1
|
Zhao J, Sun Y, Sheng X, Xu J, Dai G, He R, Jin Y, Liu Z, Xie Y, Wu T, Cao Y, Hu J, Duan C. Hypoxia-treated adipose mesenchymal stem cell-derived exosomes attenuate lumbar facet joint osteoarthritis. Mol Med 2023; 29:120. [PMID: 37670256 PMCID: PMC10478461 DOI: 10.1186/s10020-023-00709-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/26/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Lumbar facet joint osteoarthritis (LFJ OA) is a common disease, and there is still a lack of effective disease-modifying therapies. Our aim was to determine the therapeutic effect of hypoxia-treated adipose mesenchymal stem cell (ADSC)-derived exosomes (Hypo-ADSC-Exos) on the protective effect against LFJ OA. METHODS The protective effect of Hypo-ADSC-Exos against LFJ OA was examined in lumbar spinal instability (LSI)-induced LFJ OA models. Spinal pain behavioural assessments and CGRP (Calcitonin Gene-Related Peptide positive) immunofluorescence were evaluated. Cartilage degradation and subchondral bone remodelling were assessed by histological methods, immunohistochemistry, synchrotron radiation-Fourier transform infrared spectroscopy (SR-FTIR), and 3D X-ray microscope scanning. RESULTS Hypoxia enhanced the protective effect of ADSC-Exos on LFJ OA. Specifically, tail vein injection of Hypo-ADSC-Exos protected articular cartilage from degradation, as demonstrated by lower FJ OA scores of articular cartilage and less proteoglycan loss in lumbar facet joint (LFJ) cartilage than in the ADSC-Exo group, and these parameters were significantly improved compared to those in the PBS group. In addition, the levels and distribution of collagen and proteoglycan in LFJ cartilage were increased in the Hypo-ADSC-Exo group compared to the ADSC-Exo or PBS group by SR-FTIR. Furthermore, Hypo-ADSC-Exos normalized uncoupled bone remodelling and aberrant H-type vessel formation in subchondral bone and effectively reduced symptomatic spinal pain caused by LFJ OA in mice compared with those in the ADSC-Exo or PBS group. CONCLUSIONS Our results show that hypoxia is an effective method to improve the therapeutic effect of ADSC-Exos on ameliorating spinal pain and LFJ OA progression.
Collapse
Affiliation(s)
- Jinyun Zhao
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yi Sun
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xiaolong Sheng
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jiaqi Xu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Guoyu Dai
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Rundong He
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuxin Jin
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhide Liu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yong Xie
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Tianding Wu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yong Cao
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China.
- Hunan Engineering Research Center of Sports and Health, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jianzhong Hu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China.
- Hunan Engineering Research Center of Sports and Health, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Chunyue Duan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China.
- Hunan Engineering Research Center of Sports and Health, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
3
|
Chen J, Yuan Z, Tu Y, Hu W, Xie C, Ye L. Experimental and computational models to investigate intestinal drug permeability and metabolism. Xenobiotica 2023; 53:25-45. [PMID: 36779684 DOI: 10.1080/00498254.2023.2180454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Oral administration is the preferred route for drug administration that leads to better therapy compliance. The intestine plays a key role in the absorption and metabolism of oral drugs, therefore, new intestinal models are being continuously proposed, which contribute to the study of intestinal physiology, drug screening, drug side effects, and drug-drug interactions.Advances in pharmaceutical processes have produced more drug formulations, causing challenges for intestinal models. To adapt to the rapid evolution of pharmaceuticals, more intestinal models have been created. However, because of the complexity of the intestine, few models can take all aspects of the intestine into account, and some functions must be sacrificed to investigate other areas. Therefore, investigators need to choose appropriate models according to the experimental stage and other requirements to obtain the desired results.To help researchers achieve this goal, this review summarised the advantages and disadvantages of current commonly used intestinal models and discusses possible future directions, providing a better understanding of intestinal models.
Collapse
Affiliation(s)
- Jinyuan Chen
- Institute of Scientific Research, Southern Medical University, Guangzhou, P.R. China.,TCM-Integrated Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Ziyun Yuan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Yifan Tu
- Boehringer-Ingelheim, Connecticut, P.R. USA
| | - Wanyu Hu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Cong Xie
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Ling Ye
- TCM-Integrated Hospital, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
4
|
Josifovska N, Andjelic S, Lytvynchuk L, Lumi X, Dučić T, Petrovski G. Biomacromolecular Profile in Human Primary Retinal Pigment Epithelial Cells-A Study of Oxidative Stress and Autophagy by Synchrotron-Based FTIR Microspectroscopy. Biomedicines 2023; 11:biomedicines11020300. [PMID: 36830838 PMCID: PMC9952973 DOI: 10.3390/biomedicines11020300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
Synchrotron radiation-based Fourier Transform Infrared (SR-FTIR) microspectroscopy is a non-destructive and chemically sensitive technique for the rapid detection of changes in the different components of the cell's biomacromolecular profile. Reactive oxygen species and oxidative stress may cause damage to the DNA, RNA, and proteins in the retinal pigment epithelium (RPE), which can further lead to age-related macular degeneration (AMD) and visual loss in the elderly. In this study, human primary RPEs (hRPEs) were used to study AMD pathogenesis by using an established in vitro cellular model of the disease. Autophagy-a mechanism of intracellular degradation, which is altered during AMD, was studied in the hRPEs by using the autophagy inducer rapamycin and treated with the autophagy inhibitor bafilomycin A1. In addition, oxidative stress was induced by the hydrogen peroxide (H2O2) treatment of hRPEs. By using SR-FTIR microspectroscopy and multivariate analyses, the changes in the phosphate groups of nucleic acids, Amide I and II of the proteins, the carbonyl groups, and the lipid status in the hRPEs showed a significantly different pattern under oxidative stress/autophagy induction and inhibition. This biomolecular fingerprint can be evaluated in future drug discovery studies affecting autophagy and oxidative stress in AMD.
Collapse
Affiliation(s)
- Natasha Josifovska
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Oslo University Hospital, and Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, 0450 Oslo, Norway
- Correspondence:
| | - Sofija Andjelic
- Eye Hospital, University Medical Center, 1000 Ljubljana, Slovenia
| | - Lyubomyr Lytvynchuk
- Department of Ophthalmology, Justus Liebig University, University Hospital Giessen and Marburg GmbH, 35390 Giessen, Germany
- Karl Landsteiner Institute for Retinal Research and Imaging, 1030 Vienna, Austria
| | - Xhevat Lumi
- Eye Hospital, University Medical Center, 1000 Ljubljana, Slovenia
| | - Tanja Dučić
- CELLS-ALBA, Carrer de la Llum 2-26, Cerdanyola del Valles, 08290 Barcelona, Spain
| | - Goran Petrovski
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Oslo University Hospital, and Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, 0450 Oslo, Norway
- Department of Ophthalmology, University of Split School of Medicine and University Hospital Centre, 21000 Split, Croatia
| |
Collapse
|