Jiangnan University, Jiangsu, 214000, China
| | - Yichi Lu
- Wuxi Medical School, Jiangnan University, Wuxi, 214122, China
| | - Chenyang Liu
- The Affifiliated Hospital of Jiangnan University, Jiangsu, 214000, China
| | - Jin Li
- Wuxi Medical School, Jiangnan University, Wuxi, 214122, China
| | - Yang Chen
- Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Junfeng Chen
- Wuxi Medical School, Jiangnan University, Wuxi, 214122, China
| | - Guozhong Lv
- Wuxi Medical School, Jiangnan University, Wuxi, 214122, China
- The Affifiliated Hospital of Jiangnan University, Jiangsu, 214000, China
| | - Xue Chen
- Wuxi Medical School, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
11
|
Sari RP, Larashati DID, Aldiana C, Nafi'ah N, Damaiyanti DW, Kurniawati A. Application of Stichopus hermanni Nanoparticle Gel in the Healing of Traumatic Ulcers. Eur J Dent 2023. [PMID: 36690026 DOI: 10.1055/s-0042-1759884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE The aim of this research was to investigate the use of Stichopus herrmanni nanoparticle gel on the ulcer healing process by observing blood vessels, fibroblasts, and Collagen type-I (COL-1) expression on the 4 and 7th days after trauma. MATERIALS AND METHODS Gold sea cucumber (Stichopus herrmanni) powder was processed by freeze-drying method, then by high-energy milling to form nanoparticle size, and then with CMC 2% to make hydrogel. Traumatic ulcers were formed by induction using a burner. Five groups of male Wistar rats, each consisting of six tails, were divided into a negative control group that was given a placebo, the positive control group was given 0.2% hyaluronic acid, and the treatment group was given gold sea cucumbers with concentrations of 0.135, 0.27, and 0.54% (SH1-SH2-SH3). Fibroblast and blood vessels were examined with hematoxylin-eosin on day 3 and 7, while COL-1 expression was examined with immunohistochemistry on day 7. The rats' mucosa was taken on the 3rd and 7th days after the traumatic ulcer was formed. STATISTICAL ANALYSIS The data were analyzed using a one-way analysis of variance followed by a post-hoc test with a p less than 0.05. RESULTS Nanoparticles gel freeze-drying of Stichopus herrmanni increased blood vessels on day 3. Angiogenesis continued to occur, which resulted in increased fibroblast and COL-1 expression on day 7. CONCLUSIONS The application of Stichopus herrmanni nanoparticle gel at 0.27% effectively increased the number of blood vessels, fibroblasts, and COL-1 expression in healing traumatic ulcers.
Collapse
Affiliation(s)
- Rima Parwati Sari
- Department of Oral Biology, Faculty of Dentistry, Universitas Hang Tuah, Surabaya, Indonesia
| | | | - Clarissa Aldiana
- Department of Oral Biology, Faculty of Dentistry, Universitas Hang Tuah, Surabaya, Indonesia
| | - Nafi'ah Nafi'ah
- Department of Oral Medicine, Faculty of Dentistry, Universitas Hang Tuah, Surabaya, Indonesia
| | - Dian Widya Damaiyanti
- Department of Oral Biology, Faculty of Dentistry, Universitas Hang Tuah, Surabaya, Indonesia
| | - Atik Kurniawati
- Department of Oral Biology, Faculty of Dentistry, University of Jember, Jember, Indonesia
| |
Collapse
|
12
|
He C, Zhang W, Tu Y, Zhong L, Wang R, Teng Y, Liao IC, Ding C. Characterization of an ablative fractional CO 2 laser-induced wound-healing model based on in vitro 3D reconstructed skin. J Cosmet Dermatol 2023; 22:1495-1506. [PMID: 36683276 DOI: 10.1111/jocd.15597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/05/2022] [Accepted: 12/14/2022] [Indexed: 01/24/2023]
Abstract
OBJECTIVE This study describes the development and characterization of a novel in vitro wound-healing model based on a full-thickness reconstructed skin by exposing the tissue to fractional ablative laser treatment. METHOD A 3D full-thickness skin model was fabricated and treated with fractional ablative CO2 laser. Wound-healing process was characterized by HE staining, noninvasive OCT imaging, immunostaining, as well as transepidermal water loss measurement. Cytokines and proteins involved in the inflammatory and dermal remodeling process were studied by ELISA and protein array assays. RESULTS Fractional ablative CO2 treatment induced a wound zone of 9 mm in diameter, containing 56 micro-wounds with 200 μm diameter and 500-700 μm in depth on reconstructed full-thickness skin model. HE staining revealed a typical wound morphology and healing process with migration of keratinocytes, formation and extrusion of necrotic tissue, and cell inclusion in dermis, which correlates with clinical observations. Based on OCT and TEWL measurements, the re-epithelialization took place over 2 days. Laser-triggered keratinocytes proliferation and differentiation were demonstrated by activated Ki67 and Filaggrin expression respectively. Injury-invoked cytokine ICAM-1 showed instant upregulation on Day 1. Decreased epidermis thickness and depression of IGFBP-2 protein level synergistically indicated the unavoidable thermal side effects from laser treatment. Downregulated DKK-1 protein level and upregulation of α-SMA together implicated the risk of potential fibrosis post-laser treatment. CONCLUSION This in vitro laser wounded reconstructed skin model captured the key events of wound-healing process, could be used to investigate the mechanisms of wound-healing triggered by a commonly used beauty procedure, and also provides a valuable tool for evaluating the efficacy of novel actives for the post-procedure application.
Collapse
Affiliation(s)
- Chunyan He
- L'Oreal Research and Innovation, SHANGHAI, China
| | - Wei Zhang
- Shanghai Dermatology Hospital, SHANGHAI, China
| | - Yidong Tu
- L'Oreal Research and Innovation, SHANGHAI, China
| | | | - Ranran Wang
- L'Oreal Research and Innovation, SHANGHAI, China
| | - Yao Teng
- L'Oreal Research and Innovation, SHANGHAI, China
| | - I-Chien Liao
- L'Oreal Research and Innovation, CLARK, New Jersey, USA
| | - Chunmei Ding
- L'Oreal Research and Innovation, SHANGHAI, China
| |
Collapse
|
13
|
Huang F, Lu X, Yang Y, Yang Y, Li Y, Kuai L, Li B, Dong H, Shi J. Microenvironment-Based Diabetic Foot Ulcer Nanomedicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203308. [PMID: 36424137 PMCID: PMC9839871 DOI: 10.1002/advs.202203308] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/02/2022] [Indexed: 06/04/2023]
Abstract
Diabetic foot ulcers (DFU), one of the most serious complications of diabetes, are essentially chronic, nonhealing wounds caused by diabetic neuropathy, vascular disease, and bacterial infection. Given its pathogenesis, the DFU microenvironment is rather complicated and characterized by hyperglycemia, ischemia, hypoxia, hyperinflammation, and persistent infection. However, the current clinical therapies for DFU are dissatisfactory, which drives researchers to turn attention to advanced nanotechnology to address DFU therapeutic bottlenecks. In the last decade, a large number of multifunctional nanosystems based on the microenvironment of DFU have been developed with positive effects in DFU therapy, forming a novel concept of "DFU nanomedicine". However, a systematic overview of DFU nanomedicine is still unavailable in the literature. This review summarizes the microenvironmental characteristics of DFU, presents the main progress of wound healing, and summaries the state-of-the-art therapeutic strategies for DFU. Furthermore, the main challenges and future perspectives in this field are discussed and prospected, aiming to fuel and foster the development of DFU nanomedicines successfully.
Collapse
Affiliation(s)
- Fang Huang
- Key Laboratory of Spine and Spinal Cord Injury Repair and RegenerationMinistry of EducationTongji HospitalSchool of MedicineTongji University389 Xincun RoadShanghai200065China
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050China
| | - Xiangyu Lu
- Shanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineThe Institute for Biomedical Engineering and Nano ScienceSchool of MedicineTongji UniversityShanghai200092China
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050China
- Shanghai Skin Disease HospitalSchool of MedicineTongji UniversityShanghai200443China
| | - Yan Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and RegenerationMinistry of EducationTongji HospitalSchool of MedicineTongji University389 Xincun RoadShanghai200065China
| | - Yushan Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and RegenerationMinistry of EducationTongji HospitalSchool of MedicineTongji University389 Xincun RoadShanghai200065China
| | - Yongyong Li
- Shanghai Skin Disease HospitalSchool of MedicineTongji UniversityShanghai200443China
| | - Le Kuai
- Department of DermatologyYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghai200437China
| | - Bin Li
- Shanghai Skin Disease HospitalSchool of MedicineTongji UniversityShanghai200443China
- Department of DermatologyYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghai200437China
| | - Haiqing Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair and RegenerationMinistry of EducationTongji HospitalSchool of MedicineTongji University389 Xincun RoadShanghai200065China
| | - Jianlin Shi
- Shanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineThe Institute for Biomedical Engineering and Nano ScienceSchool of MedicineTongji UniversityShanghai200092China
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050China
| |
Collapse
|
14
|
Ngoepe MP, Battison A, Mufamadi S. Nano-Enabled Chronic Wound Healing Strategies: Burn and Diabetic Ulcer Wounds. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The human skin serves as the body’s first line of defense against the environment. Diabetes mellitus (DM) and 2nd–4th degree burns, on the other hand, affect the skin’s protective barrier features. Burn wounds, hypermetabolic state, and hyperglycemia compromise the
immune system leading to chronic wound healing. Unlike acute wound healing processes, chronic wounds are affected by reinfections which can lead to limb amputation or death. The conventional wound dressing techniques used to protect the wound and provide an optimal environment for repair have
their limitations. Various nanomaterials have been produced that exhibit distinct features to tackle issues affecting wound repair mechanisms. This review discusses the emerging technologies that have been designed to improve wound care upon skin injury. To ensure rapid healing and possibly
prevent scarring, different nanomaterials can be applied at different stages of healing (hemostasis, inflammation, proliferation, remodeling).
Collapse
Affiliation(s)
- Mpho Phehello Ngoepe
- DSI-Mandela Nanomedicine Platform, Nelson Mandela University, Gqeberha, 6001, Eastern Cape, South Africa
| | - Aidan Battison
- DSI-Mandela Nanomedicine Platform, Nelson Mandela University, Gqeberha, 6001, Eastern Cape, South Africa
| | - Steven Mufamadi
- DSI-Mandela Nanomedicine Platform, Nelson Mandela University, Gqeberha, 6001, Eastern Cape, South Africa
| |
Collapse
|
15
|
Hsu YJ, Nain A, Lin YF, Tseng YT, Li YJ, Sangili A, Srivastava P, Yu HL, Huang YF, Huang CC, Chang HT. Self-redox reaction driven in situ formation of Cu 2O/Ti 3C 2T x nanosheets boost the photocatalytic eradication of multi-drug resistant bacteria from infected wound. J Nanobiotechnology 2022; 20:235. [PMID: 35590324 PMCID: PMC9117998 DOI: 10.1186/s12951-022-01428-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND MXenes with interesting optical and electrical properties have been attractive in biomedical applications such as antibacterial and anticancer agents, but their low photogeneration efficiency of reactive oxygen species (ROS) and poor stability are major concerns against microbial resistance. METHODS Water-dispersible single layer Ti3C2Tx-based MXene through etching tightly stacked MAX phase precursor using a minimally intensive layer delamination method. After addition of Cu(II) ions, the adsorbed Cu(II) ions underwent self-redox reactions with the surface oxygenated moieties of MXene, leading to in situ formation of Cu2O species to yield Cu2O/Ti3C2Tx nanosheets (heterostructures). RESULTS Under NIR irradiation, the Cu2O enhanced generation of electron-hole pairs, which boosted the photocatalytic production of superoxide and subsequent transformation into hydrogen peroxide. Broad-spectrum antimicrobial performance of Cu2O/Ti3C2Tx nanosheets with sharp edges is attributed to the direct contact-induced membrane disruption, localized photothermal therapy, and in situ generated cytotoxic free radicals. The minimum inhibitory concentration of Cu2O/Ti3C2Tx nanosheets reduced at least tenfold upon NIR laser irradiation compared to pristine Cu2O/Ti3C2Tx nanosheets. The Cu2O/Ti3C2Tx nanosheets were topically administrated on the methicillin-resistant Staphylococcus aureus (MRSA) infected wounds on diabetic mice. CONCLUSION Upon NIR illumination, Cu2O/Ti3C2Tx nanosheets eradicated MRSA and their associated biofilm to promote wound healing. The Cu2O/Ti3C2Tx nanosheets with superior catalytic and photothermal properties have a great scope as an effective antimicrobial modality for the treatment of infected wounds.
Collapse
Affiliation(s)
- Ya-Ju Hsu
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Amit Nain
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Feng Lin
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Ting Tseng
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Jia Li
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Arumugam Sangili
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Pavitra Srivastava
- School of Basic Sciences, Indian Institute of Technology, Kamand campus, Mandi, Himachal Pradesh, 175005, India
| | - Hui-Ling Yu
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Fen Huang
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 202301, Taiwan. .,School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Huan-Tsung Chang
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
16
|
Haghani F, Arabnezhad MR, Mohammadi S, Ghaffarian-Bahraman A. Aloe vera and Streptozotocin-Induced Diabetes Mellitus. REVISTA BRASILEIRA DE FARMACOGNOSIA : ORGAO OFICIAL DA SOCIEDADE BRASILEIRA DE FARMACOGNOSIA 2022; 32:174-187. [PMID: 35287334 PMCID: PMC8908758 DOI: 10.1007/s43450-022-00231-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/12/2022] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus is defined as prolonged hyperglycemia, which can harm the eyes, kidneys, and cardiovascular and neurological systems. Herbal agents and their derived supplements have been used for treatment of diabetes mellitus as a part of integrated complementary medicine for centuries. Numerous studies have considered Aloe vera (L.) Burm.f, Xanthorrhoeaceae, as an alternative medicine due to its abundant bioactive chemicals, such as alkaloids, anthraquinones, and enthrones, with therapeutical properties including antioxidant, anti-inflammatory, neuro-protective, and anti-diabetic effects. Aloe vera has received considerable attention in traditional medicine for the treatment of several diseases including diabetes mellitus. Numerous studies have investigated the effects of herbal agents on diabetes mellitus using a streptozotocin-induced diabetic model. Thereby, this article reviews the effects of Aloe vera prescription on streptozotocin-induced diabetes mellitus to provide a clear insight into the role of this medicinal plant in several biological functions, such as antioxidant, wound healing, anti-inflammatory, anti-hyperglycemic, and anti-hyperlipidemic in diabetic models. Graphical abstract ![]()
Collapse
Affiliation(s)
- Fatemeh Haghani
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad-Reza Arabnezhad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Salman Mohammadi
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ali Ghaffarian-Bahraman
- Occupational Environment Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
17
|
Chen YH, Chuang EY, Jheng PR, Hao PC, Hsieh JH, Chen HL, Mansel BW, Yeh YY, Lu CX, Lee JW, Hsiao YC, Bolouki N. Cold-atmospheric plasma augments functionalities of hybrid polymeric carriers regenerating chronic wounds: In vivo experiments. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112488. [PMID: 34857274 DOI: 10.1016/j.msec.2021.112488] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/24/2021] [Accepted: 10/09/2021] [Indexed: 01/05/2023]
Abstract
The skin possesses an epithelial barrier. Delivering growth factors to deeper wounds is usually rather challenging, and these typically restrict the therapeutic efficacy for chronic wound healing. Efficient healing of chronic wounds also requires abundant blood flow. Therefore, addressing these concerns is crucial. Among presently accessible biomedical materials, tailored hydrogels are favorable for translational medicine. However, these hydrogels display insufficient mechanical properties, hampering their biomedical uses. Cold-atmospheric plasma (CAP) has potent cross-linking/polymerizing abilities. The CAP was characterized spectroscopically to identify excited radiation and species (hydroxyl and UV). CAP was used to polymerize pyrrole (creating Ppy) and crosslink hybrid polymers (Ppy, hyaluronic acid (HA), and gelatin (GEL)) as a multimodal dressing for chronic wounds (CAP-Ppy/GEL/HA), which were used to incorporate therapeutic platelet proteins (PPs). Herein, the physicochemical and biological features of the developed CAP-Ppy/GEL/HA/PP complex were assessed. CAP-Ppy/GEL/HA/PPs had positive impacts on wound healing in vitro. In addition, the CAP-Ppy/GEL/HA complex has improved mechanical aspects, therapeutics sustained-release/retention effect, and near-infrared (NIR)-driven photothermal-hyperthermic effects on lesions that drive the expression of heat-shock protein (HSP) with anti-inflammatory properties for boosted restoration of diabetic wounds in vivo. These in vitro and in vivo outcomes support the use of CAP-Ppy/GEL/HA/PPs for diabetic wound regeneration.
Collapse
Affiliation(s)
- Yun-Hsuan Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University, Wan Fang Hospital, Taipei 11696, Taiwan.
| | - Pei-Ru Jheng
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Ping-Chien Hao
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Jang-Hsing Hsieh
- Center for Plasma and Thin Film Technologies, Ming-Chi University of Technology, New Taipei City, Taiwan; Department of Materials Engineering, Ming-Chi University of Technology, New Taipei City, Taiwan
| | - Hsin-Lung Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Bradley W Mansel
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Yen Yeh
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Chu-Xuan Lu
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Jyh-Wei Lee
- Center for Plasma and Thin Film Technologies, Ming-Chi University of Technology, New Taipei City, Taiwan; Department of Materials Engineering, Ming-Chi University of Technology, New Taipei City, Taiwan
| | - Yu-Cheng Hsiao
- Graduate Institute of Biomedical Optomechatronics, Taipei Medical University, Taipei 11031, Taiwan.
| | - Nima Bolouki
- Center for Plasma and Thin Film Technologies, Ming-Chi University of Technology, New Taipei City, Taiwan.
| |
Collapse
|
18
|
Gupta P, Mishra P, Mehra L, Rastogi K, Prasad R, Mittal G, Poluri KM. Eugenol-acacia gum-based bifunctional nanofibers as a potent antifungal transdermal substitute. Nanomedicine (Lond) 2021; 16:2269-2289. [PMID: 34569268 DOI: 10.2217/nnm-2021-0274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: Fungal biofilms interfere with the wound healing processes. Henceforth, the study aims to fabricate a biomaterial-based nano-scaffold with the dual functionalities of wound healing and antibiofilm activity. Methods: Nanofibers comprising acacia gum, polyvinyl alcohol and inclusion complex of eugenol in β-cyclodextrin (EG-NF) were synthesized using electrospinning. Antibiofilm studies were performed on Candida species, and the wound-healing activity was evaluated through an in vivo excision wound rat model. Results: The EG-NF potentially eradicated the mature biofilm of Candida species and their clinical isolates. Further, EG-NF also enhanced the re-epithelization and speed of wound healing in in vivo rat experiments. Conclusion: The study established the bifunctional applications of eugenol nanofibers as a transdermal substitute with antifungal potency.
Collapse
Affiliation(s)
- Payal Gupta
- Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Purusottam Mishra
- Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Lalita Mehra
- Department of Combat Sciences, Institute of Nuclear Medicine & Allied Sciences, Defence Research & Development Organisation, Timarpur, 110054, Delhi, India
| | - Kartikey Rastogi
- Department of Combat Sciences, Institute of Nuclear Medicine & Allied Sciences, Defence Research & Development Organisation, Timarpur, 110054, Delhi, India
| | - Ramasare Prasad
- Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Gaurav Mittal
- Department of Combat Sciences, Institute of Nuclear Medicine & Allied Sciences, Defence Research & Development Organisation, Timarpur, 110054, Delhi, India
| | - Krishna Mohan Poluri
- Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.,Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| |
Collapse
|
19
|
Sridharan B, Lin YL, Liao JW, Wang S, Lee MJ. Effect of andrographolide on the pathological events during the surgical open wound healing process. IOP CONFERENCE SERIES: EARTH AND ENVIRONMENTAL SCIENCE 2021; 858:012007. [DOI: 10.1088/1755-1315/858/1/012007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Abstract
Wound healing is an important physiological process and several natural and synthetic drugs are being tested to speed up the process to avoid infection and other undesirable pathological events. Although andrographolide has been reported to be an excellent bioactive compound that can influence multiple pathways in the cells, its wound healing property has not been widely appreciated. In this study, we wanted to exhibit the improvement in the pathological events concerning wound healing process by injecting andro in a surgical wound model in rats. The right paw of female SD rats was operated and after 5 days, pathological events in the operated right paw was observed by staining the sections using hematoxylin & eosin dyes to elucidate the dermal and epidermal changes, while Mason’s trichrome staining was performed on the sections to show the granulation layer formation and provide supporting evidence for angiogenesis and ECM deposition. Pathological score was given to the sections according to the extent of the changes observed and the results suggested that epidermal changes were scored almost similar in both saline and andro injected rats (2-3), while angiogenesis and inflammation were moderately improved in favor of wound healing in the andro injected rats (2.5 & 3.7 respectively) compared to saline-injected rats (3 & 4 respectively). The results clearly suggested that, though the improvement due to andro injection was moderate, these observations might create an awareness regarding the wound healing property of andro. Further studies are required to optimize the dosage of andro to influence the molecular pathways in order to show a better wound healing activity.
Collapse
|