1
|
Gallo-Rodriguez C, Rodriguez JB. Organoselenium Compounds in Medicinal Chemistry. ChemMedChem 2024; 19:e202400063. [PMID: 38778500 DOI: 10.1002/cmdc.202400063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
The chemical and biological interest in this element and the molecules bearing selenium has been exponentially growing over the years. Selenium, formerly designated as a toxin, becomes a vital trace element for life that appears as selenocysteine and its dimeric form, selenocystine, in the active sites of selenoproteins, which catalyze a wide variety of reactions, including the detoxification of reactive oxygen species and modulation of redox activities. From the point of view of drug developments, organoselenium drugs are isosteres of sulfur-containing and oxygen-containing drugs with the advantage that the presence of the selenium atom confers antioxidant properties and high lipophilicity, which would increase cell membrane permeation leading to better oral bioavailability. This statement is the paramount relevance considering the big number of clinically employed compounds bearing sulfur or oxygen atoms in their structures including nucleosides and carbohydrates. Thus, in this article we have focused on the relevant features of the application of selenium in medicinal chemistry. With the increasing interest in selenium chemistry, we have attempted to highlight the most significant published data on this subject, mainly concentrating the analysis on the last years. In consequence, the recent advances of relevant pharmacological organoselenium compounds are discussed.
Collapse
Affiliation(s)
- Carola Gallo-Rodriguez
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EHA, Buenos Aires, Argentina
| | - Juan B Rodriguez
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos, Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
2
|
Morán-Serradilla C, Plano D, Sharma AK, Sanmartín C. Following the Trace of Cyclodextrins on the Selenium and Tellurium Odyssey. Int J Mol Sci 2024; 25:7799. [PMID: 39063040 PMCID: PMC11277100 DOI: 10.3390/ijms25147799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
There is an urgent need to develop safer and more effective modalities for the treatment of numerous pathologies due to the increasing rates of drug resistance, undesired side effects, poor clinical outcomes, etc. Over the past decades, cyclodextrins (CDs) have gathered great attention as potential drug carriers due to their ability to enhance their bioactivities and properties. Likewise, selenium (Se) and tellurium (Te) have been extensively studied during the last decades due to their possible therapeutical applications. Although there is limited research on the relationship between Se and Te and CDs, herein, we highlight different representative examples of the advances related to this topic as well as give our view on the future directions of this emerging area of research. This review encompasses three different aspects of this relationship: (1) modification of the structure of the different CDs; (2) formation of host-guest interaction complexes of naïve CDs with Se and Te derivatives in order to overcome specific limitations of the latter; and (3) the use of CDs as catalysts to achieve novel Se and Te compounds.
Collapse
Affiliation(s)
- Cristina Morán-Serradilla
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (C.M.-S.); (D.P.)
| | - Daniel Plano
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (C.M.-S.); (D.P.)
| | - Arun K. Sharma
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA;
- Penn State Cancer Institute, 400 University Drive, Hershey, PA 17033, USA
| | - Carmen Sanmartín
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (C.M.-S.); (D.P.)
| |
Collapse
|
3
|
Yanjun Y, Jing Z, Yifei S, Gangzhao G, Chenxin Y, Qiang W, Qiang Y, Shuwen H. Trace elements in pancreatic cancer. Cancer Med 2024; 13:e7454. [PMID: 39015024 PMCID: PMC11252496 DOI: 10.1002/cam4.7454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Pancreatic cancer (PCA) is an extremely aggressive malignant cancer with an increasing incidence and a low five-year survival rate. The main reason for this high mortality is that most patients are diagnosed with PCA at an advanced stage, missing early treatment options and opportunities. As important nutrients of the human body, trace elements play an important role in maintaining normal physiological functions. Moreover, trace elements are closely related to many diseases, including PCA. REVIEW This review systematically summarizes the latest research progress on selenium, copper, arsenic, and manganese in PCA, elucidates their application in PCA, and provides a new reference for the prevention, diagnosis and treatment of PCA. CONCLUSION Trace elements such as selenium, copper, arsenic and manganese are playing an important role in the risk, pathogenesis, diagnosis and treatment of PCA. Meanwhile, they have a certain inhibitory effect on PCA, the mechanism mainly includes: promoting ferroptosis, inducing apoptosis, inhibiting metastasis, and inhibiting excessive proliferation.
Collapse
Affiliation(s)
- Yao Yanjun
- Huzhou Central Hospital, Affiliated Huzhou HospitalZhejiang University School of MedicineHuzhouChina
| | - Zhuang Jing
- Huzhou Central Hospital, Affiliated Huzhou HospitalZhejiang University School of MedicineHuzhouChina
| | - Song Yifei
- Huzhou Central Hospital, Affiliated Huzhou HospitalZhejiang University School of MedicineHuzhouChina
| | - Gu Gangzhao
- Huzhou Central Hospital, Affiliated Huzhou HospitalZhejiang University School of MedicineHuzhouChina
| | - Yan Chenxin
- Shulan International Medical schoolZhejiang Shuren UniversityHangzhouChina
| | - Wei Qiang
- Huzhou Central Hospital, Affiliated Huzhou HospitalZhejiang University School of MedicineHuzhouChina
| | - Yan Qiang
- Huzhou Central Hospital, Affiliated Huzhou HospitalZhejiang University School of MedicineHuzhouChina
| | - Han Shuwen
- Huzhou Central Hospital, Affiliated Huzhou HospitalZhejiang University School of MedicineHuzhouChina
- Institut Catholique de Lille, Junia (ICL), Université Catholique de Lille, Laboratoire Interdisciplinaire des Transitions de Lille (LITL)LilleFrance
| |
Collapse
|
4
|
Morán-Serradilla C, Plano D, Sanmartín C, Sharma AK. Selenization of Small Molecule Drugs: A New Player on the Board. J Med Chem 2024; 67:7759-7787. [PMID: 38716896 DOI: 10.1021/acs.jmedchem.3c02426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
There is an urgent need to develop safer and more effective modalities for the treatment of a wide range of pathologies due to the increasing rates of drug resistance, undesired side effects, poor clinical outcomes, etc. Throughout the years, selenium (Se) has attracted a great deal of attention due to its important role in human health. Besides, a growing body of work has unveiled that the inclusion of Se motifs into a great number of molecules is a promising strategy for obtaining novel therapeutic agents. In the current Perspective, we have gathered the most recent literature related to the incorporation of different Se moieties into the scaffolds of a wide range of known drugs and their feasible pharmaceutical applications. In addition, we highlight different representative examples as well as provide our perspective on Se drugs and the possible future directions, promises, opportunities, and challenges of this ground-breaking area of research.
Collapse
Affiliation(s)
| | - Daniel Plano
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, Pamplona E-31008, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, Pamplona E-31008, Spain
| | - Arun K Sharma
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, United States
- Penn State Cancer Institute, 400 University Drive,Hershey, Pennsylvania 17033, United States
| |
Collapse
|
5
|
Karelia D, Corey Z, Wang H, Raup-Konsavage WM, Vrana KE, Lü J, Jiang C. Library Screening and Preliminary Characterization of Synthetic Cannabinoids Against Prostate and Pancreatic Cancer Cell Lines. Cannabis Cannabinoid Res 2024; 9:523-536. [PMID: 36880938 DOI: 10.1089/can.2022.0270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Background: Our previous screening efforts with colorectal cancer cell lines suggested potential cannabinoid therapeutic leads for other solid cancers. Objectives: The aim of this study was to identify cannabinoid lead compounds that have cytostatic and cytocidal activities against prostate and pancreatic cancer cell lines and profile cellular responses and molecular pathways of select leads. Materials and Methods: A library of 369 synthetic cannabinoids was screened against 4 prostate and 2 pancreatic cancer cell lines with 48 h of exposure at 10 μM in medium with 10% fetal bovine serum using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) viability assay. Concentration titration of the top 6 hits was carried out to identify their concentration-response patterns and calculate IC50 values. Three select leads were examined for cell cycle, apoptosis, and autophagy responses. The role of cannabinoid receptors (CB1 and CB2) and noncanonical receptors in apoptosis signaling was examined with selective antagonists. Results: Two independent screening experiments in each cell line detected growth inhibitory activities against all six or a majority of cancer cell lines for HU-331 (a known cannabinoid topoisomerase II inhibitor), (±)5-epi-CP55,940, and PTI-2, each previously identified in our colorectal cancer study. 5-Fluoro NPB-22, FUB-NPB-22, and LY2183240 were novel hits. Morphologically and biochemically, (±)5-epi-CP55,940 elicited caspase-mediated apoptosis of PC-3-luc2 (a PC-3 subline with luciferase) prostate cancer and Panc-1 pancreatic cancer cell lines, each the most aggressive of the respective organ site. The apoptosis induced by (±)5-epi-CP55,940 was abolished by the CB2 antagonist, SR144528, but not modulated by the CB1 antagonist, rimonabant, and GPR55 antagonist, ML-193, nor TRPV1 antagonist, SB-705498. In contrast, 5-fluoro NPB-22 and FUB-NPB-22 did not cause substantial apoptosis in either cell line, but resulted in cytosolic vacuoles and increased LC3-II formation (suggestive of autophagy) and S and G2/M cell cycle arrests. Combining each fluoro compound with an autophagy inhibitor, hydroxychloroquine, enhanced the apoptosis. Conclusions: 5-Fluoro NPB-22, FUB-NPB-22, and LY2183240 represent new leads against prostate and pancreatic cancer cells in addition to the previously reported compounds, HU-331, (±)5-epi-CP55,940, and PTI-2. Mechanistically, the two fluoro compounds and (±)5-epi-CP55,940 differed regarding their structures, CB receptor involvement, and death/fate responses and signaling. Safety and antitumor efficacy studies in animal models are warranted to guide further R&D.
Collapse
Affiliation(s)
- Deepkamal Karelia
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
- Pennsylvania-Designated Medical Marijuana Academic Clinical Research Center at Penn State, Hershey, Pennsylvania, USA
| | - Zachary Corey
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Haifeng Wang
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Wesley M Raup-Konsavage
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
- Pennsylvania-Designated Medical Marijuana Academic Clinical Research Center at Penn State, Hershey, Pennsylvania, USA
| | - Kent E Vrana
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
- Pennsylvania-Designated Medical Marijuana Academic Clinical Research Center at Penn State, Hershey, Pennsylvania, USA
| | - Junxuan Lü
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
- Pennsylvania-Designated Medical Marijuana Academic Clinical Research Center at Penn State, Hershey, Pennsylvania, USA
- Penn State Cancer Institute, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Cheng Jiang
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
- Pennsylvania-Designated Medical Marijuana Academic Clinical Research Center at Penn State, Hershey, Pennsylvania, USA
| |
Collapse
|
6
|
Ramos-Inza S, Morán-Serradilla C, Gaviria-Soteras L, Sharma AK, Plano D, Sanmartín C, Font M. Formulation Studies with Cyclodextrins for Novel Selenium NSAID Derivatives. Int J Mol Sci 2024; 25:1532. [PMID: 38338811 PMCID: PMC10855879 DOI: 10.3390/ijms25031532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Commercial cyclodextrins (CDs) are commonly used to form inclusion complexes (ICs) with different molecules in order to enhance their water solubility, stability, and bioavailability. Nowadays, there is strong, convincing evidence of the anticancer effect of selenium (Se)-containing compounds. However, pharmaceutical limitations, such as an unpleasant taste or poor aqueous solubility, impede their further evaluation and clinical use. In this work, we study the enhancement of solubility with CD complexes for a set of different nonsteroidal anti-inflammatory drug (NSAID) derivatives with Se as selenoester or diacyl diselenide chemical forms, with demonstrated antitumoral activity. The CD complexes were analyzed via nuclear magnetic resonance (NMR) spectroscopic techniques. In order to obtain additional data that could help explain the experimental results obtained, 3D models of the theoretical CD-compound complexes were constructed using molecular modeling techniques. Among all the compounds, I.3e and II.5 showed a remarkable increase in their water solubility, which could be ascribed to the formation of the most stable interactions with the CDs used, in agreement with the in silico studies performed. Thus, the preliminary results obtained in this work led us to confirm the selection of β and γ-CD as the most suitable for overcoming the pharmaceutical drawbacks of these Se derivatives.
Collapse
Affiliation(s)
- Sandra Ramos-Inza
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (S.R.-I.); (C.M.-S.); (L.G.-S.); (D.P.); (M.F.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Cristina Morán-Serradilla
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (S.R.-I.); (C.M.-S.); (L.G.-S.); (D.P.); (M.F.)
| | - Leire Gaviria-Soteras
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (S.R.-I.); (C.M.-S.); (L.G.-S.); (D.P.); (M.F.)
| | - Arun K. Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72, 500 University Drive, Hershey, PA 17033, USA;
| | - Daniel Plano
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (S.R.-I.); (C.M.-S.); (L.G.-S.); (D.P.); (M.F.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (S.R.-I.); (C.M.-S.); (L.G.-S.); (D.P.); (M.F.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - María Font
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (S.R.-I.); (C.M.-S.); (L.G.-S.); (D.P.); (M.F.)
| |
Collapse
|
7
|
Ramos-Inza S, Aliaga C, Encío I, Raza A, Sharma AK, Aydillo C, Martínez-Sáez N, Sanmartín C, Plano D. First Generation of Antioxidant Precursors for Bioisosteric Se-NSAIDs: Design, Synthesis, and In Vitro and In Vivo Anticancer Evaluation. Antioxidants (Basel) 2023; 12:1666. [PMID: 37759969 PMCID: PMC10525927 DOI: 10.3390/antiox12091666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
The introduction of selenium (Se) into organic scaffolds has been demonstrated to be a promising framework in the field of medicinal chemistry. A novel design of nonsteroidal anti-inflammatory drug (NSAID) derivatives based on a bioisosteric replacement via the incorporation of Se as diacyl diselenide is reported. The antioxidant activity was assessed using the DPPH radical scavenging assay. The new Se-NSAID derivatives bearing this unique combination showed antioxidant activity in a time- and dose-dependent manner, and also displayed different antiproliferative profiles in a panel of eight cancer cell lines as determined by the MTT assay. Ibuprofen derivative 5 was not only the most antioxidant agent, but also selectively induced toxicity in all the cancer cell lines tested (IC50 < 10 µM) while sparing nonmalignant cells, and induced apoptosis partially without enhancing the caspase 3/7 activity. Furthermore, NSAID derivative 5 significantly suppressed tumor growth in a subcutaneous colon cancer xenograft mouse model (10 mg/kg, TGI = 72%, and T/C = 38%) without exhibiting any apparent toxicity. To our knowledge, this work constitutes the first report on in vitro and in vivo anticancer activity of an unprecedented Se-NSAID hybrid derivative and its rational use for developing precursors for bioisosteric selenocompounds with appealing therapeutic applications.
Collapse
Affiliation(s)
- Sandra Ramos-Inza
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (S.R.-I.); (C.A.); (N.M.-S.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
| | - Cesar Aliaga
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (C.A.); (A.R.)
| | - Ignacio Encío
- Department of Health Sciences, Public University of Navarra, Avda. Barañain s/n, 31008 Pamplona, Spain;
| | - Asif Raza
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (C.A.); (A.R.)
| | - Arun K. Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (C.A.); (A.R.)
| | - Carlos Aydillo
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (S.R.-I.); (C.A.); (N.M.-S.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
| | - Nuria Martínez-Sáez
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (S.R.-I.); (C.A.); (N.M.-S.)
| | - Carmen Sanmartín
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (S.R.-I.); (C.A.); (N.M.-S.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (S.R.-I.); (C.A.); (N.M.-S.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
| |
Collapse
|
8
|
Karelia DN, Kim S, Plano D, Sharma AK, Jiang C, Lu J. Seleno-aspirin compound AS-10 promotes histone acetylation ahead of suppressing androgen receptor transcription, G1 arrest, and apoptosis of prostate cancer cells. Prostate 2023; 83:16-29. [PMID: 35996318 PMCID: PMC9742153 DOI: 10.1002/pros.24430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND The novel selenium-aspirin compound AS-10 was recently reported by us with a cancer cell killing potency three orders of magnitude greater than aspirin in pancreatic cancer cell lines with caspase-mediated apoptosis and a reasonable selectivity against malignant cells. Although we also observed its cytocidal activity against PC-3 and DU145 androgen receptor (AR)-negative and P53-null/mutant aggressive human prostate cancer (PCa) cell lines in NCI-60 screen, the potential involvement and targeting of AR and P53 pathways that are intact in early-stage prostate carcinogenesis has not been examined, nor its primary molecular signaling after exposure. METHODS Human LNCaP PCa cells with functional AR and intact P53 were used to examine their cell cycle and cell fate responses to AS-10 exposure and upstream molecular signaling events including histone acetylation as a known aspirin effect. The AR-positive 22Rv1 human PCa cells were used to validate key findings. RESULTS In addition to confirming AS-10's superior cytocidal potency than aspirin against all four PCa cell lines, we report a rapid (within 5 min) promotion of histone acetylation several hours ahead of the suppression of AR and prostate-specific antigen (PSA, coded by KLK3 gene) in LNCaP and 22Rv1 cells. AS-10 decreased AR and KLK3 mRNA levels without impacting pre-existing AR protein degradation or nuclear translocation in LNCaP cells. Sustained exposure to AS-10 arrested cells predominantly in G1 , and induced caspase-mediated apoptosis without necrosis. The death induced by AS-10 in LNCaP cells was attenuated by nontranscriptional activation of P53 protein or Jun N-terminal Kinase cellular stress signaling and was mitigated modestly by glutathione-boosting antioxidant N-acetylcysteine. AS-10 synergized with histone deacetylase inhibitor SAHA to suppress AR/PSA abundance and kill LNCaP cells. RNA-seq confirmed AR suppression at the transcriptional level and suggested multiple oncogene, cyclin, and CDK/CKI transcriptional actions to contribute to the cellular consequences. CONCLUSIONS AS-10 promotes histone acetylation as its probable primary mechanism of action to induce PCa cell-cycle arrest and apoptosis, regardless of AR and P53 status. Nevertheless, the inhibition of AR signaling through mechanisms distinct from canonical AR antagonists may hold promise for combinatorial use with androgen deprivation therapy regimens or AR-axis targeting drugs.
Collapse
Affiliation(s)
- Deepkamal N. Karelia
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Sangyub Kim
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Daniel Plano
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Arun K. Sharma
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Penn State Cancer Institute, 500 University Drive, Hershey, PA 17033, USA
| | - Cheng Jiang
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Junxuan Lu
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Penn State Cancer Institute, 500 University Drive, Hershey, PA 17033, USA
| |
Collapse
|
9
|
Ramos-Inza S, Encío I, Raza A, Sharma AK, Sanmartín C, Plano D. Design, synthesis and anticancer evaluation of novel Se-NSAID hybrid molecules: Identification of a Se-indomethacin analog as a potential therapeutic for breast cancer. Eur J Med Chem 2022; 244:114839. [DOI: 10.1016/j.ejmech.2022.114839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/04/2022]
|
10
|
Ramos-Inza S, Henriquez-Figuereo A, Moreno E, Berzosa M, Encío I, Plano D, Sanmartín C. Unveiling a New Selenocyanate as a Multitarget Candidate with Anticancer, Antileishmanial and Antibacterial Potential. Molecules 2022; 27:7477. [PMID: 36364304 PMCID: PMC9656702 DOI: 10.3390/molecules27217477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/28/2022] [Indexed: 09/02/2023] Open
Abstract
Currently, cancer, leishmaniasis and bacterial infections represent a serious public health burden worldwide. Six cinnamyl and benzodioxyl derivatives incorporating selenium (Se) as selenocyanate, diselenide, or selenide were designed and synthesized through a nucleophilic substitution and/or a reduction using hydrides. Ferrocene was also incorporated by a Friedel–Crafts acylation. All the compounds were screened in vitro for their antiproliferative, antileishmanial, and antibacterial properties. Their capacity to scavenge free radicals was also assessed as a first approach to test their antioxidant activity. Benzodioxyl derivatives 2a –b showed cytotoxicity against colon (HT-29) and lung (H1299) cancer cell lines, with IC50 values below 12 µM, and were also fairly selective when tested in nonmalignant cells. Selenocyanate compounds 1 –2a displayed potent antileishmanial activity in L. major and L. infantum , with IC50 values below 5 µM. They also exhibited antibacterial activity in six bacterial strains, notably in S. epidermidis with MIC and MBC values of 12.5 µg/mL. Ferrocene-containing selenide 2c was also identified as a potent antileishmanial agent with radical scavenging activity. Remarkably, derivative 2a with a selenocyanate moiety was found to act as a multitarget compound with antiproliferative, leishmanicidal, and antibacterial activities. Thus, the current work showed that 2a could be an appealing scaffold to design potential therapeutic drugs for multiple pathologies.
Collapse
Affiliation(s)
- Sandra Ramos-Inza
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Andreina Henriquez-Figuereo
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Institute of Tropical Health of the University of Navarra (ISTUN), University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Esther Moreno
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
- Institute of Tropical Health of the University of Navarra (ISTUN), University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Melibea Berzosa
- Institute of Tropical Health of the University of Navarra (ISTUN), University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Department of Microbiology and Parasitology, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Ignacio Encío
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
- Department of Health Sciences, Public University of Navarra, Avda. Barañain s/n, E-31008 Pamplona, Spain
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
- Institute of Tropical Health of the University of Navarra (ISTUN), University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
- Institute of Tropical Health of the University of Navarra (ISTUN), University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| |
Collapse
|
11
|
Ehudin MA, Golla U, Trivedi D, Potlakayala SD, Rudrabhatla SV, Desai D, Dovat S, Claxton D, Sharma A. Therapeutic Benefits of Selenium in Hematological Malignancies. Int J Mol Sci 2022; 23:ijms23147972. [PMID: 35887320 PMCID: PMC9323677 DOI: 10.3390/ijms23147972] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 12/14/2022] Open
Abstract
Supplementing chemotherapy and radiotherapy with selenium has been shown to have benefits against various cancers. This approach has also been shown to alleviate the side effects associated with standard cancer therapies and improve the quality of life in patients. In addition, selenium levels in patients have been correlated with various cancers and have served as a diagnostic marker to track the efficiency of treatments or to determine whether these selenium levels cause or are a result of the disease. This concise review presents a survey of the selenium-based literature, with a focus on hematological malignancies, to demonstrate the significant impact of selenium in different cancers. The anti-cancer mechanisms and signaling pathways regulated by selenium, which impart its efficacious properties, are discussed. An outlook into the relationship between selenium and cancer is highlighted to guide future cancer therapy development.
Collapse
Affiliation(s)
- Melanie A. Ehudin
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.A.E.); (S.D.)
| | - Upendarrao Golla
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (U.G.); (D.C.)
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.T.); (D.D.)
| | - Devnah Trivedi
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.T.); (D.D.)
| | - Shobha D. Potlakayala
- Department of Biological Sciences, School of Science Engineering and Technology, Penn State Harrisburg, Middletown, PA 17057, USA; (S.D.P.); (S.V.R.)
| | - Sairam V. Rudrabhatla
- Department of Biological Sciences, School of Science Engineering and Technology, Penn State Harrisburg, Middletown, PA 17057, USA; (S.D.P.); (S.V.R.)
| | - Dhimant Desai
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.T.); (D.D.)
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Sinisa Dovat
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.A.E.); (S.D.)
| | - David Claxton
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (U.G.); (D.C.)
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.T.); (D.D.)
| | - Arati Sharma
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (U.G.); (D.C.)
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.T.); (D.D.)
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Correspondence:
| |
Collapse
|
12
|
Wooten DJ, Sinha I, Sinha R. Selenium Induces Pancreatic Cancer Cell Death Alone and in Combination with Gemcitabine. Biomedicines 2022; 10:biomedicines10010149. [PMID: 35052828 PMCID: PMC8773897 DOI: 10.3390/biomedicines10010149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/24/2022] Open
Abstract
Survival rate for pancreatic cancer remains poor and newer treatments are urgently required. Selenium, an essential trace element, offers protection against several cancer types and has not been explored much against pancreatic cancer specifically in combination with known chemotherapeutic agents. The present study was designed to investigate selenium and Gemcitabine at varying doses alone and in combination in established pancreatic cancer cell lines growing in 2D as well as 3D platforms. Comparison of multi-dimensional synergy of combinations’ (MuSyc) model and highest single agent (HSA) model provided quantitative insights into how much better the combination performed than either compound tested alone in a 2D versus 3D growth of pancreatic cancer cell lines. The outcomes of the study further showed promise in combining selenium and Gemcitabine when evaluated for apoptosis, proliferation, and ENT1 protein expression, specifically in BxPC-3 pancreatic cancer cells in vitro.
Collapse
Affiliation(s)
- David J. Wooten
- Department of Physics, Penn State University, University Park, PA 16802, USA;
| | - Indu Sinha
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA;
| | - Raghu Sinha
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA;
- Correspondence:
| |
Collapse
|
13
|
Ramos-Inza S, Ruberte AC, Sanmartín C, Sharma AK, Plano D. NSAIDs: Old Acquaintance in the Pipeline for Cancer Treatment and Prevention─Structural Modulation, Mechanisms of Action, and Bright Future. J Med Chem 2021; 64:16380-16421. [PMID: 34784195 DOI: 10.1021/acs.jmedchem.1c01460] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The limitations of current chemotherapeutic drugs are still a major issue in cancer treatment. Thus, targeted multimodal therapeutic approaches need to be strategically developed to successfully control tumor growth and prevent metastatic burden. Inflammation has long been recognized as a hallmark of cancer and plays a key role in the tumorigenesis and progression of the disease. Several epidemiological, clinical, and preclinical studies have shown that traditional nonsteroidal anti-inflammatory drugs (NSAIDs) exhibit anticancer activities. This Perspective reports the most recent outcomes for the treatment and prevention of different types of cancers for several NSAIDs alone or in combination with current chemotherapeutic drugs. Furthermore, an extensive review of the most promising structural modifications is reported, such as phospho, H2S, and NO releasing-, selenium-, metal complex-, and natural product-NSAIDs, among others. We also provide a perspective about the new strategies used to obtain more efficient NSAID- or NSAID derivative- formulations for targeted delivery.
Collapse
Affiliation(s)
- Sandra Ramos-Inza
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Ana Carolina Ruberte
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| |
Collapse
|
14
|
N-Acetylcysteine Reduces the Pro-Oxidant and Inflammatory Responses during Pancreatitis and Pancreas Tumorigenesis. Antioxidants (Basel) 2021; 10:antiox10071107. [PMID: 34356340 PMCID: PMC8301003 DOI: 10.3390/antiox10071107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
Pancreatitis, an inflammation of the pancreas, appears to be a main driver of pancreatic cancer when combined with Kras mutations. In this context, the exact redox mechanisms are not clearly elucidated. Herein, we treated mice expressing a KrasG12D mutation in pancreatic acinar cells with cerulein to induce acute pancreatitis. In the presence of KrasG12D, pancreatitis triggered significantly greater redox unbalance and oxidative damages compared to control mice expressing wild-type Kras alleles. Further analyses identified the disruption in glutathione metabolism as the main redox event occurring during pancreatitis. Compared to the wild-type background, KrasG12D-bearing mice showed a greater responsiveness to treatment with a thiol-containing compound, N-acetylcysteine (NAC). Notably, NAC treatment increased the pancreatic glutathione pool, reduced systemic markers related to pancreatic and liver damages, limited the extent of pancreatic edema and fibrosis as well as reduced systemic and pancreatic oxidative damages. The protective effects of NAC were, at least, partly due to a decrease in the production of tumor necrosis factor-α (TNF-α) by acinar cells, which was concomitant with the inhibition of NF-κB(p65) nuclear translocation. Our data provide a rationale to use thiol-containing compounds as an adjuvant therapy to alleviate the severity of inflammation during pancreatitis and pancreatic tumorigenesis.
Collapse
|