1
|
Yu SJ, Wu KJ, Wang YS, Bae E, Chianelli F, Bambakidis N, Wang Y. Neuroprotective effects of psilocybin in a rat model of stroke. BMC Neurosci 2024; 25:49. [PMID: 39379834 PMCID: PMC11462742 DOI: 10.1186/s12868-024-00903-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Psilocybin is a psychedelic 5HT2A receptor agonist found in "magic mushrooms". Recent studies have indicated that 5HT2A agonists, such as dimethyltryptamine, given before middle cerebral artery occlusion (MCAo), improve staircase behavior, increased BDNF expression, and reduce brain infarction in stroke rats. The objective of this study is to determine the protective effect of psilocybin in cellular and animal models of stroke. METHODS Adult male and timed-pregnant Sprague-Dawley rats were used for this study. The neural protective effects of psilocybin were determined in primary rat cortical neurons and adult rats. Rats were subjected to a 60-min middle cerebral artery occlusion. Brain tissues were collected for histological and qRTPCR analysis. RESULTS Psilocybin reduced glutamate-mediated neuronal loss in rat primary cortical neuronal cultures. Psilocybin-mediated protection in culture was antagonized by the BDNF inhibitor ANA12. Pretreatment with psilocybin reduced brain infarction and neurological deficits in stroke rats. Early post-treatment with psilocybin improved locomotor behavior, upregulated the expression of MAP2 and synaptophysin, and down-regulated the expression of IBA1 in the stroke brain. ANA12 significantly attenuated psilocybin-mediated reduction in brain infarction and improvements in locomotor behavior. CONCLUSIONS Psilocybin reduced brain infarction and improved locomotor behavior in stroke rats; the protective mechanisms involve regulating BDNF expression. Our data support a novel therapeutic approach of psilocybin in stroke.
Collapse
Affiliation(s)
- Seong-Jin Yu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan.
| | - Kuo-Jen Wu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - Yu-Syuan Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Eunkyung Bae
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | | | - Nicholas Bambakidis
- Department of Neurosurgery, University Hospitals of Cleveland, Cleveland, OH, USA
| | - Yun Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
2
|
Wang P, Konja D, Singh S, Zhang B, Wang Y. Endothelial Senescence: From Macro- to Micro-Vasculature and Its Implications on Cardiovascular Health. Int J Mol Sci 2024; 25:1978. [PMID: 38396653 PMCID: PMC10889199 DOI: 10.3390/ijms25041978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Endothelial cells line at the most inner layer of blood vessels. They act to control hemostasis, arterial tone/reactivity, wound healing, tissue oxygen, and nutrient supply. With age, endothelial cells become senescent, characterized by reduced regeneration capacity, inflammation, and abnormal secretory profile. Endothelial senescence represents one of the earliest features of arterial ageing and contributes to many age-related diseases. Compared to those in arteries and veins, endothelial cells of the microcirculation exhibit a greater extent of heterogeneity. Microcirculatory endothelial senescence leads to a declined capillary density, reduced angiogenic potentials, decreased blood flow, impaired barrier properties, and hypoperfusion in a tissue or organ-dependent manner. The heterogeneous phenotypes of microvascular endothelial cells in a particular vascular bed and across different tissues remain largely unknown. Accordingly, the mechanisms underlying macro- and micro-vascular endothelial senescence vary in different pathophysiological conditions, thus offering specific target(s) for therapeutic development of senolytic drugs.
Collapse
Affiliation(s)
- Peichun Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China; (P.W.); (D.K.); (S.S.); (B.Z.)
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Daniels Konja
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China; (P.W.); (D.K.); (S.S.); (B.Z.)
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Sandeep Singh
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China; (P.W.); (D.K.); (S.S.); (B.Z.)
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Beijia Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China; (P.W.); (D.K.); (S.S.); (B.Z.)
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China; (P.W.); (D.K.); (S.S.); (B.Z.)
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
3
|
Hu J, Li P, Han H, Ji P, Zhao X, Li Z. Integrated analysis of metabolomic and transcriptomic profiling reveals the effect of Buyang Huanwu decoction on Parkinson's disease in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154755. [PMID: 36948142 DOI: 10.1016/j.phymed.2023.154755] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/28/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a common, complex, and chronic neurodegenerative disorder involved in multi-system. At present, medicine for PD has many limitations. Buyang Huanwu decoction (BHD), a famous traditional Chinese medicinal (TCM) formulae, is used in the treatment of PD clinically in China. However, the therapeutic mechanism is still unknown. PURPOSE We aimed to explore the pharmacological mechanism of BHD alleviating PD through an integrated liver metabolome and brain transcriptome analysis. METHODS The mice with PD were induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Behavioral tests and immunohistochemistry were used to evaluate the neuroprotective effects of BHD. The non-targeted metabolomics analysis was conducted to profile differentially accumulated metabolites (DAMs) in the liver using a UHPLC-Q-Exactive MS/MS method. The differentially expressed genes (DEGs) in the brain were investigated by transcriptomic analysis on an Illumina sequencing platform. The correlations of DAMs and DEGs were investigated using an integrated metabolomic and transcriptomic approach. RESULTS The results of behavioral tests and immunohistochemistry proved the alleviated effects of BHD on PD symptoms. A total of 14 and 36 DAMs were detected in the groups treated with low- (L group) and high-dose (H group) BHD respectively under the positive ion mode. Compared with the PD model group (M group), three enriched pathways including metabolic pathways, ABC transporters, and biosynthesis of amino acids were common in the L and H group. Transcriptomic analysis proved that BHD could regulate the expression of numerous genes, some of which were targeted by Ben-Ldopa such as Creb5, Gm45623, Ccer2, Cd180, Fosl2, Crip3, and Noxred1. Based on the integrated metabolomic and transcriptomic analysis, 7 metabolite-gene pairs were found in four comparisons, including C vs M, M vs P, M vs L, and M vs H, and 6 enriched pathways containing purine metabolism, glycine/serine/threonine metabolism, phenylalanine metabolism, carbon fixation in photosynthetic organisms, thiamine metabolism, and ABC transporters were overlapped. CONCLUSIONS Though the underlying pharmacological mechanism of BHD is still lacking, we provided evidence that BHD could improve dopaminergic neurons in MPTP-induced PD mice by regulating liver metabolism and brain transcriptome. The correlation between the liver and the brain was preliminarily revealed in this study.
Collapse
Affiliation(s)
- Jianran Hu
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; Department of Biological Science and Technology, Jinzhong University, Jinzhong 030619, China
| | - Ping Li
- Department of Biological Science and Technology, Jinzhong University, Jinzhong 030619, China
| | - Hongyan Han
- Department of Biological Science and Technology, Jinzhong University, Jinzhong 030619, China
| | - Pengyu Ji
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; Department of Biological Science and Technology, Jinzhong University, Jinzhong 030619, China
| | - Xin Zhao
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Zhuoyu Li
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
4
|
Shi Q, Li S, Lyu Q, Zhang S, Bai Y, Ma J. Hypoxia Inhibits Cell Cycle Progression and Cell Proliferation in Brain Microvascular Endothelial Cells via the miR-212-3p/MCM2 Axis. Int J Mol Sci 2023; 24:ijms24032788. [PMID: 36769104 PMCID: PMC9917047 DOI: 10.3390/ijms24032788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Hypoxia impairs blood-brain barrier (BBB) structure and function, causing pathophysiological changes in the context of stroke and high-altitude brain edema. Brain microvascular endothelial cells (BMECs) are major structural and functional elements of the BBB, and their exact role in hypoxia remains unknown. Here, we first deciphered the molecular events that occur in BMECs under 24 h hypoxia by whole-transcriptome sequencing assay. We found that hypoxia inhibited BMEC cell cycle progression and proliferation and downregulated minichromosome maintenance complex component 2 (Mcm2) expression. Mcm2 overexpression attenuated the inhibition of cell cycle progression and proliferation caused by hypoxia. Then, we predicted the upstream miRNAs of MCM2 through TargetScan and miRanDa and selected miR-212-3p, whose expression was significantly increased under hypoxia. Moreover, the miR-212-3p inhibitor attenuated the inhibition of cell cycle progression and cell proliferation caused by hypoxia by regulating MCM2. Taken together, these results suggest that the miR-212-3p/MCM2 axis plays an important role in BMECs under hypoxia and provide a potential target for the treatment of BBB disorder-related cerebrovascular disease.
Collapse
|
5
|
Wang G, Chen Z, Song Y, Wu H, Chen M, Lai S, Wu X. Xueshuantong injection alleviates cerebral microcirculation disorder in middle cerebral artery occlusion/reperfusion rats by suppressing inflammation via JNK mediated JAK2/STAT3 and NF-κB signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115592. [PMID: 35931304 DOI: 10.1016/j.jep.2022.115592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/17/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In the long history of traditional Chinese medicine, Panax notoginseng has been used as a key herb for the treatment of blood diseases. Brain microvessels support adequate blood circulation to maintain normal physiological function, therefore, brain microcirculation disorder is an important therapeutic target for various brain diseases. However, the role of Xueshuantong (XST) injection composed of saponins from P. Notoginseng (PNS) in the amelioration of cerebral microcirculation disorder is unclear. AIMS OF THE STUDY Cerebral microcirculation disorder and inflammation play a vital role in stroke. Capillary endothelial cells and adjacent tight junctions are fundamental to the structure and function of cerebrovascule. XST injection has been used clinically in the treatment of stroke, but no studies have reported its indication in cerebral microcirculation disorder. This study is to explore the action and mechanism of XST injection in the alleviation of cerebral microcirculation disorder in middle cerebral artery occlusion/reperfusion (MCAO/R) rats. MATERIALS AND METHODS MCAO/R rats and LPS-induced bEnd.3 cells were employed for the investigation of effect and mechanism of XST injection. Brain damages were evaluated by neurobehavioral assessment, 2, 3, 5-triphenyltetrazolium chloride (TTC) staining, hematoxylin and eosin staining (H&E), and Nissl staining. Morphology and density changes of cerebral microvessels were monitored by immunohistochemistry. Cell permeability was detected by measurement of trans-endothelial electrical resistance (TEER) and sodium fluorescein (NaF) leakage. The mRNA and protein expressions of inflammatory cytokines, tight junction proteins, adhesion molecules, Janus kinase 2 (JAK2), signal transducer and activator of transcription-3 (STAT3), inhibitor of NF-κB (IκB), nuclear factor-κB (NF-κB) and c-jun N-terminal kinase (JNK) in brain microvessels and lipopolysaccharide (LPS)-induced bEnd.3 cells were measured by real-time PCR and Western blot, respectively. RESULTS XST injection at 48 mg/kg significantly improved the neurological damage, inflammatory infiltration, and microvessel morphology, and increased microvessel density in brain of MCAO/R rats. The endothelial permeability was significantly mitigated by XST injection in LPS-induced bEnd.3 cells. Meanwhile, the tight junction proteins such as zona occludens 1 (ZO-1) and occludin were elevated remarkably in brain microvessel of MCAO/R rats and LPS-induced bEnd.3 cells. Moreover, the expression of inflammatory mediators including interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, inducible nitric oxide synthase (iNOS), cycloocygenases 2 (COX-2), vascular cellular adhesion molecule-1 (VCAM-1), matrix metalloproteinase (MMP)-2, and MMP-9 were inhibited by XST injection. In addition, XST injection suppressed the phosphorylation of JAK2, STAT3, IκB, NF-κB and JNK, which could be abolished by anisomycin, the JNK agonist. CONCLUSION XST injection improved cerebral microvescular structure damage and dysfunction in MCAO/R rats through inhibiting inflammation activated by JNK mediated JAK2/STAT3 and NF-κB signaling pathways. The novel findings may provide theoretical basis for the clinical application in the treatment of cerebral microcirculation disorder.
Collapse
Affiliation(s)
- Gaorui Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Ziyu Chen
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yingying Song
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Ming Chen
- Guangxi Key Laboratory of Comprehensive Utilization Technology of Pseudo-ginseng, Wu Zhou, China.
| | - Shusheng Lai
- Guangxi Key Laboratory of Comprehensive Utilization Technology of Pseudo-ginseng, Wu Zhou, China.
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
6
|
Wang XK, Gao C, Zhong HQ, Kong XY, Qiao R, Zhang HC, Chen BY, Gao Y, Li B. TNAP—a potential cytokine in the cerebral inflammation in spastic cerebral palsy. Front Mol Neurosci 2022; 15:926791. [PMID: 36187348 PMCID: PMC9515907 DOI: 10.3389/fnmol.2022.926791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022] Open
Abstract
Objective: Several studies have shown the significance of neuroinflammation in the pathological progress of cerebral palsy (CP). However, the etiology of CP remains poorly understood. Spastic CP is the most common form of CP, comprising 80% of all cases. Therefore, identifying the specific factors may serve to understand the etiology of spastic CP. Our research aimed to find some relevant factors through protein profiling, screening, and validation to help understand the pathogenesis of cerebral palsy. Materials and methods: In the current study, related clinical parameters were assessed in 18 children with spastic CP along with 20 healthy individuals of the same age. Blood samples of the spastic CP children and controls were analyzed with proteomics profiling to detect differentially expressed proteins. On the other hand, after hypoxic-ischemic encephalopathy (HIE) was induced in the postnatal day 7 rat pups, behavioral tests were performed followed by detection of the differentially expressed markers and inflammatory cytokines in the peripheral blood and cerebral cortex of the CP model rats by Elisa and Western blot. Independent sample t-tests, one-way analysis of variance, and the Pearson correlation were used for statistical analysis. Results: Through proteomic analysis, differentially expressed proteins were identified. Among them, tissue-nonspecific alkaline phosphatase (TNAP), the gene expression product of alkaline phosphatase (ALPL), was downregulated in spastic CP. In addition, significantly lower TNAP levels were found in the children with CP and model rats. In contrast, compared with the sham rats, the model rats demonstrated a significant increase in osteopontin and proinflammatory biomarkers in both the plasma and cerebral cortex on the ischemic side whereas serum 25 hydroxyvitamin D and IL-10 were significantly decreased. Moreover, serum TNAP level was positively correlated with serum CRP and IL-10 in model rats. Conclusion: These results suggest that TNAP is the potential molecule playing a specific and critical role in the neuroinflammation in spastic CP, which may provide a promising target for the diagnosis and treatment of spastic CP.
Collapse
Affiliation(s)
- Xiao-Kun Wang
- Research Center for Clinical Medicine, JinShan Hospital, Fudan University, Shanghai, China
| | - Chao Gao
- Department of Rehabilitation, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
- Henan Key Laboratory of Children’s Genetics and Metabolic Diseases, Zhengzhou, China
| | - He-Quan Zhong
- Research Center for Clinical Medicine, JinShan Hospital, Fudan University, Shanghai, China
| | - Xiang-Yu Kong
- Research Center for Clinical Medicine, JinShan Hospital, Fudan University, Shanghai, China
| | - Rui Qiao
- College of Acupuncture-Massage and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Yunnan, China
| | - Hui-Chun Zhang
- Department of Rehabilitation, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Bai-Yun Chen
- Department of Rehabilitation, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Yang Gao
- Department of Rehabilitation, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Bing Li
- Research Center for Clinical Medicine, JinShan Hospital, Fudan University, Shanghai, China
- *Correspondence: Bing Li https://orcid.org/0000-0001-5709-9396
| |
Collapse
|
7
|
Liu Z, Lin X, Zeng L, Lu Q, Liu P, Wang J, Liu Y, Chang Q, Wang Y, Song C, Wang F, Shi Y, Liu G, Wang Q, Wu S. Relationship between serum alkaline phosphatase and poor 3-month prognosis in acute ischemic stroke patients with preserved renal function: results from Xi'an Stroke Registry Study of China. BMC Neurol 2022; 22:249. [PMID: 35799136 PMCID: PMC9260988 DOI: 10.1186/s12883-022-02779-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 06/28/2022] [Indexed: 11/15/2022] Open
Abstract
Background In recent years, alkaline phosphatase (ALP) has been considered as one of the independent risk factors of acute ischemic stroke (AIS) and leads to worse clinical outcomes in patients with renal failure. In this study, we aim to investigate whether serum ALP level is associated with poor early-term prognosis in relationship of AIS patients with preserved renal function. Methods A prospectively collected database of AIS patients hospitalized in the Xi’an district of China from January to December, 2015 was analyzed. The demographics, serum ALP levels and stroke outcomes of all patients at 3 months were reviewed. Patients were routinely followed-up for 3 months. Serum ALP level was analyzed as a continuous variable and quintiles (Q1-Q5). Multivariate logistic regression model and a two-piecewise linear regression model were used to investigate the relationship and to determine the threshold effect regarding serum ALP levels and poor 3-month prognosis of AIS patients with preserved renal function. Results Overall, 1922 AIS patients were enrolled with 62.3% of them being men. The risk of having a poor 3-month prognosis was significantly increased in Q1, Q2, Q3 and Q5, when compared to that in Q4 being as the reference. The highest risk was noted in Q5 (odds ratio 2.21, 95% confidence interval: 1.32–3.73, P = 0.003) after being adjusted for confounders. Further analysis revealed a J-shaped curvilinear relationship between ALP levels and a poor 3-month prognosis of strokes (optimal threshold ALP level = 90 U/L). The relationship between both parameters was not significantly affected by age, sex, drinking, hypertension and leukocyte count (stratified by 10 × 109/L) (P for interaction > 0.05). Conclusions Serum ALP was noted as an independent risk factor for a poor 3-month prognosis of AIS patients with preserved renal function. ALP levels higher than 90 U/L could cause an increased risk of a poor 3-month prognosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-022-02779-y.
Collapse
Affiliation(s)
- Zhongzhong Liu
- Department of Neurology, Xi'an No.1 Hospital, The First Affiliated Hospital of Northwest University, Xi'an, 710002, China.,Department of Epidemiology and Biostatistics, School of Public Health of Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Xuemei Lin
- Department of Neurology, Xi'an No.1 Hospital, The First Affiliated Hospital of Northwest University, Xi'an, 710002, China
| | - Lingxia Zeng
- Department of Epidemiology and Biostatistics, School of Public Health of Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Qingli Lu
- Department of Neurology, Xi'an No.1 Hospital, The First Affiliated Hospital of Northwest University, Xi'an, 710002, China
| | - Pei Liu
- Department of Neurology, Xi'an No.1 Hospital, The First Affiliated Hospital of Northwest University, Xi'an, 710002, China
| | - Jing Wang
- Department of Neurology, Xi'an No.1 Hospital, The First Affiliated Hospital of Northwest University, Xi'an, 710002, China
| | - Yan Liu
- Department of Neurology, Xi'an No.1 Hospital, The First Affiliated Hospital of Northwest University, Xi'an, 710002, China
| | - Qiaoqiao Chang
- Department of Neurology, Xi'an No.1 Hospital, The First Affiliated Hospital of Northwest University, Xi'an, 710002, China
| | - Yan Wang
- Department of Neurology, Xi'an No.1 Hospital, The First Affiliated Hospital of Northwest University, Xi'an, 710002, China
| | - Chensheng Song
- Department of Neurology, Xi'an No.1 Hospital, The First Affiliated Hospital of Northwest University, Xi'an, 710002, China
| | - Fang Wang
- Department of Neurology, Xi'an No.1 Hospital, The First Affiliated Hospital of Northwest University, Xi'an, 710002, China
| | - Yaling Shi
- Department of Neurology, Xi'an No.1 Hospital, The First Affiliated Hospital of Northwest University, Xi'an, 710002, China
| | - Guozheng Liu
- Department of Neurology, Xi'an No.1 Hospital, The First Affiliated Hospital of Northwest University, Xi'an, 710002, China
| | - Qing Wang
- Department of Neurology, Xi'an No.1 Hospital, The First Affiliated Hospital of Northwest University, Xi'an, 710002, China
| | - Songdi Wu
- Department of Neurology, Xi'an No.1 Hospital, The First Affiliated Hospital of Northwest University, Xi'an, 710002, China.
| |
Collapse
|
8
|
Alkaline Phosphatase: An Old Friend as Treatment Target for Cardiovascular and Mineral Bone Disorders in Chronic Kidney Disease. Nutrients 2022; 14:nu14102124. [PMID: 35631265 PMCID: PMC9144546 DOI: 10.3390/nu14102124] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
Alkaline phosphatase (ALP) is an evolutionary conserved enzyme and widely used biomarker in clinical practice. Tissue-nonspecific alkaline phosphatase (TNALP) is one of four human isozymes that are expressed as distinct TNALP isoforms after posttranslational modifications, mainly in bone, liver, and kidney tissues. Beyond the well-known effects on bone mineralization, the bone ALP (BALP) isoforms (B/I, B1, B1x, and B2) are also involved in the pathogenesis of ectopic calcification. This narrative review summarizes the recent clinical investigations and mechanisms that link ALP and BALP to inflammation, metabolic syndrome, vascular calcification, endothelial dysfunction, fibrosis, cardiovascular disease, and mortality. The association between ALP, vitamin K, bone metabolism, and fracture risk in patients with chronic kidney disease (CKD) is also discussed. Recent advances in different pharmacological strategies are highlighted, with the potential to modulate the expression of ALP directly and indirectly in CKD–mineral and bone disorder (CKD-MBD), e.g., epigenetic modulation, phosphate binders, calcimimetics, vitamin D, and other anti-fracture treatments. We conclude that the significant evidence for ALP as a pathogenic factor and risk marker in CKD-MBD supports the inclusion of concrete treatment targets for ALP in clinical guidelines. While a target value below 120 U/L is associated with improved survival, further experimental and clinical research should explore interventional strategies with optimal risk–benefit profiles. The future holds great promise for novel drug therapies modulating ALP.
Collapse
|
9
|
Dragic M, Stekic A, Zeljkovic M, Zaric Kontic M, Mihajlovic K, Adzic M, Grkovic I, Nedeljkovic N. Altered Topographic Distribution and Enhanced Neuronal Expression of Adenosine-Metabolizing Enzymes in Rat Hippocampus and Cortex from Early to late Adulthood. Neurochem Res 2022; 47:1637-1650. [PMID: 35320461 DOI: 10.1007/s11064-022-03557-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/27/2022] [Accepted: 02/09/2022] [Indexed: 11/30/2022]
Abstract
The present study demonstrates altered topographic distribution and enhanced neuronal expression of major adenosine-metabolizing enzymes, i.e. ecto-5'-nucleotidase (eN) and tissue non-specific alkaline phosphatase (TNAP), as well as adenosine receptor subtype A2A in the hippocampus and cortex of male rats from early to late adulthood (3, 6, 12 and 15 months old males). The significant effect of age was demonstrated for the increase in the activity and the protein expression of eN and TNAP. At 15-m, enzyme histochemistry demonstrated enhanced expression of eN in synapse-rich hippocampal and cortical layers, whereas the upsurge of TNAP was observed in the hippocampal and cortical neuropil, rather than in cells and layers where two enzymes mostly reside in 3-m old brain. Furthermore, a dichotomy in A1R and A2AR expression was demonstrated in the cortex and hippocampus from early to late adulthood. Specifically, a decrease in A1R and enhancement of A2AR expression were demonstrated by immunohistochemistry, the latter being almost exclusively localized in hippocampal pyramidal and cortical superficial cell layers. We did not observe any glial upregulation of A2AR, which was common for both advanced age and chronic neurodegeneration. Taken together, the results imply that the adaptative changes in adenosine signaling occurring in neuronal elements early in life may be responsible for the later prominent glial enhancement in A2AR-mediated adenosine signaling, and neuroinflammation and neurodegeneration, which are the hallmarks of both advanced age and age-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Milorad Dragic
- Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Studentski trg 3, 11001, Belgrade, Serbia
| | - Andjela Stekic
- Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Studentski trg 3, 11001, Belgrade, Serbia
| | - Milica Zeljkovic
- Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Studentski trg 3, 11001, Belgrade, Serbia
| | - Marina Zaric Kontic
- Department for Molecular biology and Endocrinology, Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Katarina Mihajlovic
- Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Studentski trg 3, 11001, Belgrade, Serbia
| | - Marija Adzic
- Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Studentski trg 3, 11001, Belgrade, Serbia
| | - Ivana Grkovic
- Department for Molecular biology and Endocrinology, Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nadezda Nedeljkovic
- Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Studentski trg 3, 11001, Belgrade, Serbia.
| |
Collapse
|