1
|
Silva RLA, Barreiro ME, Ferreira KRC, Cardoso KBB, Neves AGD, Miranda MELC, Batista JM, Nascimento TP, Cahú TB, de Souza Bezerra R, Porto ALF, Brandão-Costa RMP. Purification and characterization of a protease produced by submerged fermentation: Ultrasound-enhanced collagenolytic protease from Streptomyces parvulus. Int J Biol Macromol 2024; 283:137749. [PMID: 39577532 DOI: 10.1016/j.ijbiomac.2024.137749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
Proteases are a large group of enzymes in high demand due to their wide and different biotechnological applications mainly in the biomedical field. Ultrasound (US) has been used successfully in several Bioprocesses in biotechnology, such as in the upregulation of enzymatic hydrolysis (biocatalysis). The objective of this work was to purify an enzyme from Streptomyces parvulus and to characterize it through physic-chemical applications including ultrasound effect. The purified protease has a molecular weight of 78.0 KDa, a yield of 31 % and 11.8-fold, it was stable between pH 4-9, optimum pH at 7.5, temperature of 0-45 °C, and showed optimum temperature at 45 °C, exhibited enhanced activity with Ca2+ and Mg2+, and was inhibited by PMSF. US in the treatment or pre-treatment of enzymatic reactions showed to be favorable and increase the activity around 85 % for the optimum temperature 45 °C. Also, in circular dichroism spectra it was shown a significant change in enzyme structure under US effect enhancing the real activity. Besides, the US improved the enzyme reactions for all assays. The purified enzyme was successfully immobilized in chitosan film. Thus, the present work demonstrated the promising results of a protease with collagenolytic activity in the field of Biotechnology by proving the positive effect induced by ultrasound.
Collapse
Affiliation(s)
- Raphael Luiz Andrade Silva
- Laboratory of Advances in Protein Biotechnology (LABIOPROT), Institute of Biological Sciences, University of Pernambuco - UPE, Brazil
| | - Maria Ercilia Barreiro
- Keizo Asami Immunopathology Laboratory, Federal University of Pernambuco - UFPE, Recife, PE, Brazil
| | | | | | - Anna Gabrielly Duarte Neves
- Department of Animal Morphology and Physiology, Laboratory of Bioactive Products, Federal Rural University of Pernambuco - UFRPE, PE, Brazil
| | - Maria Eduarda L C Miranda
- Department of Animal Morphology and Physiology, Laboratory of Bioactive Products, Federal Rural University of Pernambuco - UFRPE, PE, Brazil
| | - Juanize Matias Batista
- Department of Animal Morphology and Physiology, Laboratory of Bioactive Products, Federal Rural University of Pernambuco - UFRPE, PE, Brazil
| | - Thiago Pajeú Nascimento
- Professora Cinobelina Elvas Campus, CPCE - Federal University of Piauí, Bom Jesus, PI, Brazil
| | - Thiago Barbosa Cahú
- Department of Biochemistry, Enzymology Laboratory, Federal University of Pernambuco - UFPE, PE, Brazil
| | - Ranilson de Souza Bezerra
- Department of Biochemistry, Enzymology Laboratory, Federal University of Pernambuco - UFPE, PE, Brazil
| | - Ana Lucia F Porto
- Department of Animal Morphology and Physiology, Laboratory of Bioactive Products, Federal Rural University of Pernambuco - UFRPE, PE, Brazil
| | - Romero M P Brandão-Costa
- Laboratory of Advances in Protein Biotechnology (LABIOPROT), Institute of Biological Sciences, University of Pernambuco - UPE, Brazil.
| |
Collapse
|
2
|
Chatterjee S, Gupta T, Kaur G, Chattopadhyay K. Pyroptotic executioner pore-forming protein gasdermin D forms oligomeric assembly and exhibits amyloid-like attributes that could contribute for its pore-forming function. Biochem J 2024; 481:1679-1705. [PMID: 39503596 DOI: 10.1042/bcj20240416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/15/2024]
Abstract
Gasdermin D (GSDMD) is the chief executioner of inflammatory cell death or pyroptosis. During pyroptosis, proteolytic processing of GSDMD releases its N-terminal domain (NTD), which then forms large oligomeric pores in the plasma membranes. Membrane pore-formation by NTD allows the release of inflammatory cytokines and causes membrane damage to induce cell death. Structural mechanisms of GSDMD-mediated membrane pore-formation have been extensively studied. However, less effort has been made to understand the physicochemical properties of GSDMD and their functional implications. Here, we explore detailed characterization of the physicochemical properties of mouse GSDMD (mGSDMD), and their implications in regulating the pore-forming function. Our study reveals that mGSDMD shows some of the hallmark features of amyloids, and forms oligomeric assemblies in solution that are critically dependent on the disulfide bond-forming ability of the protein. mGSDMD oligomeric assemblies do not resemble typical amyloid fibrils/aggregates, and do not show resistance to proteolytic degradation that is otherwise observed with the conventional amyloids. Our results further elucidate the essential role of an amyloid-prone region (APR) in the oligomerization and amyloid-like features of mGSDMD. Furthermore, alteration of this APR leads to compromised pore-forming ability and cell-killing activity of NTD released from mGSDMD. Taken together, our study for the first time provides crucial new insights regarding implications of the amyloid-like property of mGSDMD in regulating its pore-forming function, which is an essential requirement for this pyroptotic executioner. To the best of our knowledge, such mode of regulation of mGSDMD-function has not been appreciated so far.
Collapse
Affiliation(s)
- Shamaita Chatterjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali, Punjab 140306, India
| | - Tarang Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali, Punjab 140306, India
| | - Gurvinder Kaur
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali, Punjab 140306, India
| | - Kausik Chattopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali, Punjab 140306, India
| |
Collapse
|
3
|
Stepanenko OV, Sulatsky MI, Mikhailova EV, Stepanenko OV, Sulatskaya AI. Degradation of pathogenic amyloids induced by matrix metalloproteinase-9. Int J Biol Macromol 2024; 281:136362. [PMID: 39395518 DOI: 10.1016/j.ijbiomac.2024.136362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
Over the past decade, the greatest promise for treating severe and currently incurable systemic and neurodegenerative diseases has turned to agents capable of effectively degrading pathological amyloid deposits without causing side effects. Specifically, amyloid destruction observed in immunotherapy is hypothesized to occur through activation of proteolytic enzymes. This study examines poorly understood effects of an immune enzyme, extracellular matrix metalloproteinase-9 (MMP9), on amyloids associated with Alzheimer's and Parkinson's diseases, lysozyme, insulin, and dialysis-related amyloidoses. The study establishes the universality of MMP9's effect on various amyloids, with its efficacy largely depending on the fibrillar cluster size. Irreversible amyloid degradation by MMP9 is attributed to the destruction of intramolecular interactions rather than intermolecular hydrogen bonds in the fibril backbone. This process results in the loss of ordered fiber structure without reducing aggregate size or increasing cytotoxicity. Thus, MMP9 can mitigate side effects of anti-amyloid therapy associated with the formation of low-molecular-weight degradation products that may accelerate fibrillogenesis and amyloid propagation between tissues and organs. MMP9 shows promise as a component of safe anti-amyloid drugs by enhancing the accessibility of binding sites through "loosening" amyloid clusters, which facilitates subsequent fragmentation and monomerization by other enzymes.
Collapse
Affiliation(s)
- Olga V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| | - Maksim I Sulatsky
- Laboratory of Cell Morphology, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| | - Ekaterina V Mikhailova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| | - Olesya V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| | - Anna I Sulatskaya
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| |
Collapse
|
4
|
Lee T, Cheong DY, Lee KH, You JH, Park J, Lee G. Capillary Flow-Based One-Minute Quantification of Amyloid Proteolysis. BIOSENSORS 2024; 14:400. [PMID: 39194629 DOI: 10.3390/bios14080400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Quantifying the formation and decomposition of amyloid is a crucial issue in the development of new drugs and therapies for treating amyloidosis. The current technologies for grasping amyloid formation and decomposition include fluorescence analysis using thioflavin-T, secondary structure analysis using circular dichroism, and image analysis using atomic force microscopy or transmission electron microscopy. These technologies typically require spectroscopic devices or expensive nanoscale imaging equipment and involve lengthy analysis, which limits the rapid screening of amyloid-degrading drugs. In this study, we introduce a technology for rapidly assessing amyloid decomposition using capillary flow-based paper (CFP). Amyloid solutions exhibit gel-like physical properties due to insoluble denatured polymers, resulting in a shorter flow distance on CFP compared to pure water. Experimental conditions were established to consistently control the flow distance based on a hen-egg-white lysozyme amyloid solution. It was confirmed that as amyloid is decomposed by trypsin, the flow distance increases on the CFP. Our method is highly useful for detecting changes in the gel properties of amyloid solutions within a minute, and we anticipate its use in the rapid, large-scale screening of anti-amyloid agents in the future.
Collapse
Affiliation(s)
- Taeha Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, Republic of Korea
| | - Da Yeon Cheong
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, Republic of Korea
| | - Kang Hyun Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Jae Hyun You
- Department of Digital Management, Korea University, Sejong 30019, Republic of Korea
| | - Jinsung Park
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of MetaBioHealth, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gyudo Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
5
|
Stepanenko OV, Sulatsky MI, Mikhailova EV, Stepanenko OV, Kuznetsova IM, Turoverov KK, Sulatskaya AI. Correction: Stepanenko et al. Trypsin Induced Degradation of Amyloid Fibrils. Int. J. Mol. Sci.2021, 22, 4828. Int J Mol Sci 2024; 25:6293. [PMID: 38928518 PMCID: PMC11195041 DOI: 10.3390/ijms25126293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024] Open
Abstract
In the original [...].
Collapse
Affiliation(s)
- Olga V. Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (I.M.K.); (A.I.S.)
| | - Maksim I. Sulatsky
- Laboratory of Cell Morphology, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, 194064 St. Petersburg, Russia;
| | - Ekaterina V. Mikhailova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (I.M.K.); (A.I.S.)
| | - Olesya V. Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (I.M.K.); (A.I.S.)
| | - Irina M. Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (I.M.K.); (A.I.S.)
| | - Konstantin K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (I.M.K.); (A.I.S.)
- Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia
| | - Anna I. Sulatskaya
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (I.M.K.); (A.I.S.)
| |
Collapse
|
6
|
Pretorius E, Kell DB. A Perspective on How Fibrinaloid Microclots and Platelet Pathology May be Applied in Clinical Investigations. Semin Thromb Hemost 2024; 50:537-551. [PMID: 37748515 PMCID: PMC11105946 DOI: 10.1055/s-0043-1774796] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Microscopy imaging has enabled us to establish the presence of fibrin(ogen) amyloid (fibrinaloid) microclots in a range of chronic, inflammatory diseases. Microclots may also be induced by a variety of purified substances, often at very low concentrations. These molecules include bacterial inflammagens, serum amyloid A, and the S1 spike protein of severe acute respiratory syndrome coronavirus 2. Here, we explore which of the properties of these microclots might be used to contribute to differential clinical diagnoses and prognoses of the various diseases with which they may be associated. Such properties include distributions in their size and number before and after the addition of exogenous thrombin, their spectral properties, the diameter of the fibers of which they are made, their resistance to proteolysis by various proteases, their cross-seeding ability, and the concentration dependence of their ability to bind small molecules including fluorogenic amyloid stains. Measuring these microclot parameters, together with microscopy imaging itself, along with methodologies like proteomics and imaging flow cytometry, as well as more conventional assays such as those for cytokines, might open up the possibility of a much finer use of these microclot properties in generative methods for a future where personalized medicine will be standard procedures in all clotting pathology disease diagnoses.
Collapse
Affiliation(s)
- Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Matieland, South Africa
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Douglas B. Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Matieland, South Africa
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
7
|
Sulatsky MI, Stepanenko OV, Stepanenko OV, Povarova OI, Kuznetsova IM, Turoverov KK, Sulatskaya AI. Broken but not beaten: Challenge of reducing the amyloids pathogenicity by degradation. J Adv Res 2024:S2090-1232(24)00161-9. [PMID: 38642804 DOI: 10.1016/j.jare.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND The accumulation of ordered protein aggregates, amyloid fibrils, accompanies various neurodegenerative diseases (such as Parkinson's, Huntington's, Alzheimer's, etc.) and causes a wide range of systemic and local amyloidoses (such as insulin, hemodialysis amyloidosis, etc.). Such pathologies are usually diagnosed when the disease is already irreversible and a large amount of amyloid plaques have accumulated. In recent years, new drugs aimed at reducing amyloid levels have been actively developed. However, although clinical trials have demonstrated a reduction in amyloid plaque size with these drugs, their effect on disease progression has been controversial and associated with significant side effects, the reasons of which are not fully understood. AIM OF REVIEW The purpose of this review is to summarize extensive array of data on the effect of exogenous and endogenous factors (physico-mechanical effects, chemical effects of low molecular weight compounds, macromolecules and their complexes) on the structure and pathogenicity of mature amyloids for proposing future directions of the development of effective and safe anti-amyloid therapeutics. KEY SCIENTIFIC CONCEPTS OF REVIEW Our analysis show that destruction of amyloids is in most cases incomplete and degradation products often retain the properties of amyloids (including high and sometimes higher than fibrils, cytotoxicity), accelerate amyloidogenesis and promote the propagation of amyloids between cells. Probably, the appearance of protein aggregates, polymorphic in structure and properties (such as amorphous aggregates, fibril fragments, amyloid oligomers, etc.), formed because of uncontrolled degradation of amyloids, may be one of the reasons for the ambiguous effectiveness and serious side effects of the anti-amyloid drugs. This means that all medications that are supposed to be used both for degradation and slow down the fibrillogenesis must first be tested on mature fibrils: the mechanism of drug action and cytotoxic, seeding, and infectious activity of the degradation products must be analyzed.
Collapse
Affiliation(s)
- Maksim I Sulatsky
- Laboratory of Cell Morphology, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia
| | - Olga V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia
| | - Olesya V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia
| | - Olga I Povarova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia
| | - Anna I Sulatskaya
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| |
Collapse
|
8
|
Stepanenko OV, Sulatskaya AI, Sulatsky MI, Mikhailova EV, Kuznetsova IM, Turoverov KK, Stepanenko OV. Mammalian odorant-binding proteins are prone to form amorphous aggregates and amyloid fibrils. Int J Biol Macromol 2023; 253:126872. [PMID: 37722633 DOI: 10.1016/j.ijbiomac.2023.126872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 09/20/2023]
Abstract
Odorant-binding proteins are involved in perceiving smell by capturing odorants within the protein's β-barrel. On the example of bovine odorant-binding protein (bOBP), the structural organization of such proteins and their ability to bind ligands under various conditions in vitro were examined. We found a tendency of bOBP to form oligomers and small amorphous aggregates without disturbing the integrity of protein monomers at physiological conditions. Changes in environmental parameters (increased temperature and pH) favored the formation of larger and dense supramolecular complexes that significantly reduce the binding of ligands by bOBP. The ability of bOBP to form fibrillar aggregates with the properties of amyloids, including high cytotoxicity, was revealed at sample stirring (even at physiological temperature and pH), at medium acidification or pre-solubilization with hexafluoroisopropanol. Fibrillogenesis of bOBP was initiated by the dissociation of the protein's supramolecular complexes into monomers and the destabilization of the protein's β-barrels without a significant destruction of its native β-strands.
Collapse
Affiliation(s)
- Olga V Stepanenko
- Laboratory of Structural Dynamics, Stability and folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave, 194064 St. Petersburg, Russia.
| | - Anna I Sulatskaya
- Laboratory of Structural Dynamics, Stability and folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave, 194064 St. Petersburg, Russia.
| | - Maksim I Sulatsky
- Laboratory of Cell Morphology, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| | - Ekaterina V Mikhailova
- Laboratory of Structural Dynamics, Stability and folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave, 194064 St. Petersburg, Russia.
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave, 194064 St. Petersburg, Russia.
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave, 194064 St. Petersburg, Russia.
| | - Olesya V Stepanenko
- Laboratory of Structural Dynamics, Stability and folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave, 194064 St. Petersburg, Russia.
| |
Collapse
|
9
|
Miura K, Iwashita T. Observations of amyloid breakdown by proteases over time using scanning acoustic microscopy. Sci Rep 2023; 13:20642. [PMID: 38001251 PMCID: PMC10673902 DOI: 10.1038/s41598-023-48033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023] Open
Abstract
Amyloid consists of insoluble beta-fibrillar proteins with stable structures. The Congo red staining method for histologically detecting amyloid is unsuitable for quantitatively assessing amyloid fibers. Scanning acoustic microscopy (SAM) detects the attenuation of sound (AOS) through sections. This study aimed to clarify whether AOS values reflected the amount of amyloid fibril degradation in tissues. Formalin-fixed paraffin-embedded unstained sections of various types of amyloidosis were digested with different endopeptidases. The AOS images after digestion were observed over time via SAM. The corresponding Congo red-stained images were followed to identify the amyloid. The amyloid and nonamyloid portions were statistically examined over time to determine the changes in the AOS values. Most of the amyloid areas showed significantly different AOS values from nonamyloid portions before digestion and significantly decreased after digestion; these findings corresponded with the disappearance and waning of the Congo red staining in the light microscopic images. Some nonamyloid areas with high AOS masked the reduction in AOS in the amyloid areas. The method used in this study may help detect the amyloid quantity and determine the appropriate treatment method for removing amyloid deposits from tissues.
Collapse
Affiliation(s)
- Katsutoshi Miura
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1 Handa-Yama, Higashiku, Hamamatsu, 431-3192, Japan.
| | - Toshihide Iwashita
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1 Handa-Yama, Higashiku, Hamamatsu, 431-3192, Japan
| |
Collapse
|
10
|
Sulatsky MI, Belousov MV, Kosolapova AO, Mikhailova EV, Romanenko MN, Antonets KS, Kuznetsova IM, Turoverov KK, Nizhnikov AA, Sulatskaya AI. Amyloid Fibrils of Pisum sativum L. Vicilin Inhibit Pathological Aggregation of Mammalian Proteins. Int J Mol Sci 2023; 24:12932. [PMID: 37629113 PMCID: PMC10454621 DOI: 10.3390/ijms241612932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Although incurable pathologies associated with the formation of highly ordered fibrillar protein aggregates called amyloids have been known for about two centuries, functional roles of amyloids have been studied for only two decades. Recently, we identified functional amyloids in plants. These amyloids formed using garden pea Pisum sativum L. storage globulin and vicilin, accumulated during the seed maturation and resisted treatment with gastric enzymes and canning. Thus, vicilin amyloids ingested with food could interact with mammalian proteins. In this work, we analyzed the effects of vicilin amyloids on the fibril formation of proteins that form pathological amyloids. We found that vicilin amyloids inhibit the fibrillogenesis of these proteins. In particular, vicilin amyloids decrease the number and length of lysozyme amyloid fibrils; the length and width of β-2-microglobulin fibrils; the number, length and the degree of clustering of β-amyloid fibrils; and, finally, they change the structure and decrease the length of insulin fibrils. Such drastic influences of vicilin amyloids on the pathological amyloids' formation cause the alteration of their toxicity for mammalian cells, which decreases for all tested amyloids with the exception of insulin. Taken together, our study, for the first time, demonstrates the anti-amyloid effect of vicilin fibrils and suggests the mechanisms underlying this phenomenon.
Collapse
Affiliation(s)
- Maksim I. Sulatsky
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (M.I.S.); (E.V.M.); (I.M.K.); (K.K.T.)
| | - Mikhail V. Belousov
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.V.B.); (A.O.K.); (M.N.R.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anastasiia O. Kosolapova
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.V.B.); (A.O.K.); (M.N.R.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Ekaterina V. Mikhailova
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (M.I.S.); (E.V.M.); (I.M.K.); (K.K.T.)
| | - Maria N. Romanenko
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.V.B.); (A.O.K.); (M.N.R.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.V.B.); (A.O.K.); (M.N.R.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Irina M. Kuznetsova
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (M.I.S.); (E.V.M.); (I.M.K.); (K.K.T.)
| | - Konstantin K. Turoverov
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (M.I.S.); (E.V.M.); (I.M.K.); (K.K.T.)
| | - Anton A. Nizhnikov
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.V.B.); (A.O.K.); (M.N.R.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anna I. Sulatskaya
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (M.I.S.); (E.V.M.); (I.M.K.); (K.K.T.)
| |
Collapse
|
11
|
Sulatsky MI, Stepanenko OV, Stepanenko OV, Mikhailova EV, Kuznetsova IM, Turoverov KK, Sulatskaya AI. Amyloid fibrils degradation: the pathway to recovery or aggravation of the disease? Front Mol Biosci 2023; 10:1208059. [PMID: 37377863 PMCID: PMC10291066 DOI: 10.3389/fmolb.2023.1208059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Background: The most obvious manifestation of amyloidoses is the accumulation of amyloid fibrils as plaques in tissues and organs, which always leads to a noticeable deterioration in the patients' condition and is the main marker of the disease. For this reason, early diagnosis of amyloidosis is difficult, and inhibition of fibrillogenesis, when mature amyloids are already accumulated in large quantities, is ineffective. A new direction for amyloidosis treatment is the development of approaches aimed at the degradation of mature amyloid fibrils. In the present work, we investigated possible consequences of amyloid's degradation. Methods: We analyzed the size and morphology of amyloid degradation products by transmission and confocal laser scanning microscopy, their secondary structure and spectral properties of aromatic amino acids, intrinsic chromophore sfGFP, and fibril-bound amyloid-specific probe thioflavin T (ThT) by the absorption, fluorescence and circular dichroism spectroscopy, as well as the cytotoxicity of the formed protein aggregates by MTT-test and their resistance to ionic detergents and boiling by SDS-PAGE. Results: On the example of sfGFP fibrils (model fibrils, structural rearrangements of which can be detected by a specific change in the spectral properties of their chromophore), and pathological Aβ-peptide (Aβ42) fibrils, leading to neuronal death in Alzheimer's disease, the possible mechanisms of amyloids degradation after exposure to factors of different nature (proteins with chaperone and protease activity, denaturant, and ultrasound) was demonstrated. Our study shows that, regardless of the method of fibril degradation, the resulting species retain some amyloid's properties, including cytotoxicity, which may even be higher than that of intact amyloids. Conclusion: The results of our work indicate that the degradation of amyloid fibrils in vivo should be treated with caution since such an approach can lead not to recovery, but to aggravation of the disease.
Collapse
Affiliation(s)
- Maksim I. Sulatsky
- Laboratory of cell morphology, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Olga V. Stepanenko
- Laboratory of structural dynamics, stability and folding of proteins, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Olesya V. Stepanenko
- Laboratory of structural dynamics, stability and folding of proteins, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Ekaterina V. Mikhailova
- Laboratory of structural dynamics, stability and folding of proteins, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Irina M. Kuznetsova
- Laboratory of structural dynamics, stability and folding of proteins, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Konstantin K. Turoverov
- Laboratory of structural dynamics, stability and folding of proteins, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Anna I. Sulatskaya
- Laboratory of structural dynamics, stability and folding of proteins, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
12
|
Cheong DY, Roh S, Park I, Lin Y, Lee YH, Lee T, Lee SW, Lee D, Jung HG, Kim H, Lee W, Yoon DS, Hong Y, Lee G. Proteolysis-driven proliferation and rigidification of pepsin-resistant amyloid fibrils. Int J Biol Macromol 2023; 227:601-607. [PMID: 36543295 DOI: 10.1016/j.ijbiomac.2022.12.104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/20/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
Proteolysis of amyloids is related to prevention and treatment of amyloidosis. What if the conditions for proteolysis were the same to those for amyloid formation? For example, pepsin, a gastric protease is activated in an acidic environment, which, interestingly, is also a condition that induces the amyloid formation. Here, we investigate the competition reactions between proteolysis and synthesis of amyloid under pepsin-activated conditions. The changes in the quantities and nanomechanical properties of amyloids after pepsin treatment were examined by fluorescence assay, circular dichroism and atomic force microscopy. We found that, in the case of pepsin-resistant amyloid, a secondary reaction can be accelerated, thereby proliferating amyloids. Moreover, after this reaction, the amyloid became 32.4 % thicker and 24.2 % stiffer than the original one. Our results suggest a new insight into the proteolysis-driven proliferation and rigidification of pepsin-resistant amyloids.
Collapse
Affiliation(s)
- Da Yeon Cheong
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, South Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, South Korea
| | - Seokbeom Roh
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, South Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, South Korea
| | - Insu Park
- Department of Biomedical Engineering, Konyang University, Daejeon 35365, South Korea
| | - Yuxi Lin
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Chungbuk 28119, South Korea
| | - Young-Ho Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Chungbuk 28119, South Korea; Bio-Analytical Science, University of Science and Technology, Daejeon 34113, South Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, South Korea; Research Headquarters, Korea Brain Research Institute, Daegu 41068, South Korea
| | - Taeha Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, South Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, South Korea
| | - Sang Won Lee
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea
| | - Dongtak Lee
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea
| | - Hyo Gi Jung
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, South Korea
| | - Hyunji Kim
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, South Korea
| | - Wonseok Lee
- Department of Electrical Engineering, Korea National University of Transportation, Chungju 27469, South Korea
| | - Dae Sung Yoon
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, South Korea; ASTRION Inc., Seoul 02841, South Korea.
| | - Yoochan Hong
- Department of Medical Devices, Korea Institute of Machinery and Materials (KIMM), Daegu 42994, South Korea.
| | - Gyudo Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, South Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, South Korea.
| |
Collapse
|
13
|
Rosetti B, Marchesan S. Peptide Inhibitors of Insulin Fibrillation: Current and Future Challenges. Int J Mol Sci 2023; 24:1306. [PMID: 36674821 PMCID: PMC9863703 DOI: 10.3390/ijms24021306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Amyloidoses include a large variety of local and systemic diseases that share the common feature of protein unfolding or refolding into amyloid fibrils. The most studied amyloids are those directly involved in neurodegenerative diseases, while others, such as those formed by insulin, are surprisingly far less studied. Insulin is a very important polypeptide that plays a variety of biological roles and, first and foremost, is at the basis of the therapy of diabetic patients. It is well-known that it can form fibrils at the site of injection, leading to inflammation and immune response, in addition to other side effects. In this concise review, we analyze the current knowledge on insulin fibrillation, with a focus on the development of peptide-based inhibitors, which are promising candidates for their biocompatibility but still pose challenges to their effective use in therapy.
Collapse
Affiliation(s)
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
14
|
Kuznetsova IM, Turoverov KK. Pathological and Functional Amyloid Fibrils-Part I. Int J Mol Sci 2022; 23:ijms23126447. [PMID: 35742890 PMCID: PMC9223654 DOI: 10.3390/ijms23126447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
|
15
|
Chen Y, Liu Q, Yang F, Yu H, Xie Y, Yao W. Lysozyme amyloid fibril: Regulation, application, hazard analysis, and future perspectives. Int J Biol Macromol 2022; 200:151-161. [PMID: 34995654 DOI: 10.1016/j.ijbiomac.2021.12.163] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/15/2021] [Accepted: 12/25/2021] [Indexed: 12/11/2022]
Abstract
Self-assembly of misfolded proteins into ordered fibrillar aggregates known as amyloid results in various human diseases. However, more and more proteins, whether in human body or in food, have been found to be able to form amyloid fibrils with in-depth researches. As a model protein for amyloid research, lysozyme has always been the focus of research in various fields. Firstly, the formation mechanisms of amyloid fibrils are discussed concisely. Researches on the regulation of lysozyme amyloid fibrils are helpful to find suitable therapeutic drugs and unfriendly substances. And this review article summarizes a number of exogenous substances including small molecules, nanoparticles, macromolecules, and polymers. Small molecules are mainly connected to lysozyme through hydrophobic interaction, electrostatic interaction, π-π interaction, van der Waals force and hydrogen bond. Nanoparticles inhibit the formation of amyloid fibers by stabilizing lysozyme and fixing β-sheet. Besides, the applications of lysozyme amyloid fibrils in food-related fields are considered furtherly due to outstanding physical and mechanical properties. Nevertheless, the potential health threats are still worthy of our attention. Finally, we also give suggestions and opinions on the future research direction of lysozyme amyloid fibrils.
Collapse
Affiliation(s)
- Yulun Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, No.235 Daxue West Road, Hohhot 010021, Inner Mongolia Autonomous Region, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Qingrun Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Fangwei Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, No.235 Daxue West Road, Hohhot 010021, Inner Mongolia Autonomous Region, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, No.235 Daxue West Road, Hohhot 010021, Inner Mongolia Autonomous Region, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China.
| |
Collapse
|
16
|
Zheng S, Luo J, Zhu X, Gao X, Hua H, Cui J. Transcriptomic analysis of salivary gland and proteomic analysis of oral secretion in Helicoverpa armigera under cotton plant leaves, gossypol, and tannin stresses. Genomics 2022; 114:110267. [PMID: 35032617 DOI: 10.1016/j.ygeno.2022.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 11/26/2022]
Abstract
Gossypol and tannin are involved in important chemical defense processes in cotton plants. In this study, we used transcriptomics and proteomics to explore the changes in salivary gland functional genes and oral secretion (OS) proteins after feeding with artificial diet (containing gossypols and tannins) and cotton plant leaves. We found that dietary cotton plant leaves, gossypols and tannins exerted adverse impacts on the genes that regulated the functions of peptidase, GTPase, glycosyl hydrolases in the salivary glands of the Helicoverpa armigera (H. armigera). However, GST, UGT, hydrolases, and lipase genes were up-regulated to participate in the detoxification and digestive of H. armigera. The oral secretory proteins of H. armigera were significantly inhibited under the stress of gossypol and tannin, such as enzyme activity, but some proteins (such as PZC71358.1) were up-regulated and involved in immune and digestive functions. The combined analysis of transcriptomics and metabolomics showed a weak correlation, and the genes and proteins involved were mainly in digestive enzyme activities. Our work clarifies the deleterious physiological impacts of gossypols and tannins on H. armigera and reveals the mechanism by which H. armigera effectively mitigate the phytotoxic effects through detoxification and immune systems.
Collapse
Affiliation(s)
- Shuaichao Zheng
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Junyu Luo
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Xiangzhen Zhu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Xueke Gao
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China.
| | - Hongxia Hua
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jinjie Cui
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China.
| |
Collapse
|
17
|
Is It Possible to Create Antimicrobial Peptides Based on the Amyloidogenic Sequence of Ribosomal S1 Protein of P. aeruginosa? Int J Mol Sci 2021; 22:ijms22189776. [PMID: 34575940 PMCID: PMC8469417 DOI: 10.3390/ijms22189776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022] Open
Abstract
The development and testing of new antimicrobial peptides (AMPs) represent an important milestone toward the development of new antimicrobial drugs that can inhibit the growth of pathogens and multidrug-resistant microorganisms such as Pseudomonas aeruginosa, Gram-negative bacteria. Most AMPs achieve these goals through mechanisms that disrupt the normal permeability of the cell membrane, which ultimately leads to the death of the pathogenic cell. Here, we developed a unique combination of a membrane penetrating peptide and peptides prone to amyloidogenesis to create hybrid peptide: "cell penetrating peptide + linker + amyloidogenic peptide". We evaluated the antimicrobial effects of two peptides that were developed from sequences with different propensities for amyloid formation. Among the two hybrid peptides, one was found with antibacterial activity comparable to antibiotic gentamicin sulfate. Our peptides showed no toxicity to eukaryotic cells. In addition, we evaluated the effect on the antimicrobial properties of amino acid substitutions in the non-amyloidogenic region of peptides. We compared the results with data on the predicted secondary structure, hydrophobicity, and antimicrobial properties of the original and modified peptides. In conclusion, our study demonstrates the promise of hybrid peptides based on amyloidogenic regions of the ribosomal S1 protein for the development of new antimicrobial drugs against P. aeruginosa.
Collapse
|
18
|
Schürmann J, Gottwald J, Rottenaicher G, Tholey A, Röcken C. MALDI mass spectrometry imaging unravels organ and amyloid-type specific peptide signatures in pulmonary and gastrointestinal amyloidosis. Proteomics Clin Appl 2021; 15:e2000079. [PMID: 34061454 DOI: 10.1002/prca.202000079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE Amyloidosis is a disease group caused by pathological aggregation and deposition of peptides in diverse tissue sites. Recently, matrix-assisted laser desorption/ionization mass spectrometry imaging coupled with ion mobility separation (MALDI-IMS MSI) was introduced as a novel tool to identify and classify amyloidosis using single sections from formalin-fixed and paraffin-embedded cardiac biopsies. Here, we tested the hypothesis that MALDI-IMS MSI can be applied to lung and gastrointestinal specimens. EXPERIMENTAL DESIGN Forty six lung and 65 gastrointestinal biopsy and resection specimens with different types of amyloid were subjected to MALDI-IMS MSI. Ninety three specimens included tissue areas without amyloid as internal negative controls. Nine cases without amyloid served as additional negative controls. RESULTS Utilizing a peptide filter method and 21 known amyloid specific tryptic peptides we confirmed the applicability of a universal peptide signature with a sensitivity of 100% and a specificity of 100% for the detection of amyloid deposits in the lung and gastrointestinal tract. Additionally, the frequencies of individual m/z-values of the 21 tryptic marker peptides showed organ- and tissue-type specific differences. CONCLUSIONS AND CLINICAL RELEVANCE MALDI-IMS MSI adds a valuable analytical approach to diagnose and classify amyloid and the detection frequency of individual tryptic peptides is organ-/tissue-type specific.
Collapse
Affiliation(s)
- Jan Schürmann
- Department of Pathology, Christian-Albrechts-University, Kiel, Germany
| | - Juliane Gottwald
- Department of Pathology, Christian-Albrechts-University, Kiel, Germany
| | - Georg Rottenaicher
- Center for Integrated Protein Science Munich at the Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute of Experimental Medicine, Christian-Albrechts-University, Kiel, Germany
| | - Christoph Röcken
- Department of Pathology, Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|