1
|
Jiang X, Nik Nabil WN, Ze Y, Dai R, Xi Z, Xu H. Unlocking Natural Potential: Antibody-Drug Conjugates With Naturally Derived Payloads for Cancer Therapy. Phytother Res 2024. [PMID: 39688127 DOI: 10.1002/ptr.8407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Natural compound-derived chemotherapies remain central to cancer treatment, however, they often cause off-target side effects that negatively impact patients' quality of life. In contrast, antibody-drug conjugates (ADCs) combine cytotoxic payloads with antibodies to specifically target cancer cells. Most approved and clinically investigated ADCs utilize naturally derived payloads, while those with conventional synthetic molecular payloads remain limited. This review focuses on approved ADCs that enhance the efficacy of naturally derived payloads by linking them with antibodies. We provide an overview of the core components of ADCs, their working mechanisms, and FDA-approved ADCs featuring naturally derived payloads, such as calicheamicin, camptothecin, dolastatin 10, maytansine, pyrrolbenzodiazepine (PBD), and the immunotoxin Pseudomonas exotoxin A. This review also explores recent clinical advancements aimed at broadening the therapeutic potential of ADCs, their applicability in treating heterogeneously composed tumors and their potential use beyond oncology. Additionally, this review highlights naturally derived payloads that are currently being clinically investigated but have not yet received approval. By summarizing the current landscape, this review provides insights into promising avenues for exploration and contributes to the refinement of treatment protocols for improved patient outcomes.
Collapse
Affiliation(s)
- Xue Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Wan Najbah Nik Nabil
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- National Pharmaceutical Regulatory Agency, Ministry of Health, Selangor, Malaysia
| | - Yufei Ze
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Rongchen Dai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Masciale V, Banchelli F, Grisendi G, Samarelli AV, Raineri G, Rossi T, Zanoni M, Cortesi M, Bandini S, Ulivi P, Martinelli G, Stella F, Dominici M, Aramini B. The molecular features of lung cancer stem cells in dedifferentiation process-driven epigenetic alterations. J Biol Chem 2024; 300:107994. [PMID: 39547513 DOI: 10.1016/j.jbc.2024.107994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Cancer stem cells (CSCs) may be dedifferentiated somatic cells following oncogenic processes, representing a subpopulation of cells able to promote tumor growth with their capacities for proliferation and self-renewal, inducing lineage heterogeneity, which may be a main cause of resistance to therapies. It has been shown that the "less differentiated process" may have an impact on tumor plasticity, particularly when non-CSCs may dedifferentiate and become CSC-like. Bidirectional interconversion between CSCs and non-CSCs has been reported in other solid tumors, where the inflammatory stroma promotes cell reprogramming by enhancing Wnt signaling through nuclear factor kappa B activation in association with intracellular signaling, which may induce cells' pluripotency, the oncogenic transformation can be considered another important aspect in the acquisition of "new" development programs with oncogenic features. During cell reprogramming, mutations represent an initial step toward dedifferentiation, in which tumor cells switch from a partially or terminally differentiated stage to a less differentiated stage that is mainly manifested by re-entry into the cell cycle, acquisition of a stem cell-like phenotype, and expression of stem cell markers. This phenomenon typically shows up as a change in the form, function, and pattern of gene and protein expression, and more specifically, in CSCs. This review would highlight the main epigenetic alterations, major signaling pathways and driver mutations in which CSCs, in tumors and specifically, in lung cancer, could be involved, acting as key elements in the differentiation/dedifferentiation process. This would highlight the main molecular mechanisms which need to be considered for more tailored therapies.
Collapse
Affiliation(s)
- Valentina Masciale
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Federico Banchelli
- Department of Statistical Sciences "Paolo Fortunati", Alma Mater Studiorum- University of Bologna, Bologna, Italy
| | - Giulia Grisendi
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Anna Valeria Samarelli
- Laboratory of and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Giulia Raineri
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Tania Rossi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michele Zanoni
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michela Cortesi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Sara Bandini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giovanni Martinelli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Franco Stella
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences-DIMEC of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy; Division of Oncology, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena, Italy
| | - Beatrice Aramini
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences-DIMEC of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy.
| |
Collapse
|
3
|
Firouzjaei AA, Mohammadi-Yeganeh S. The intricate interplay between ferroptosis and efferocytosis in cancer: unraveling novel insights and therapeutic opportunities. Front Oncol 2024; 14:1424218. [PMID: 39544291 PMCID: PMC11560889 DOI: 10.3389/fonc.2024.1424218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/04/2024] [Indexed: 11/17/2024] Open
Abstract
The complex interplay between ferroptosis and efferocytosis in cancer has attracted significant interest recently. Efferocytosis, the process of eliminating apoptotic cells, is essential for preserving tissue homeostasis and reducing inflammation. However, dysregulation of efferocytosis can have profound effects on cancer. Apoptotic cells accumulate because of impaired efferocytosis, which triggers chronic inflammation and the release of pro-inflammatory chemicals. Surprisingly, accumulating evidence suggests that dysregulation of ferroptosis- a form of controlled cell death characterized by lipid peroxidation and the buildup iron-dependent reactive oxygen species (ROS)-can influence efferocytic activities within the tumor microenvironment. Dysfunctional iron metabolism and increased lipid peroxidation, are associated with ferroptosis, resulting in inadequate apoptotic cell clearance. Conversely, apoptotic cells can activate ferroptotic pathways, increasing oxidative stress and inducing cell death in cancer cells. This reciprocal interaction emphasizes the complex relationship between efferocytosis and ferroptosis in cancer biology. Understanding and managing the delicate balance between cell clearance and cell death pathways holds significant therapeutic potential in cancer treatment. Targeting the efferocytosis and ferroptosis pathways may offer new opportunities for improving tumor clearance, reducing inflammation, and sensitizing cancer cells to therapeutic interventions. Further research into the interaction between efferocytosis and ferroptosis in cancer will provide valuable insights for the development of novel therapies aimed at restoring tissue homeostasis and improving patient outcomes.
Collapse
|
4
|
Han R, Sun X, Wu Y, Yang YH, Wang QC, Zhang XT, Ding T, Yang JT. Proteomic and Phosphoproteomic Profiling of Matrix Stiffness-Induced Stemness-Dormancy State Transition in Breast Cancer Cells. J Proteome Res 2024; 23:4658-4673. [PMID: 39298182 DOI: 10.1021/acs.jproteome.4c00563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The dormancy of cancer stem cells is a major factor leading to drug resistance and a high rate of late recurrence and mortality in estrogen receptor-positive (ER+) breast cancer. Previously, we demonstrated that a stiffer matrix induces tumor cell dormancy and drug resistance, whereas a softened matrix promotes tumor cells to exhibit a stem cell state with high proliferation and migration. In this study, we present a comprehensive analysis of the proteome and phosphoproteome in response to gradient changes in matrix stiffness, elucidating the mechanisms behind cell dormancy-induced drug resistance. Overall, we found that antiapoptotic and membrane transport processes may be involved in the mechanical force-induced dormancy resistance of ER+ breast cancer cells. Our research provides new insights from a holistic proteomic and phosphoproteomic perspective, underscoring the significant role of mechanical forces stemming from the stiffness of the surrounding extracellular matrix as a critical regulatory factor in the tumor microenvironment.
Collapse
Affiliation(s)
- Rong Han
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing 10050, China
| | - Xu Sun
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing 10050, China
| | - Yue Wu
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing 10050, China
| | - Ye-Hong Yang
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing 10050, China
| | - Qiao-Chu Wang
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing 10050, China
| | - Xu-Tong Zhang
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing 10050, China
| | - Tao Ding
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing 10050, China
| | - Jun-Tao Yang
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing 10050, China
| |
Collapse
|
5
|
Dong C, Liu Y, Chong S, Zeng J, Bian Z, Chen X, Fan S. Deciphering Dormant Cells of Lung Adenocarcinoma: Prognostic Insights from O-glycosylation-Related Tumor Dormancy Genes Using Machine Learning. Int J Mol Sci 2024; 25:9502. [PMID: 39273449 PMCID: PMC11395112 DOI: 10.3390/ijms25179502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Lung adenocarcinoma (LUAD) poses significant challenges due to its complex biological characteristics and high recurrence rate. The high recurrence rate of LUAD is closely associated with cellular dormancy, which enhances resistance to chemotherapy and evasion of immune cell destruction. Using single-cell RNA sequencing (scRNA-seq) data from LUAD patients, we categorized the cells into two subclusters: dormant and active cells. Utilizing high-density Weighted Gene Co-expression Network Analysis (hdWGCNA) and pseudo-time cell trajectory, aberrant expression of genes involved in protein O-glycosylation was detected in dormant cells, suggesting a crucial role for O-glycosylation in maintaining the dormant state. Intercellular communication analysis highlighted the interaction between fibroblasts and dormant cells, where the Insulin-like Growth Factor (IGF) signaling pathway regulated by O-glycosylation was crucial. By employing Gene Set Variation Analysis (GSVA) and machine learning, a risk score model was developed using hub genes, which showed high accuracy in determining LUAD prognosis. The model also demonstrated robust performance on the training dataset and excellent predictive capability, providing a reliable basis for predicting patient clinical outcomes. The group with a higher risk score exhibited a propensity for adverse outcomes in the tumor microenvironment (TME) and tumor mutational burden (TMB). Additionally, the 50% inhibitory concentration (IC50) values for chemotherapy exhibited significant variations among the different risk groups. In vitro experiments demonstrated that EFNB2, PTTG1IP, and TNFRSF11A were upregulated in dormant tumor cells, which also contributed greatly to the diagnosis of LUAD. In conclusion, this study highlighted the crucial role of O-glycosylation in the dormancy state of LUAD tumors and developed a predictive model for the prognosis of LUAD patients.
Collapse
Affiliation(s)
- Chenfei Dong
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yang Liu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Suli Chong
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jiayue Zeng
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Ziming Bian
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaoming Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Sairong Fan
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
6
|
Lin J, Zou B, Li H, Wang J, Li S, Cao J, Xie D, Wang F. Collagen XVII promotes dormancy of colorectal cancer cells by activating mTORC2 signaling. Cell Signal 2024; 120:111234. [PMID: 38795810 DOI: 10.1016/j.cellsig.2024.111234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Tumor dormancy is the underpinning for cancer relapse and chemoresistance, leading to massive cancer-related death in colorectal cancer (CRC). However, our comprehension of the mechanisms dictating tumor dormancy and strategies for eliminating dormant tumor cells remains restricted. In this study, we identified that collagen XVII (COL17A1), a hemidesmosomal transmembrane protein, can promote the dormancy of CRC cells. The upregulation of COL17A1 was observed to prolong quiescence periods and diminish drug susceptibility of CRC cells. Mechanistically, COL17A1 acts as a scaffold, enhancing the crosstalk between mTORC2 and Akt, thereby instigating the mTORC2-mediated dormant signaling. Notably, the activation of mTORC2 is contingent upon the intracellular domain of COL17A1, regardless of its ectodomain shedding. Our findings underscore a pivotal role of the COL17A1-mTORC2 axis in CRC dormancy, suggesting that mTORC2-specific inhibitors may hold therapeutic prospects for the eradication of dormant tumor cells.
Collapse
Affiliation(s)
- Jinlong Lin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China
| | - Bingxu Zou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China
| | - Hongbo Li
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jing Wang
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shuman Li
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China
| | - Jinghua Cao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China
| | - Dan Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| | - Fengwei Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China.
| |
Collapse
|
7
|
Zhang K, Zhu Z, Jia R, Wang NA, Shi M, Wang Y, Xiang S, Zhang Q, Xu L. CD151-enriched migrasomes mediate hepatocellular carcinoma invasion by conditioning cancer cells and promoting angiogenesis. J Exp Clin Cancer Res 2024; 43:160. [PMID: 38840183 PMCID: PMC11155183 DOI: 10.1186/s13046-024-03082-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND The tetraspanin family plays a pivotal role in the genesis of migrasomes, and Tetraspanin CD151 is also implicated in neovascularization within tumorous contexts. Nevertheless, research pertaining to the involvement of CD151 in hepatocellular carcinoma (HCC) neovascularization and its association with migrasomes remains inadequate. METHODS To investigate the correlation between CD151 and migrasome marker TSPAN4 in liver cancer, we conducted database analysis using clinical data from HCC patients. Expression levels of CD151 were assessed in HCC tissues and correlated with patient survival outcomes. In vitro experiments were performed using HCC cell lines to evaluate the impact of CD151 expression on migrasome formation and cellular invasiveness. Cell lines with altered CD151 expression levels were utilized to study migrasome generation and in vitro invasion capabilities. Additionally, migrasome function was explored through cellular aggregation assays and phagocytosis studies. Subsequent VEGF level analysis and tissue chip experiments further confirmed the role of CD151 in mediating migrasome involvement in angiogenesis and cellular signal transduction. RESULTS Our study revealed a significant correlation between CD151 expression and migrasome marker TSPAN4 in liver cancer, based on database analysis of clinical samples. High expression levels of CD151 were closely associated with poor survival outcomes in HCC patients. Experimentally, decreased CD151 expression led to reduced migrasome generation and diminished in vitro invasion capabilities, resulting in attenuated in vivo metastatic potential. Migrasomes were demonstrated to facilitate cellular aggregation and phagocytosis, thereby promoting cellular invasiveness. Furthermore, VEGF-enriched migrasomes were implicated in signaling and angiogenesis, accelerating HCC progression. CONCLUSIONS In summary, our findings support the notion that elevated CD151 expression promotes migrasome formation, and migrasomes play a pivotal role in the invasiveness and angiogenesis of liver cancer cells, thereby facilitating HCC progression. This finding implies that migrasomes generated by elevated CD151 expression may constitute a promising high-priority target for anti-angiogenic therapy in HCC, offering crucial insights for the in-depth exploration of migrasome function and a renewed comprehension of the mechanism underlying liver cancer metastasis.
Collapse
Affiliation(s)
- Kangnan Zhang
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China
| | - Zhenhua Zhu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200001, China
| | - Rongrong Jia
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - N A Wang
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Min Shi
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yugang Wang
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Shihao Xiang
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China.
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| | - Qinghui Zhang
- Department of Clinical laboratory, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| | - Ling Xu
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China.
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| |
Collapse
|
8
|
Piscitelli L, Robles AG, Costantino R, Forte V, Romano S, Sciarra L, Bartolomucci F, Rosario Chieppa DR. STEMI or not STEMI? A multimodality imaging approach to a challenging intracardiac mass with a tricky presentation. Future Cardiol 2024; 20:263-268. [PMID: 38899769 PMCID: PMC11318705 DOI: 10.1080/14796678.2024.2360845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Cardiac tumors, due to the various clinical scenarios and their histological subtypes, are still challenging for clinicians. They are differentiated into primary and secondary. The latest are more common and are usually lung and breast cancers, melanomas, and lymphoma metastasis. We present a case of a 73-year-old woman, with a history of breast cancer 10 years earlier, admitted to Cath lab for an elevation of the ST-segment of the electrocardiogram, myocardial infarction. Echocardiogram showed a curious abnormality in the myocardial wall. Thanks to a multimodality imaging strategy, including contrast-enhanced echocardiography and cardiac magnetic resonance, characterization of the underlying pathology was clear and, thus, the appropriate management and therapy.
Collapse
Affiliation(s)
| | - Antonio Gianluca Robles
- Cardiology Unit “L. Bonomo” Hospital, Andria, BAT, 76123, Italy
- Department of Life, Health & Environmental Sciences, University of L'Aquila, L'Aquila, 67100, Italy
| | | | - Valentina Forte
- Radiology Unit, “San Nicola Pellegrino” PTA, Trani, BAT, 76125, Italy
| | - Silvio Romano
- Department of Life, Health & Environmental Sciences, University of L'Aquila, L'Aquila, 67100, Italy
| | - Luigi Sciarra
- Department of Life, Health & Environmental Sciences, University of L'Aquila, L'Aquila, 67100, Italy
| | | | | |
Collapse
|
9
|
Li J, Liu Y, Zheng R, Qu C, Li J. Molecular mechanisms of TACE refractoriness: Directions for improvement of the TACE procedure. Life Sci 2024; 342:122540. [PMID: 38428568 DOI: 10.1016/j.lfs.2024.122540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Transcatheter arterial chemoembolisation (TACE) is the standard of care for intermediate-stage hepatocellular carcinoma and selected patients with advanced hepatocellular carcinoma. However, TACE does not achieve a satisfactory objective response rate, and the concept of TACE refractoriness has been proposed to identify patients who do not fully benefit from TACE. Moreover, repeated TACE is necessary to obtain an optimal and sustained anti-tumour response, which may damage the patient's liver function. Therefore, studies have recently been performed to improve the effectiveness of TACE. In this review, we summarise the detailed molecular mechanisms associated with TACE responsiveness and relapse after this treatment to provide more effective targets for adjuvant therapy while helping to improve TACE regimens.
Collapse
Affiliation(s)
- Jiahao Li
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China; The Public Laboratory Platform of the First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Yingnan Liu
- Department of Radiology, The First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Ruipeng Zheng
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Chao Qu
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China; The Public Laboratory Platform of the First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Jiarui Li
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China.
| |
Collapse
|
10
|
Singvogel K, Schittek B. Dormancy of cutaneous melanoma. Cancer Cell Int 2024; 24:88. [PMID: 38419052 PMCID: PMC10903048 DOI: 10.1186/s12935-024-03278-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Many cancer-related deaths including melanoma result from metastases that develop months or years after the initial cancer therapy. Even the most effective drugs and immune therapies rarely eradicate all tumor cells. Instead, they strongly reduce cancer burden, permitting dormant cancer cells to persist in niches, where they establish a cellular homeostasis with their host without causing clinical symptoms. Dormant cancers respond poorly to most drugs and therapies since they do not proliferate and hide in niches. It therefore remains a major challenge to develop novel therapies for dormant cancers. In this review we focus on the mechanisms regulating the initiation of cutaneous melanoma dormancy as well as those which are involved in reawakening of dormant cutaneous melanoma cells. In recent years the role of neutrophils and niche components in reawakening of melanoma cells came into focus and indicate possible future therapeutic applications. Sophisticated in vitro and in vivo melanoma dormancy models are needed to make progress in this field and are discussed.
Collapse
Affiliation(s)
- Kathrin Singvogel
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Liebermeisterstr. 25, D -72076 , Tübingen, Germany
| | - Birgit Schittek
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Liebermeisterstr. 25, D -72076 , Tübingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.
| |
Collapse
|
11
|
Sun Y, Chen Y, Liu Z, Wang J, Bai J, Du R, Long M, Shang Z. Mitophagy-Mediated Tumor Dormancy Protects Cancer Cells from Chemotherapy. Biomedicines 2024; 12:305. [PMID: 38397907 PMCID: PMC10886527 DOI: 10.3390/biomedicines12020305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Despite obvious tumor shrinkage, relapse after chemotherapy remains a main cause of cancer-related mortality, indicating that a subpopulation of cancer cells acquires chemoresistance and lingers after treatment. However, the mechanism involved in the emergence of chemoresistant cells remains largely unknown. Here, we demonstrate that the degradation of mitochondria via autophagy leads to a dormant state in a subpopulation of cancer cells and confers on them resistance to lethal cisplatin (DDP) exposure. The surviving DDP-resistant cells (hereafter, DRCs) have a lower metabolic rate but a stronger potential malignant potential. In the absence of DDP, these DRCs exhibit an ever-increasing self-renewal ability and heightened tumorigenicity. The combination of chloroquine and DDP exerts potent tumor-suppressive effects. In summary, our findings illuminate the mechanism between mitophagy and tumor dormancy and prove that targeting mitophagy might be a promising approach for overcoming chemoresistance in head and neck squamous cell carcinoma (HNSCC).
Collapse
Affiliation(s)
- Yunqing Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (Y.S.); (Y.C.); (Z.L.); (J.W.); (J.B.); (R.D.); (M.L.)
| | - Yang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (Y.S.); (Y.C.); (Z.L.); (J.W.); (J.B.); (R.D.); (M.L.)
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhenan Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (Y.S.); (Y.C.); (Z.L.); (J.W.); (J.B.); (R.D.); (M.L.)
| | - Jingjing Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (Y.S.); (Y.C.); (Z.L.); (J.W.); (J.B.); (R.D.); (M.L.)
| | - Junqiang Bai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (Y.S.); (Y.C.); (Z.L.); (J.W.); (J.B.); (R.D.); (M.L.)
| | - Ruixue Du
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (Y.S.); (Y.C.); (Z.L.); (J.W.); (J.B.); (R.D.); (M.L.)
| | - Mingshu Long
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (Y.S.); (Y.C.); (Z.L.); (J.W.); (J.B.); (R.D.); (M.L.)
| | - Zhengjun Shang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (Y.S.); (Y.C.); (Z.L.); (J.W.); (J.B.); (R.D.); (M.L.)
- Department of Oral and Maxillofacial-Head and Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
12
|
Chen HL, Jin WL. Diapause-like Drug-Tolerant Persister State: The Key to Nirvana Rebirth. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:228. [PMID: 38399515 PMCID: PMC10890489 DOI: 10.3390/medicina60020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
Cancer is one of the leading causes of death in the world. Various drugs have been developed to eliminate it but to no avail because a tumor can go into dormancy to avoid therapy. In the past few decades, tumor dormancy has become a popular topic in cancer therapy. Recently, there has been an important breakthrough in the study of tumor dormancy. That is, cancer cells can enter a reversible drug-tolerant persister (DTP) state to avoid therapy, but no exact mechanism has been found. The study of the link between the DTP state and diapause seems to provide an opportunity for a correct understanding of the mechanism of the DTP state. Completely treating cancer and avoiding dormancy by targeting the expression of key genes in diapause are possible. This review delves into the characteristics of the DTP state and its connection with embryonic diapause, and possible treatment strategies are summarized. The authors believe that this review will promote the development of cancer therapy.
Collapse
Affiliation(s)
- Han-Lin Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China;
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Wei-Lin Jin
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China;
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
13
|
Li H, Huang H, Tan H, Jia Q, Song W, Zhang Q, Zhou B, Bai J. Key processes in tumor metastasis and therapeutic strategies with nanocarriers: a review. Mol Biol Rep 2024; 51:197. [PMID: 38270746 DOI: 10.1007/s11033-023-08910-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/14/2023] [Indexed: 01/26/2024]
Abstract
Cancer metastasis is the leading cause of cancer-related death. Metastasis occurs at all stages of tumor development, with unexplored changes occurring at the primary site and distant colonization sites. The growing understanding of the metastatic process of tumor cells has contributed to the emergence of better treatment options and strategies. This review summarizes a range of features related to tumor cell metastasis and nanobased drug delivery systems for inhibiting tumor metastasis. The mechanisms of tumor metastasis in the ideal order of metastatic progression were summarized. We focus on the prominent role of nanocarriers in the treatment of tumor metastasis, summarizing the latest applications of nanocarriers in combination with drugs to target important components and processes of tumor metastasis and providing ideas for more effective nanodrug delivery systems.
Collapse
Affiliation(s)
- Hongjie Li
- School of Clinical Medicine, Weifang Medical University, 261053, Weifang, China
| | - Haiqin Huang
- School of Bioscience and Technology, Weifang Medical University, 261053, Weifang, China
| | - Haining Tan
- National Glycoengineering Research Center, Shandong University, 250012, Jinan, China
| | - Qitao Jia
- School of Bioscience and Technology, Weifang Medical University, 261053, Weifang, China
| | - Weina Song
- Department of Pediatric Respiratory and Critical Care, Qilu Hospital of Shandong University Dezhou Hospital, 253000, Dezhou, China
| | - Qingdong Zhang
- School of Bioscience and Technology, Weifang Medical University, 261053, Weifang, China.
| | - Baolong Zhou
- School of Pharmacy, Weifang Medical University, 261053, Weifang, China.
| | - Jingkun Bai
- School of Bioscience and Technology, Weifang Medical University, 261053, Weifang, China.
| |
Collapse
|
14
|
Li J, Chen Z, Li Q, Liu R, Zheng J, Gu Q, Xiang F, Li X, Zhang M, Kang X, Wu R. Study of miRNA and lymphocyte subsets as potential biomarkers for the diagnosis and prognosis of gastric cancer. PeerJ 2024; 12:e16660. [PMID: 38259671 PMCID: PMC10802158 DOI: 10.7717/peerj.16660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/21/2023] [Indexed: 01/24/2024] Open
Abstract
Objective The aim of this study was to identify the expression of miRNA and lymphocyte subsets in the blood of gastric cancer (GC) patients, elucidate their clinical significance in GC, and establish novel biomarkers for the early diagnosis and prognosis of GC. Methods The expression of miRNAs in the serum of GC patients was screened using second-generation sequencing and detected using qRT-PCR. The correlation between miRNA expression and clinicopathological characteristics of GC patients was analyzed, and molecular markers for predicting cancer were identified. Additionally, flow cytometry was used to detect the proportion of lymphocyte subsets in GC patients compared to healthy individuals. The correlations between differential lymphocyte subsets, clinicopathological features of GC patients, and their prognosis were analyzed statistically. Results The study revealed that hsa-miR-1306-5p, hsa-miR-3173-5p, and hsa-miR-296-5p were expressed at lower levels in the blood of GC patients, which is consistent with miRNA-seq findings. The AUC values of hsa-miR-1306-5p, hsa-miR-3173-5p, and hsa-miR-296-5p were found to be effective predictors of GC occurrence. Additionally, hsa-miR-296-5p was found to be negatively correlated with CA724. Furthermore, hsa-miR-1306-5p, hsa-miR-3173-5p, and hsa-miR-296-5p were found to be associated with the stage of the disease and were closely linked to the clinical pathology of GC. The lower the levels of these miRNAs, the greater the clinical stage of the tumor and the worse the prognosis of gastric cancer patients. Finally, the study found that patients with GC had lower absolute numbers of CD3+ T cells, CD4+ T cells, CD8+ T cells, CD19+ B cells, and lymphocytes compared to healthy individuals. The quantity of CD4+ T lymphocytes and the level of the tumor marker CEA were shown to be negatively correlated. The ROC curve and multivariate logistic regression analysis demonstrated that lymphocyte subsets can effectively predict gastric carcinogenesis and prognosis. Conclusion These miRNAs such as hsa-miR-1306-5p, hsa-miR-3173-5p, hsa-miR-296-5p and lymphocyte subsets such as the absolute numbers of CD3+ T cells, CD4+ T cells, CD8+ T cells, CD19+ B cells, lymphocytes are down-regulated in GC and are closely related to the clinicopathological characteristics and prognosis of GC patients. They may serve as new molecular markers for predicting the early diagnosis and prognosis of GC patients.
Collapse
Affiliation(s)
- Jinpeng Li
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zixi Chen
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Li
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rongrong Liu
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jin Zheng
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Gu
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fenfen Xiang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoxiao Li
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengzhe Zhang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiangdong Kang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Wu
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
15
|
Sellner F, Compérat E, Klimpfinger M. Genetic and Epigenetic Characteristics in Isolated Pancreatic Metastases of Clear-Cell Renal Cell Carcinoma. Int J Mol Sci 2023; 24:16292. [PMID: 38003482 PMCID: PMC10671160 DOI: 10.3390/ijms242216292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Isolated pancreatic metastases of renal cell carcinoma (IsPMRCC) are a rare manifestation of metastatic, clear-cell renal cell carcinoma (RCC) in which distant metastases occur exclusively in the pancreas. In addition to the main symptom of the isolated occurrence of pancreatic metastases, the entity surprises with additional clinical peculiarities: (a) the unusually long interval of about 9 years between the primary RCC and the onset of pancreatic metastases; (b) multiple pancreatic metastases occurring in 36% of cases; (c) favourable treatment outcomes with a 75% 5-year survival rate; and (d) volume and growth-rate dependent risk factors generally accepted to be relevant for overall survival in metastatic surgery are insignificant in isPMRCC. The genetic and epigenetic causes of exclusive pancreatic involvement have not yet been investigated and are currently unknown. Conversely, according to the few available data in the literature, the following genetic and epigenetic peculiarities can already be identified as the cause of the protracted course: 1. high genetic stability of the tumour cell clones in both the primary tumour and the pancreatic metastases; 2. a low frequency of copy number variants associated with aggressiveness, such as 9p, 14q and 4q loss; 3. in the chromatin-modifying genes, a decreased rate of PAB1 (3%) and an increased rate of PBRM1 (77%) defects are seen, a profile associated with a favourable course; 4. an increased incidence of KDM5C mutations, which, in common with increased PBRM1 alterations, is also associated with a favourable outcome; and 5. angiogenetic biomarkers are increased in tumour tissue, while inflammatory biomarkers are decreased, which explains the good response to TKI therapy and lack of sensitivity to IT.
Collapse
Affiliation(s)
- Franz Sellner
- Department of General, Visceral and Vascular Surgery, Clinic Favoriten Vienna, Kaiser Franz Josef Hospital, 1100 Vienna, Austria
| | - Eva Compérat
- Clinical Institute of Pathology, Medical University Vienna, 1090 Vienna, Austria
| | - Martin Klimpfinger
- Clinical Institute of Pathology, Medical University Vienna, 1090 Vienna, Austria
| |
Collapse
|
16
|
Malainou CP, Stachika N, Damianou AK, Anastopoulos A, Ploumaki I, Triantafyllou E, Drougkas K, Gomatou G, Kotteas E. Estrogen-Receptor-Low-Positive Breast Cancer: Pathological and Clinical Perspectives. Curr Oncol 2023; 30:9734-9745. [PMID: 37999126 PMCID: PMC10670665 DOI: 10.3390/curroncol30110706] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
The expression of estrogen receptors (ERs) in breast cancer (BC) represents a strong prognostic and predictive biomarker and directs therapeutic decisions in early and advanced stages. ER-low-positive BC, defined by the immunohistochemical (IHC) expression of ERs from 1% to 9%, constitutes a distinct subset of total BC cases. Guidelines recommend that a low expression of ERs be reported in pathology reports since the benefit of endocrine therapy in patients with ER-low-positive BC is uncertain. Recently, several cohorts, mostly of a retrospective nature, have been published, reporting the clinicopathological characteristics and outcomes of ER-low-positive BC. However, the majority of the data focus on early-stage BC and the use of (neo)adjuvant therapy, and there is a significant lack of data regarding metastatic ER-low-positive BC. Further factors, including tumor heterogeneity as well as the potential loss of ER expression due to endocrine resistance, should be considered. Including patients with ER-low-positive BC in clinical trials for triple-negative breast cancer (TNBC) might improve the understanding of this entity and allow novel therapeutic approaches. The design and conduction of randomized clinical trials regarding this subgroup of patients are greatly anticipated.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Georgia Gomatou
- Oncology Unit, Third Department of Medicine, “Sotiria” General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, 152 Messogion Avenue, 11527 Athens, Greece (E.K.)
| | | |
Collapse
|
17
|
Ray A, Moore TF, Pandit R, Burke AD, Borsch DM. An Overview of Selected Bacterial Infections in Cancer, Their Virulence Factors, and Some Aspects of Infection Management. BIOLOGY 2023; 12:963. [PMID: 37508393 PMCID: PMC10376897 DOI: 10.3390/biology12070963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023]
Abstract
In cancer development and its clinical course, bacteria can be involved in etiology and secondary infection. Regarding etiology, various epidemiological studies have revealed that Helicobacter pylori can directly impact gastric carcinogenesis. The Helicobacter pylori-associated virulence factor cytotoxin-associated gene A perhaps plays an important role through different mechanisms such as aberrant DNA methylation, activation of nuclear factor kappa B, and modulation of the Wnt/β-catenin signaling pathway. Many other bacteria, including Salmonella and Pseudomonas, can also affect Wnt/β-catenin signaling. Although Helicobacter pylori is involved in both gastric adenocarcinoma and mucosa-associated lymphoid tissue lymphoma, its role in the latter disease is more complicated. Among other bacterial species, Chlamydia is linked with a diverse range of diseases including cancers of different sites. The cellular organizations of Chlamydia are highly complex. Interestingly, Escherichia coli is believed to be associated with colon cancer development. Microorganisms such as Escherichia coli and Pseudomonas aeruginosa are frequently isolated from secondary infections in cancer patients. In these patients, the common sites of infection are the respiratory, gastrointestinal, and urinary tracts. There is an alarming rise in infections with multidrug-resistant bacteria and the scarcity of suitable antimicrobial agents adversely influences prognosis. Therefore, effective implementation of antimicrobial stewardship strategies is important in cancer patients.
Collapse
Affiliation(s)
- Amitabha Ray
- College of Medical Science, Alderson Broaddus University, 101 College Hill Drive, Philippi, WV 26416, USA
| | - Thomas F Moore
- College of Medical Science, Alderson Broaddus University, 101 College Hill Drive, Philippi, WV 26416, USA
| | | | | | - Daniel M Borsch
- Lake Erie College of Osteopathic Medicine at Seton Hill, Greensburg, PA 15601, USA
| |
Collapse
|
18
|
Zhang Y, Yan L, Wang Z, Li F, Lv J, Liu J, Liu X, Bao L, Zhang Y. Bibliometric Analysis of Global Research on Tumor Dormancy. Cancers (Basel) 2023; 15:3230. [PMID: 37370845 DOI: 10.3390/cancers15123230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Tumor dormancy continues to be a research hotspot with numerous pressing problems that need to be solved. The goal of this study is to perform a bibliometric analysis of pertinent articles published in the twenty-first century. We concentrate on significant keywords, nations, authors, affiliations, journals, and literature in the field of tumor dormancy, which will help researchers to review the results that have been achieved and better understand the directions of future research. We retrieved research articles on tumor dormancy from the Web of Science Core Collection. This study made use of the visualization tools VOSviewer, CiteSpace, and Scimago Graphica, as visualization helps us to uncover the intrinsic connections between information. Research on tumor dormancy has been growing in the 21st century, especially from 2015 to the present. The United States is a leader in many aspects of this research area, such as in the number of publications, the number of partners, the most productive institutions, and the authors working in this field. Harvard University is the institution with the highest number of publications, and Aguirre-Ghiso, Julio A. is the author with the highest number of publications and citations. The keywords that emerged after 2017 were "early dissemination", "inhibition", "mechanism", "bone metastasis", and "promotion". We believe that research on tumor dormancy mechanisms and therapy has been, and will continue to be, a major area of interest. The exploration of the tumor dormancy microenvironment and immunotherapeutic treatments for tumor dormancy is likely to represent the most popular future research topics.
Collapse
Affiliation(s)
- Yuzhe Zhang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang 110001, China
| | - Lirong Yan
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zhongqing Wang
- Department of Information Center, The First Hospital of China Medical University, Shenyang 110001, China
| | - Fang Li
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang 110001, China
| | - Jinqi Lv
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang 110001, China
| | - Jiaqing Liu
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xuqin Liu
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang 110001, China
| | - Li Bao
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ye Zhang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
19
|
Li L, Zhao J, Zhang H, Li D, Wu S, Xu W, Pan X, Hu W, Chu J, Luo W, Li P, Zhou X. HIGD1A inactivated by DNA hypermethylation promotes invasion of kidney renal clear cell carcinoma. Pathol Res Pract 2023; 245:154463. [PMID: 37086631 DOI: 10.1016/j.prp.2023.154463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/18/2023] [Accepted: 04/10/2023] [Indexed: 04/24/2023]
Abstract
Hypoxia contributes to the tumorigenesis and metastasis of the tumor. However, the detailed mechanisms underlying hypoxia and kidney renal clear cell carcinoma (KIRC) development and progression remain unclear. Here, we investigated the role of the system HIG1 hypoxia inducible domain family member 1 A (HIGD1A) in the proliferation and metastasis of KIRC and elucidated the underlying molecular mechanisms. The expression of HIGD1A is significantly downregulated in KIRC due to promoter hypermethylation. HIGD1A could serve as a valuable diagnostic biomarker in KIRC. In addition, ectopic overexpression of HIGD1A significantly suppressed the growth and invasive capacity of KIRC cells in vitro under normal glucose conditions. Interestingly, the suppressive efficacy in invasion is much more significant when depleted glucose, but not in proliferation. Furthermore, mRNA expression of HIGD1A positively correlates with CDH1 and EPCAM, while negatively correlated with VIM and SPARC, indicating that HIGD1A impedes invasion of KIRC by regulating epithelial-mesenchymal transition (EMT). Our data suggest that HIGD1A is a potential diagnostic biomarker and tumor suppressor in KIRC.
Collapse
Affiliation(s)
- Limei Li
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Ministry of Education, Nanning, China; Department of Pathology, College & Hospital of Stomatology Guangxi Medical University, Nanning, China
| | - Jun Zhao
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Ministry of Education, Nanning, China; Department of Pathology, College & Hospital of Stomatology Guangxi Medical University, Nanning, China
| | - Haishan Zhang
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Ministry of Education, Nanning, China; Department of Pathology, College & Hospital of Stomatology Guangxi Medical University, Nanning, China
| | - Danping Li
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Ministry of Education, Nanning, China; Department of Pathology, College & Hospital of Stomatology Guangxi Medical University, Nanning, China
| | - Shu Wu
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Ministry of Education, Nanning, China; Department of Pathology, College & Hospital of Stomatology Guangxi Medical University, Nanning, China
| | - Wenqing Xu
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Ministry of Education, Nanning, China
| | - Xinli Pan
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, China
| | - Wenjin Hu
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, China
| | - Jiemei Chu
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Wenqi Luo
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Ministry of Education, Nanning, China
| | - Ping Li
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Ministry of Education, Nanning, China; Department of Pathology, College & Hospital of Stomatology Guangxi Medical University, Nanning, China.
| | - Xiaoying Zhou
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Ministry of Education, Nanning, China; Life Science Institute, Guangxi Medical University, Nanning, China.
| |
Collapse
|
20
|
Karvela A, Veloudiou OZ, Karachaliou A, Kloukina T, Gomatou G, Kotteas E. Lung microbiome: an emerging player in lung cancer pathogenesis and progression. Clin Transl Oncol 2023:10.1007/s12094-023-03139-z. [PMID: 36995519 DOI: 10.1007/s12094-023-03139-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/26/2023] [Indexed: 03/31/2023]
Abstract
The microbiome of the lungs, although until recently neglected, is now emerging as a potential contributor to chronic lung diseases, including cancer. Preclinical evidence suggests that the microbial burden of the lungs shapes the host immunity mechanisms and affects local antitumor immune responses. Studies of cohorts of patients with lung cancer reveal that different microbiome profiles are detected in patients with lung cancer compared to controls. In addition, an association between differential lung microbiome composition and distinct responses to immunotherapy has been suggested, yet, with limited data. Scarce evidence exists on the role of the lung microbiome in the development of metastases in the lungs. Interestingly, the lung microbiome is not isolated and interacts with the gut microbiome through a dynamic axis. Future research on the involvement of the lung microbiome in lung cancer pathogenesis and potential therapeutic implications is greatly anticipated.
Collapse
Affiliation(s)
- Alexandra Karvela
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, Messogion Ave 152, 11527, Athens, Greece
| | - Orsalia-Zoi Veloudiou
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, Messogion Ave 152, 11527, Athens, Greece
| | - Anastasia Karachaliou
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, Messogion Ave 152, 11527, Athens, Greece
| | - Theoni Kloukina
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, Messogion Ave 152, 11527, Athens, Greece
| | - Georgia Gomatou
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, Messogion Ave 152, 11527, Athens, Greece.
| | - Elias Kotteas
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, Messogion Ave 152, 11527, Athens, Greece
| |
Collapse
|
21
|
Al-Awsi GRL, Alsaikhan F, Margiana R, Ahmad I, Patra I, Najm MAA, Yasin G, Rasulova I, Hammid AT, Kzar HH, Al-Gazally ME, Siahmansouri H. Shining the light on mesenchymal stem cell-derived exosomes in breast cancer. Stem Cell Res Ther 2023; 14:21. [PMID: 36750912 PMCID: PMC9906907 DOI: 10.1186/s13287-023-03245-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 01/18/2023] [Indexed: 02/09/2023] Open
Abstract
In women, breast cancer (BC) is the second most frequently diagnosed cancer and the leading cause of cancer death. Mesenchymal stem cells (MSCs) are a subgroup of heterogeneous non-hematopoietic fibroblast-like cells that have the ability to differentiate into multiple cell types. Recent studies stated that MSCs can migrate into the tumor sites and exert various effect on tumor growth and development. Multiple researches have demonstrated that MSCs can favor tumor growth, while other groups have indicated that MSCs inhibit tumor development. Emerging evidences showed exosomes (Exo) as a new mechanism of cell communication which are essential for the crosstalk between MSCs and BC cells. MSC-derived Exo (MSCs-Exo) could mimic the numerous effects on the proliferation, metastasis, and drug response through carrying a wide scale of molecules, such as proteins, lipids, messenger RNAs, and microRNAs to BC cells. Consequently, in the present literature, we summarized the biogenesis and cargo of Exo and reviewed the role of MSCs-Exo in development of BC.
Collapse
Affiliation(s)
- Ghaidaa Raheem Lateef Al-Awsi
- grid.517728.e0000 0004 9360 4144Department of Radiological Techniques, Al-Mustaqbal University College, Babylon, Iraq
| | - Fahad Alsaikhan
- grid.449553.a0000 0004 0441 5588College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Kingdom of Saudi Arabia
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia. .,Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia. .,Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia. .,Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
| | - Irfan Ahmad
- grid.412144.60000 0004 1790 7100Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Mazin A. A. Najm
- grid.513203.6Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Ghulam Yasin
- grid.411501.00000 0001 0228 333XDepartment of Botany, Bahauddin Zakariya University, Multan, Pakistan
| | - Iroda Rasulova
- Independent Researcher, “Kasmed” Private Medical Centre, Tashkent, Uzbekistan
| | - Ali Thaeer Hammid
- grid.513683.a0000 0004 8495 7394Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja’afar Al-Sadiq University, Baghdad, Iraq
| | - Hamzah H. Kzar
- Veterinary Medicine College, Al-Qasim Green University, Al-Qasim, Iraq
| | | | - Homayoon Siahmansouri
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
22
|
Zhang Y, Yao C, Ju Z, Jiao D, Hu D, Qi L, Liu S, Wu X, Zhao C. Krüppel-like factors in tumors: Key regulators and therapeutic avenues. Front Oncol 2023; 13:1080720. [PMID: 36761967 PMCID: PMC9905823 DOI: 10.3389/fonc.2023.1080720] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Krüppel-like factors (KLFs) are a group of DNA-binding transcriptional regulators with multiple essential functions in various cellular processes, including proliferation, migration, inflammation, and angiogenesis. The aberrant expression of KLFs is often found in tumor tissues and is essential for tumor development. At the molecular level, KLFs regulate multiple signaling pathways and mediate crosstalk among them. Some KLFs may also be molecular switches for specific biological signals, driving their transition from tumor suppressors to promoters. At the histological level, the abnormal expression of KLFs is closely associated with tumor cell stemness, proliferation, apoptosis, and alterations in the tumor microenvironment. Notably, the role of each KLF in tumors varies according to tumor type and different stages of tumor development rather than being invariant. In this review, we focus on the advances in the molecular biology of KLFs, particularly the regulations of several classical signaling pathways by these factors, and the critical role of KLFs in tumor development. We also highlight their strong potential as molecular targets in tumor therapy and suggest potential directions for clinical translational research.
Collapse
Affiliation(s)
- Yuchen Zhang
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chongjie Yao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ziyong Ju
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Danli Jiao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Hu
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Qi
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shimin Liu
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Xueqing Wu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Chen Zhao, ; Xueqing Wu,
| | - Chen Zhao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Chen Zhao, ; Xueqing Wu,
| |
Collapse
|
23
|
Age-induced changes in lung microenvironment: from melanoma dormancy to outgrowth. Signal Transduct Target Ther 2023; 8:33. [PMID: 36646673 PMCID: PMC9842723 DOI: 10.1038/s41392-022-01303-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/02/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023] Open
|
24
|
Zhang L. The Role of Mesenchymal Stem Cells in Modulating the Breast Cancer Microenvironment. Cell Transplant 2023; 32:9636897231220073. [PMID: 38135917 DOI: 10.1177/09636897231220073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023] Open
Abstract
The role of mesenchymal stem cells (MSCs) in the breast tumor microenvironment (TME) is significant and multifaceted. MSCs are recruited to breast tumor sites through molecular signals released by tumor sites. Once in the TME, MSCs undergo polarization and interact with various cell populations, including immune cells, cancer-associated fibroblasts (CAFs), cancer stem cells (CSCs), and breast cancer cells. In most cases, MSCs play roles in breast cancer therapeutic resistance, but there is also evidence that indicates their abilities to sensitize cancer cells to chemotherapy and radiotherapy. MSCs possess inherent regenerative and homing properties, making them attractive candidates for cell-based therapies. Therefore, MSCs can be engineered to express therapeutic molecules or deliver anti-cancer agents directly to tumor sites. Unraveling the intricate relationship between MSCs and the breast TME has the potential to uncover novel therapeutic targets and advance our understanding of breast cancer biology.
Collapse
Affiliation(s)
- Luxiao Zhang
- Department of Surgical Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
25
|
El Marsafy S, Larghero J. Cancer Cell De-Differentiation: Plasticity-Driven Stratagem For Tumor Metastasis and Recurrence. Curr Stem Cell Res Ther 2023; 18:54-61. [PMID: 35676837 DOI: 10.2174/1574888x17666220608101852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022]
Abstract
Tumor recurrence is a colossal challenge in clinical oncology. This multifactorial problem is attributed to the emergence of additional genetic mutations and the presence of dormant cancer cells. However, the plasticity of non-stem cancer cells and the acquisition of cancer stem cell (CSC) functionality is another contributing factor to tumor recurrence. Herein, I focus attention on the mechanisms that fuel cancer cell de-differentiation and the interplay between intra-cellular regulators and tumor microenvironment (TME) landscape that promotes cancer cell stemness. Our understanding of the mechanisms underlying tumor cell de-differentiation is crucial for developing innovative therapeutic strategies that prevent cancer from ever recurring.
Collapse
|
26
|
Zhu MM, Ma Y, Tang M, Pan L, Liu WL. Hypoxia-induced upregulation of matrix metalloproteinase 9 increases basement membrane degradation by downregulating collagen type IV alpha 1 chain. Physiol Res 2022. [DOI: 10.33549/physiolres.934930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hypoxia can cause basement membrane (BM) degradation in tissues. Matrix metalloproteinase 9 (MMP-9) is involved in various human cancers as well as BM degradation by downregulating type IV collagen (COL4). This study investigated the role of MMP-9 in hypoxia-mediated BM degradation in rat bone marrow based on its regulation of collagen type IV alpha 1 chain (COL4A1). Eighty male rats were randomly divided into four groups based on exposure to hypoxic conditions at a simulated altitude of 7,000 m, control (normoxia) and 3, 7, and 10 days of hypoxia exposure. BM degradation in bone marrow was determined by transmission electron microscopy. MMP-9 levels were assessed by western blot and real-time PCR, and COL4A1 levels were assessed by western blot and immunohistochemistry. Microvessels BMs in bone marrow exposed to acute hypoxia were observed by electron microscopy. MMP-9 expression increased, COL4A1 protein expression decreased, and BM degradation occurred in the 10-, 7-, and 3-day hypoxia groups compared with that in the control group (all P < 0.05). Hypoxia increased MMP-9 levels, which in turn downregulated COL4A1, thereby increasing BM degradation. MMP-9 upregulation significantly promoted BM degradation and COL4A1 downregulation. Our results suggest that MMP-9 is related to acute hypoxia-induced BM degradation in bone marrow by regulating COL4A1.
Collapse
Affiliation(s)
| | | | | | | | - WL Liu
- Affiliated Hospital of Qinghai University, Xining 810001, China;
| |
Collapse
|
27
|
ZHU MM, MA Y, TANG M, PAN L, LIU WL. Hypoxia-induced upregulation of matrix metalloproteinase 9 increases basement membrane degradation by downregulating collagen type IV alpha 1 chain. Physiol Res 2022; 71:825-834. [PMID: 36281728 PMCID: PMC9814978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Hypoxia can cause basement membrane (BM) degradation in tissues. Matrix metalloproteinase 9 (MMP-9) is involved in various human cancers as well as BM degradation by downregulating type IV collagen (COL4). This study investigated the role of MMP-9 in hypoxia-mediated BM degradation in rat bone marrow based on its regulation of collagen type IV alpha 1 chain (COL4A1). Eighty male rats were randomly divided into four groups based on exposure to hypoxic conditions at a simulated altitude of 7,000 m, control (normoxia) and 3, 7, and 10 days of hypoxia exposure. BM degradation in bone marrow was determined by transmission electron microscopy. MMP-9 levels were assessed by western blot and real-time PCR, and COL4A1 levels were assessed by western blot and immunohistochemistry. Microvessels BMs in bone marrow exposed to acute hypoxia were observed by electron microscopy. MMP-9 expression increased, COL4A1 protein expression decreased, and BM degradation occurred in the 10-, 7-, and 3-day hypoxia groups compared with that in the control group (all P < 0.05). Hypoxia increased MMP-9 levels, which in turn downregulated COL4A1, thereby increasing BM degradation. MMP-9 upregulation significantly promoted BM degradation and COL4A1 downregulation. Our results suggest that MMP-9 is related to acute hypoxia-induced BM degradation in bone marrow by regulating COL4A1.
Collapse
Affiliation(s)
- Ming-Ming ZHU
- Affiliated Hospital of Qinghai University, Xining, China
| | - Yi MA
- Qinghai University, Xining, China,Qinghai University High Altitude Medicine Research Center, Key Laboratory of High-Altitude Medicine Ministry of Education Qinghai Provincial Key Laboratory of Plateau Medicine Application Basics Xining, China
| | - Meng TANG
- The First People’s Hospital of Yibin, Yibin, China
| | - Li PAN
- Xi’an Daxing Hospital, Xi’an, China
| | | |
Collapse
|
28
|
Tumor cell dormancy: Molecular mechanisms, and pharmacological approaches to target dormant cells for countering tumor. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Rahat MA. Mini-Review: Can the Metastatic Cascade Be Inhibited by Targeting CD147/EMMPRIN to Prevent Tumor Recurrence? Front Immunol 2022; 13:855978. [PMID: 35418981 PMCID: PMC8995701 DOI: 10.3389/fimmu.2022.855978] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/07/2022] [Indexed: 12/05/2022] Open
Abstract
Solid tumors metastasize very early in their development, and once the metastatic cell is lodged in a remote organ, it can proliferate to generate a metastatic lesion or remain dormant for long periods. Dormant cells represent a real risk for future tumor recurrence, but because they are typically undetectable and insensitive to current modalities of treatment, it is difficult to treat them in time. We describe the metastatic cascade, which is the process that allows tumor cells to detach from the primary tumor, migrate in the tissue, intravasate and extravasate the lymphatics or a blood vessel, adhere to a remote tissue and eventually outgrow. We focus on the critical enabling role of the interactions between tumor cells and immune cells, especially macrophages, in driving the metastatic cascade, and on those stages that can potentially be targeted. In order to prevent the metastatic cascade and tumor recurrence, we would need to target a molecule that is involved in all of the steps of the process, and evidence is brought to suggest that CD147/EMMPRIN is such a protein and that targeting it blocks metastasis and prevents tumor recurrence.
Collapse
Affiliation(s)
- Michal A Rahat
- Immunotherapy Laboratory, Carmel Medical Center, Haifa, Israel.,Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
30
|
Maurizi A, Ciocca M, Giuliani C, Di Carlo I, Teti A. Role of Neural (N)-Cadherin in Breast Cancer Cell Stemness and Dormancy in the Bone Microenvironment. Cancers (Basel) 2022; 14:cancers14051317. [PMID: 35267624 PMCID: PMC8909418 DOI: 10.3390/cancers14051317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer cells that interact with spindle-shaped N-Cadherin+ Osteoblasts (SNOs) are recognised to become dormant through a Notch2-dependent mechanism. We found that Notch2High human BrCa MDA-MB231 (MDA) cells also expressed high level of N-Cadherin. This prompted us to hypothesize that N-Cadherin could have a role in MDA-SNO interaction. Of note, the expression of N-Cadherin in MDA cells reduced tumour incidence and bone osteolysis in BrCa mouse model. Moreover, similarly to Notch2High MDA cells, the N-CadherinHigh MDA cells revealed a high expression of the canonical Haematopoietic Stem cell (HSC) markers, suggesting an HSC mimicry, associated with higher ability to form mammospheres. Interestingly, N-CadherinHigh MDA cells showed greater capacity to adhere to SNOs, while the inhibition of SNO-mediating MDA cell proliferation was unremarkable. To investigate whether these features were shared by mouse BrCa, we used the 4T1 cell line in which N-Cadherin expression was abolished and then rescued. At variance with MDA cells, 4T1 cells expressing N-Cadherin revealed that the latter was associated with a lower expression of the HSC marker, Cxcr4, along with a lower capacity to form mammospheres. Furthermore, the rescue of N-Cadherin expression increased cell-cell adhesion and reduced proliferation of 4T1 cells when they were co-plated with SNOs. In conclusion, we demonstrated that: (i) N-CadherinHigh and Notch2High MDA cells showed similar HSC mimicry and dormancy features; (ii) N-Cadherin mediated BrCa-SNO adhesion; (iii) N-Cadherin had a positive Notch2-dependent role on SNO-induced dormancy and HSC mimicry in MDA cells, and a negative role in 4T1 cell stemness and HSC mimicry.
Collapse
Affiliation(s)
- Antonio Maurizi
- Correspondence: ; Tel.:+39-0862-433511; Fax: +39-0862-433523
| | | | | | | | | |
Collapse
|
31
|
Loh D, Reiter RJ. Melatonin: Regulation of Prion Protein Phase Separation in Cancer Multidrug Resistance. Molecules 2022; 27:705. [PMID: 35163973 PMCID: PMC8839844 DOI: 10.3390/molecules27030705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
The unique ability to adapt and thrive in inhospitable, stressful tumor microenvironments (TME) also renders cancer cells resistant to traditional chemotherapeutic treatments and/or novel pharmaceuticals. Cancer cells exhibit extensive metabolic alterations involving hypoxia, accelerated glycolysis, oxidative stress, and increased extracellular ATP that may activate ancient, conserved prion adaptive response strategies that exacerbate multidrug resistance (MDR) by exploiting cellular stress to increase cancer metastatic potential and stemness, balance proliferation and differentiation, and amplify resistance to apoptosis. The regulation of prions in MDR is further complicated by important, putative physiological functions of ligand-binding and signal transduction. Melatonin is capable of both enhancing physiological functions and inhibiting oncogenic properties of prion proteins. Through regulation of phase separation of the prion N-terminal domain which targets and interacts with lipid rafts, melatonin may prevent conformational changes that can result in aggregation and/or conversion to pathological, infectious isoforms. As a cancer therapy adjuvant, melatonin could modulate TME oxidative stress levels and hypoxia, reverse pH gradient changes, reduce lipid peroxidation, and protect lipid raft compositions to suppress prion-mediated, non-Mendelian, heritable, but often reversible epigenetic adaptations that facilitate cancer heterogeneity, stemness, metastasis, and drug resistance. This review examines some of the mechanisms that may balance physiological and pathological effects of prions and prion-like proteins achieved through the synergistic use of melatonin to ameliorate MDR, which remains a challenge in cancer treatment.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
32
|
Zhao L, Zhang K, He H, Yang Y, Li W, Liu T, Li J. The Relationship Between Mesenchymal Stem Cells and Tumor Dormancy. Front Cell Dev Biol 2021; 9:731393. [PMID: 34712663 PMCID: PMC8545891 DOI: 10.3389/fcell.2021.731393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor dormancy, a state of tumor, is clinically undetectable and the outgrowth of dormant tumor cells into overt metastases is responsible for cancer-associated deaths. However, the dormancy-related molecular mechanism has not been clearly described. Some researchers have proposed that cancer stem cells (CSCs) and disseminated tumor cells (DTCs) can be seen as progenitor cells of tumor dormancy, both of which can remain dormant in a non-permissive soil/niche. Nowadays, research interest in the cancer biology field is skyrocketing as mesenchymal stem cells (MSCs) are capable of regulating tumor dormancy, which will provide a unique therapeutic window to cure cancer. Although the influence of MSCs on tumor dormancy has been investigated in previous studies, there is no thorough review on the relationship between MSCs and tumor dormancy. In this paper, the root of tumor dormancy is analyzed and dormancy-related molecular mechanisms are summarized. With an emphasis on the role of the MSCs during tumor dormancy, new therapeutic strategies to prevent metastatic disease are proposed, whose clinical application potentials are discussed, and some challenges and prospects of the studies of tumor dormancy are also described.
Collapse
Affiliation(s)
- Linxian Zhao
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Kai Zhang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Hongyu He
- Operating Theater and Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China
| | - Yongping Yang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Wei Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Tongjun Liu
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
33
|
Ban J, Fock V, Aryee DNT, Kovar H. Mechanisms, Diagnosis and Treatment of Bone Metastases. Cells 2021; 10:2944. [PMID: 34831167 PMCID: PMC8616226 DOI: 10.3390/cells10112944] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 12/24/2022] Open
Abstract
Bone and bone marrow are among the most frequent metastatic sites of cancer. The occurrence of bone metastasis is frequently associated with a dismal disease outcome. The prevention and therapy of bone metastases is a priority in the treatment of cancer patients. However, current therapeutic options for patients with bone metastatic disease are limited in efficacy and associated with increased morbidity. Therefore, most current therapies are mainly palliative in nature. A better understanding of the underlying molecular pathways of the bone metastatic process is warranted to develop novel, well-tolerated and more successful treatments for a significant improvement of patients' quality of life and disease outcome. In this review, we provide comparative mechanistic insights into the bone metastatic process of various solid tumors, including pediatric cancers. We also highlight current and innovative approaches to biologically targeted therapy and immunotherapy. In particular, we discuss the role of the bone marrow microenvironment in the attraction, homing, dormancy and outgrowth of metastatic tumor cells and the ensuing therapeutic implications. Multiple signaling pathways have been described to contribute to metastatic spread to the bone of specific cancer entities, with most knowledge derived from the study of breast and prostate cancer. However, it is likely that similar mechanisms are involved in different types of cancer, including multiple myeloma, primary bone sarcomas and neuroblastoma. The metastatic rate-limiting interaction of tumor cells with the various cellular and noncellular components of the bone-marrow niche provides attractive therapeutic targets, which are already partially exploited by novel promising immunotherapies.
Collapse
Affiliation(s)
- Jozef Ban
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (J.B.); (V.F.); (D.N.T.A.)
| | - Valerie Fock
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (J.B.); (V.F.); (D.N.T.A.)
| | - Dave N. T. Aryee
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (J.B.); (V.F.); (D.N.T.A.)
- Department of Pediatrics, Medical University Vienna, 1090 Vienna, Austria
| | - Heinrich Kovar
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (J.B.); (V.F.); (D.N.T.A.)
- Department of Pediatrics, Medical University Vienna, 1090 Vienna, Austria
| |
Collapse
|