1
|
Zhou M, Niu H, Chen R, Chen W, Cui D. Gui ShenWan prevent premature ovarian insufficiency by modulating autophagy and angiogenesis via facilitating VDR. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117955. [PMID: 38395181 DOI: 10.1016/j.jep.2024.117955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gui Shen Wan (GSW) stands out as a promising therapeutic approach for addressing Premature Ovarian Insufficiency (POI). With deep roots in traditional medicine, GSW highlights the ethnopharmacological significance of herbal interventions in addressing nuanced aspects of women's health, with a specific emphasis on ovarian functionality. Recognizing the importance of GSW in gynecological contexts resonates with a rich tradition of using botanical formulations to navigate the intricacies of reproductive health. Delving into GSW's potential for treating POI emphasizes the crucial role of ethnopharmacological insights in guiding modern research endeavors. AIM OF THE STUDY GSW is extensively utilized in gynecological disorders and has recently emerged as a potential therapeutic approach for POI. The present investigation aimed to assess the efficacy of GSW in treating POI in rats and elucidate its underlying molecular mechanisms. MATERIALS AND METHODS The study employed GSW for POI treatment in rats. GSW, prepared as pills, underwent HPLC fingerprinting for quality control. Reagents and drugs, including VCD and dehydroepiandrosterone (DHEA), were sourced from reputable providers. Eighty Sprague-Dawley rats were categorized into groups for POI induction and treatment. Ovarian tissue underwent HE staining, immunohistochemical staining, Western Blot, qRT-PCR, and vaginal secretion testing. ELISA was utilized for target molecule detection. This methodology ensures a robust and reliable experimental framework. RESULTS The results highlight a robust collaborative improvement in POI among rats subjected to combined GSW and DHEA treatment. Particularly noteworthy is the substantial enhancement in the expression of vascular regeneration-related molecules-VDR-Klotho-VEGFR-accompanied by a significant elevation in autophagy levels. Post-GSW administration, rat ovarian morphology demonstrated increased stability, hormone levels exhibited more consistent maintenance, and there was a marked reduction in inflammatory response compared to other groups (p < 0.01). Furthermore, GSW intervention resulted in a more pronounced upregulation of ovarian autophagy (p < 0.05). CONCLUSION By modulating VDR-Klotho signaling, GSW exerts regulatory control over ovarian autophagy and vascular regeneration, thereby mitigating the occurrence and progression of POI in rats.
Collapse
Affiliation(s)
- Minfeng Zhou
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1277 Liberation Avenue, 430022, Wuhan City, China
| | - Huifang Niu
- School of Food Science and Technology, Huazhong Agricultural University, 1 Lion Rock Street. Wuhan City, 430070, China
| | - Rui Chen
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1277 Liberation Avenue, 430022, Wuhan City, China.
| | - Wenmao Chen
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1277 Liberation Avenue, 430022, Wuhan City, China.
| | - Dandan Cui
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1277 Liberation Avenue, 430022, Wuhan City, China.
| |
Collapse
|
2
|
Liang Y, Wang H, Chen J, Chen L, Chen X. Rehmannioside D mitigates disease progression in rats with experimental-induced diminished ovarian reserve via Forkhead Box O1/KLOTHO axis. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2023; 27:167-176. [PMID: 36815256 PMCID: PMC9968945 DOI: 10.4196/kjpp.2023.27.2.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/22/2022] [Accepted: 09/19/2022] [Indexed: 02/24/2023]
Abstract
This study aims to explore the impact of Rehmannioside D (RD) on ovarian functions of rats with diminished ovarian reserve (DOR) and its underlying mechanisms of action. A single injection of cyclophosphamide was performed to establish a DOR rat model, and fourteen days after the injection, the rats were intragastrically administrated with RD for two weeks. Rat estrus cycles were tested using vaginal smears. Ovarian tissues were histologically evaluated, the number of primordial, mature, and atretic follicles was calculated, and the apoptotic rate of granulosa cells. Follicle-stimulating hormone (FSH), luteinizing hormone (LH), and estradiol (E2) levels were determined by ELISA assays. Protein levels of Forkhead Box O1 (FOXO1), KLOTHO, Bcl-2, and Bax were investigated in ovarian tissues of DOR rats. The binding between FOXO1 and KLOTHO was verified by ChIP assay. High-dose administration of RD into DOR rats improved their estrus cycles, increased ovarian index, enhanced the number of primordial and mature follicles, reduced the number of atretic follicle number, and ovarian granulosa cell apoptosis in addition to inhibiting FSH and LH levels and upregulating E2 expression. FOXO1 and KLOTHO were significantly suppressed in DOR rats. FOXO1 knockdown partially suppressed the protective effects of RD on DOR rats, and KLOTHO overexpression could restore RD-induced blockade of DOR development despite knocking down FOXO1. FOXO1 antibody enriched KLOTHO promoter, and the binding between them was reduced in DOR group compared to that in sham group. RD improved ovarian functions in DOR rats and diminished granulosa cell apoptosis via the FOXO1/KLOTHO axis.
Collapse
Affiliation(s)
- Yan Liang
- Department of Traditional Chinese Medicine, Maternal and Child Health Hospital of Jiangxi Province, Nanchang, Jiangxi 330006, China
| | - Huimin Wang
- Department of Traditional Chinese Medicine, Maternal and Child Health Hospital of Jiangxi Province, Nanchang, Jiangxi 330006, China
| | - Jin Chen
- Department of Traditional Chinese Medicine, Maternal and Child Health Hospital of Jiangxi Province, Nanchang, Jiangxi 330006, China
| | - Lingyan Chen
- Department of Traditional Chinese Medicine, Maternal and Child Health Hospital of Jiangxi Province, Nanchang, Jiangxi 330006, China
| | - Xiaoyong Chen
- Department of Traditional Chinese Medicine, Maternal and Child Health Hospital of Jiangxi Province, Nanchang, Jiangxi 330006, China,Correspondence Xiaoyong Chen, E-mail:
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW Women's fertility decay starts at the mid 30 s. However, the current delay of childbearing leads to ovarian aging and the need of assisted reproduction technologies (ART). Telomere biology is one of the main pathways involved in organismal aging. Thus, this review will focus on the knowledge acquired during the last 2 years about the telomere pathway and its influence on female fertility and the consequences for the newborn. RECENT FINDINGS New research on telomere biology reaffirms the relationship of telomere attrition and female infertility. Shorter maternal telomeres, which could be aggravated by external factors, underly premature ovarian aging and other complications including preeclampsia, preterm birth and idiopathic pregnancy loss. Finally, the telomere length of the fetus or the newborn is also affected by external factors, such as stress and nutrition. SUMMARY Recent evidence shows that telomeres are implicated in most processes related to female fertility, embryo development and the newborn's health. Thus, telomere length and telomerase activity may be good biomarkers for early detection of ovarian and pregnancy failures, opening the possibility to use telomere therapies to try to solve the infertility situation.
Collapse
|
4
|
Wei Y, Idrees M, Sidrat T, Joo M, Xu L, Ko J, Kong I. BOEC–Exo Addition Promotes In Vitro Maturation of Bovine Oocyte and Enhances the Developmental Competence of Early Embryos. Animals (Basel) 2022; 12:ani12040424. [PMID: 35203134 PMCID: PMC8868460 DOI: 10.3390/ani12040424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary The results of the present study proved that the addition of bovine oviductal epithelial cell derived exosomes (BOEC–Exo) to the in vitro maturation (IVM) media improved the bovine oocyte maturation and early embryo development. The addition of BOEC–Exo not only significantly enhanced the polar body exclusion, but also enhanced the expression of connexins in cumulus oocyte complexes (COCs). Likewise, the reactive oxygen species (ROS) level, protein expressions of SIRT-1, and mitochondrial membrane potential (ΔΨm) also suggested that BOEC–Exo addition to IVM media is highly beneficial for in vitro bovine oocyte maturation. Furthermore, BOEC–Exo treatment to the primary cultured bovine cumulus cells significantly attenuated apoptosis, which also showed its positive influence on the COCs. Moreover, oocytes that were matured in the presence of BOEC–Exo led to the production of a significantly higher quantity and quality of day-8 blastocysts. Additionally, the BOEC–Exo treated blastocysts had a higher implantation potential when compared with the control. Our results suggest that the addition of BOEC–Exo to IVM media significantly enhanced the percentage of oocytes maturation and improved the embryo quantity and quality. Abstract Exosomes are nano-sized vesicles with abundant nucleic acids, proteins, lipids, and other regulatory molecules. The aim of this study was to examine the effect of BOEC–Exo on bovine in vitro oocyte maturation and in vitro embryo development. We found that a 3% Exo supplementation to IVM media significantly enhanced the oocyte maturation and reduced the accumulation of ROS in MII-stage bovine oocytes. Oocyte maturation related genes (GDF9 and CPEB1) also confirmed that 3% Exo treatment to oocytes significantly (p < 0.05) enhanced the oocyte maturation. Next, we cultured bovine cumulus cells and assessed the effects of 3% Exo, which showed a reduced level of apoptotic proteins (caspase-3 and p-NF-κB protein expressions). Furthermore, we examined the gap junction (CX43 and CX37) and cumulus cells expansion related genes (HAS2, PTX3, and GREM1) in cumulus–oocyte complexes (COCs), and all those genes showed significantly (p < 0.05) higher expressions in 3% Exo-treated COCs as compared with the control group. Moreover, peroxisome proliferator-activated receptors (PPARs) and lipid metabolism-related genes (CPT1 and FABP3) were also analyzed in both the control and 3% Exo groups and the results showed significant (p < 0.05) enhancement in the lipid metabolism. Finally, the oocytes matured in the presence of 3% Exo showed a significantly higher rate of embryo development and better implantation potential. Finally, we concluded that Exo positively influenced bovine oocyte in vitro maturation and improved the early embryo’s developmental competence.
Collapse
Affiliation(s)
- Yiran Wei
- Department of Animal Science, Division of Applied Life Science, Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, Gyeongnam 52828, Korea; (Y.W.); (M.I.); (T.S.); (M.J.); (L.X.)
| | - Muhammad Idrees
- Department of Animal Science, Division of Applied Life Science, Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, Gyeongnam 52828, Korea; (Y.W.); (M.I.); (T.S.); (M.J.); (L.X.)
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Gyeongnam 52828, Korea
| | - Tabinda Sidrat
- Department of Animal Science, Division of Applied Life Science, Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, Gyeongnam 52828, Korea; (Y.W.); (M.I.); (T.S.); (M.J.); (L.X.)
| | - Myeondon Joo
- Department of Animal Science, Division of Applied Life Science, Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, Gyeongnam 52828, Korea; (Y.W.); (M.I.); (T.S.); (M.J.); (L.X.)
| | - Lianguang Xu
- Department of Animal Science, Division of Applied Life Science, Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, Gyeongnam 52828, Korea; (Y.W.); (M.I.); (T.S.); (M.J.); (L.X.)
| | - Jonghyeok Ko
- The King Kong Corp. Ltd., Gyeongsang National University, Jinju, Gyeongnam 52828, Korea;
| | - Ilkeun Kong
- Department of Animal Science, Division of Applied Life Science, Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, Gyeongnam 52828, Korea; (Y.W.); (M.I.); (T.S.); (M.J.); (L.X.)
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Gyeongnam 52828, Korea
- The King Kong Corp. Ltd., Gyeongsang National University, Jinju, Gyeongnam 52828, Korea;
- Correspondence: ; Tel.: +82-55-772-1942
| |
Collapse
|
5
|
Shibu MA, Lin YJ, Chiang CY, Lu CY, Goswami D, Sundhar N, Agarwal S, Islam MN, Lin PY, Lin SZ, Ho TJ, Tsai WT, Kuo WW, Huang CY. Novel anti-aging herbal formulation Jing Si displays pleiotropic effects against aging associated disorders. Pharmacotherapy 2022; 146:112427. [DOI: 10.1016/j.biopha.2021.112427] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/02/2021] [Accepted: 11/12/2021] [Indexed: 01/07/2023]
|
6
|
Laiva AL, O’Brien FJ, Keogh MB. Anti-Aging β-Klotho Gene-Activated Scaffold Promotes Rejuvenative Wound Healing Response in Human Adipose-Derived Stem Cells. Pharmaceuticals (Basel) 2021; 14:ph14111168. [PMID: 34832950 PMCID: PMC8619173 DOI: 10.3390/ph14111168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
Wound healing requires a tight orchestration of complex cellular events. Disruption in the cell-signaling events can severely impair healing. The application of biomaterial scaffolds has shown healing potential; however, the potential is insufficient for optimal wound maturation. This study explored the functional impact of a collagen-chondroitin sulfate scaffold functionalized with nanoparticles carrying an anti-aging gene β-Klotho on human adipose-derived stem cells (ADSCs) for rejuvenative healing applications. We studied the response in the ADSCs in three phases: (1) transcriptional activities of pluripotency factors (Oct-4, Nanog and Sox-2), proliferation marker (Ki-67), wound healing regulators (TGF-β3 and TGF-β1); (2) paracrine bioactivity of the secretome generated by the ADSCs; and (3) regeneration of basement membrane (fibronectin, laminin, and collagen IV proteins) and expression of scar-associated proteins (α-SMA and elastin proteins) towards maturation. Overall, we found that the β-Klotho gene-activated scaffold offers controlled activation of ADSCs' regenerative abilities. On day 3, the ADSCs on the gene-activated scaffold showed enhanced (2.5-fold) activation of transcription factor Oct-4 that was regulated transiently. This response was accompanied by a 3.6-fold increase in the expression of the anti-fibrotic gene TGF-β3. Through paracrine signaling, the ADSCs-laden gene-activated scaffold also controlled human endothelial angiogenesis and pro-fibrotic response in dermal fibroblasts. Towards maturation, the ADSCs-laden gene-activated scaffold further showed an enhanced regeneration of the basement membrane through increases in laminin (2.1-fold) and collagen IV (8.8-fold) deposition. The ADSCs also expressed 2-fold lower amounts of the scar-associated α-SMA protein with improved qualitative elastin matrix deposition. Collectively, we determined that the β-Klotho gene-activated scaffold possesses tremendous potential for wound healing and could advance stem cell-based therapy for rejuvenative healing applications.
Collapse
Affiliation(s)
- Ashang L. Laiva
- Tissue Engineering Research Group-Bahrain, Royal College of Surgeons in Ireland, Adliya, Manama P.O. Box 15503, Bahrain;
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, D02 YN77 Dublin, Ireland;
| | - Fergal J. O’Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, D02 YN77 Dublin, Ireland;
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| | - Michael B. Keogh
- Tissue Engineering Research Group-Bahrain, Royal College of Surgeons in Ireland, Adliya, Manama P.O. Box 15503, Bahrain;
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, D02 YN77 Dublin, Ireland;
- Correspondence:
| |
Collapse
|