1
|
Huang T, Huang X, Yin H. Deep learning methods for improving the accuracy and efficiency of pathological image analysis. Sci Prog 2025; 108:368504241306830. [PMID: 39814425 PMCID: PMC11736776 DOI: 10.1177/00368504241306830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
This study presents a novel integration of two advanced deep learning models, U-Net and EfficientNetV2, to achieve high-precision segmentation and rapid classification of pathological images. A key innovation is the development of a new heatmap generation algorithm, which leverages meticulous image preprocessing, data enhancement strategies, ensemble learning, attention mechanisms, and deep feature fusion techniques. This algorithm not only produces highly accurate and interpretatively rich heatmaps but also significantly improves the accuracy and efficiency of pathological image analysis. Unlike existing methods, our approach integrates these advanced techniques into a cohesive framework, enhancing its ability to reveal critical features in pathological images. Rigorous experimental validation demonstrated that our algorithm excels in key performance indicators such as accuracy, recall rate, and processing speed, underscoring its potential for broader applications in pathological image analysis and beyond.
Collapse
Affiliation(s)
- Tangsen Huang
- School of Communication Engineering, Hangzhou Dianzi University, Hangzhou, China
- School of Mathematics and Computer Science, Lishui University, Lishui, China
- School of Information Engineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Xingru Huang
- School of Communication Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Haibing Yin
- School of Communication Engineering, Hangzhou Dianzi University, Hangzhou, China
- School of Mathematics and Computer Science, Lishui University, Lishui, China
| |
Collapse
|
2
|
Kang S, Penaloza Aponte JD, Elashkar O, Morales JF, Waddington N, Lamb DG, Ju H, Campbell-Thompson M, Kim S. Leveraging pre-trained machine learning models for islet quantification in type 1 diabetes. J Pathol Inform 2025; 16:100406. [PMID: 39720415 PMCID: PMC11665367 DOI: 10.1016/j.jpi.2024.100406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/23/2024] [Accepted: 11/01/2024] [Indexed: 12/26/2024] Open
Abstract
Human islets display a high degree of heterogeneity in terms of size, number, architecture, and endocrine cell-type compositions. An ever-increasing number of immunohistochemistry-stained whole slide images (WSIs) are available through the online pathology database of the Network for Pancreatic Organ donors with Diabetes (nPOD) program at the University of Florida (UF). We aimed to develop an enhanced machine learning-assisted WSI analysis workflow to utilize the nPOD resource for analysis of endocrine cell heterogeneity in the natural history of type 1 diabetes (T1D) in comparison to donors without diabetes. To maximize usability, the user-friendly open-source software QuPath was selected for the main interface. The WSI data were analyzed with two pre-trained machine learning models (i.e., Segment Anything Model (SAM) and QuPath's pixel classifier), using the UF high-performance-computing cluster, HiPerGator. SAM was used to define precise endocrine cell and cell grouping boundaries (with an average quality score of 0.91 per slide), and the artificial neural network-based pixel classifier was applied to segment areas of insulin- or glucagon-stained cytoplasmic regions within each endocrine cell. An additional script was developed to automatically count CD3+ cells inside and within 20 μm of each islet perimeter to quantify the number of islets with inflammation (i.e., CD3+ T-cell infiltration). Proof-of-concept analysis was performed to test the developed workflow in 12 subjects using 24 slides. This open-source machine learning-assisted workflow enables rapid and high throughput determinations of endocrine cells, whether as single cells or within groups, across hundreds of slides. It is expected that the use of this workflow will accelerate our understanding of endocrine cell and islet heterogeneity in the context of T1D endotypes and pathogenesis.
Collapse
Affiliation(s)
- Sanghoon Kang
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, Intelligent Critical Care Center, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Jesus D. Penaloza Aponte
- Department of Pathology, Immunology, and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Omar Elashkar
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, Intelligent Critical Care Center, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Juan Francisco Morales
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, Intelligent Critical Care Center, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Nicholas Waddington
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, Intelligent Critical Care Center, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Damon G. Lamb
- Departments of Psychiatry, Neuroscience, Biomedical Engineering, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
- Malcom Randall VAMC, Gainesville, FL, USA
| | - Huiwen Ju
- NVIDIA Corporation, Santa Clara, CA, USA
| | - Martha Campbell-Thompson
- Department of Pathology, Immunology, and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Sarah Kim
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, Intelligent Critical Care Center, College of Pharmacy, University of Florida, Orlando, FL, USA
| |
Collapse
|
3
|
Udriștoiu AL, Podină N, Ungureanu BS, Constantin A, Georgescu CV, Bejinariu N, Pirici D, Burtea DE, Gruionu L, Udriștoiu S, Săftoiu A. Deep learning segmentation architectures for automatic detection of pancreatic ductal adenocarcinoma in EUS-guided fine-needle biopsy samples based on whole-slide imaging. Endosc Ultrasound 2024; 13:335-344. [PMID: 39802107 PMCID: PMC11723688 DOI: 10.1097/eus.0000000000000094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 10/27/2024] [Indexed: 01/16/2025] Open
Abstract
Background EUS-guided fine-needle biopsy is the procedure of choice for the diagnosis of pancreatic ductal adenocarcinoma (PDAC). Nevertheless, the samples obtained are small and require expertise in pathology, whereas the diagnosis is difficult in view of the scarcity of malignant cells and the important desmoplastic reaction of these tumors. With the help of artificial intelligence, the deep learning architectures produce a fast, accurate, and automated approach for PDAC image segmentation based on whole-slide imaging. Given the effectiveness of U-Net in semantic segmentation, numerous variants and improvements have emerged, specifically for whole-slide imaging segmentation. Methods In this study, a comparison of 7 U-Net architecture variants was performed on 2 different datasets of EUS-guided fine-needle biopsy samples from 2 medical centers (31 and 33 whole-slide images, respectively) with different parameters and acquisition tools. The U-Net architecture variants evaluated included some that had not been previously explored for PDAC whole-slide image segmentation. The evaluation of their performance involved calculating accuracy through the mean Dice coefficient and mean intersection over union (IoU). Results The highest segmentation accuracies were obtained using Inception U-Net architecture for both datasets. PDAC tissue was segmented with the overall average Dice coefficient of 97.82% and IoU of 0.87 for Dataset 1, respectively, overall average Dice coefficient of 95.70%, and IoU of 0.79 for Dataset 2. Also, we considered the external testing of the trained segmentation models by performing the cross evaluations between the 2 datasets. The Inception U-Net model trained on Train Dataset 1 performed with the overall average Dice coefficient of 93.12% and IoU of 0.74 on Test Dataset 2. The Inception U-Net model trained on Train Dataset 2 performed with the overall average Dice coefficient of 92.09% and IoU of 0.81 on Test Dataset 1. Conclusions The findings of this study demonstrated the feasibility of utilizing artificial intelligence for assessing PDAC segmentation in whole-slide imaging, supported by promising scores.
Collapse
Affiliation(s)
| | - Nicoleta Podină
- Department of Gastroenterology, Ponderas Academic Hospital, Bucharest, Romania
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Bogdan Silviu Ungureanu
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
- Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy Craiova, Craiova, Romania
| | - Alina Constantin
- Department of Gastroenterology, Ponderas Academic Hospital, Bucharest, Romania
| | | | - Nona Bejinariu
- REGINA MARIA Regional Laboratory, Pathological Anatomy Division, Cluj-Napoca, Romania
| | - Daniel Pirici
- Department of Histology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Daniela Elena Burtea
- Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy Craiova, Craiova, Romania
| | - Lucian Gruionu
- Faculty of Mechanics, University of Craiova, Craiova, Romania
| | - Stefan Udriștoiu
- Faculty of Automation, Computers and Electronics, University of Craiova, Craiova, Romania
| | - Adrian Săftoiu
- Department of Gastroenterology, Ponderas Academic Hospital, Bucharest, Romania
- Department of Gastroenterology and Hepatology, Elias University Emergency Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
4
|
Kavak F, Bora S, Kantarci A, Uğur A, Cagaptay S, Gokcay D, Aysal A, Pehlivanoglu B, Sagol O. Diagnosis of Pancreatic Ductal Adenocarcinoma Using Deep Learning. SENSORS (BASEL, SWITZERLAND) 2024; 24:7005. [PMID: 39517902 PMCID: PMC11548667 DOI: 10.3390/s24217005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Recent advances in artificial intelligence (AI) research, particularly in image processing technologies, have shown promising applications across various domains, including health care. There is a significant effort to use AI for the early diagnosis and detection of diseases, offering cost-effective and timely solutions to enhance patient outcomes. This study introduces a deep learning network aimed at analyzing pathology images for the accurate diagnosis of pancreatic cancer, specifically pancreatic ductal adenocarcinoma (PDAC). Utilizing a novel dataset comprised of cases diagnosed with PDAC and/or chronic pancreatitis, this study applies deep learning algorithms to assess the effectiveness and reliability of the diagnostic process. The dataset was enhanced through image duplication and the creation of a second dataset with varied dimensions, facilitating the training of advanced transfer learning models including InceptionV3, DenseNet, ResNet, VGG, EfficientNet, and a specially designed deep neural network. The study presents a convolutional neural network model, optimized for the rapid and accurate detection of pancreatic cancer, and conducts a comparative analysis with other models to select the most accurate algorithm for a decision support system. The results from Dataset 1 show that EfficientNetB0 achieved a high success rate of 92%. In Dataset 2, VGG16 was found to have high performance, with a success rate of 92%. On the other hand, ResNet50 achieved a remarkable success rate of 96% despite a moderate training time and showed high precision, recall, F1 score, and accuracy. These results provide valuable data to demonstrate and share the relevance of different deep learning models in pancreatic cancer diagnosis.
Collapse
Affiliation(s)
- Fulya Kavak
- Department of Computer Engineering, Ege University, 35040 Izmir, Turkey; (F.K.); (A.K.); (A.U.)
| | - Sebnem Bora
- Department of Computer Engineering, Ege University, 35040 Izmir, Turkey; (F.K.); (A.K.); (A.U.)
| | - Aylin Kantarci
- Department of Computer Engineering, Ege University, 35040 Izmir, Turkey; (F.K.); (A.K.); (A.U.)
| | - Aybars Uğur
- Department of Computer Engineering, Ege University, 35040 Izmir, Turkey; (F.K.); (A.K.); (A.U.)
| | - Sumru Cagaptay
- Department of Pathology, Faculty of Medicine, Dokuz Eylul University, 35220 Izmir, Turkey; (S.C.); (D.G.); (A.A.); (B.P.); (O.S.)
| | - Deniz Gokcay
- Department of Pathology, Faculty of Medicine, Dokuz Eylul University, 35220 Izmir, Turkey; (S.C.); (D.G.); (A.A.); (B.P.); (O.S.)
| | - Anıl Aysal
- Department of Pathology, Faculty of Medicine, Dokuz Eylul University, 35220 Izmir, Turkey; (S.C.); (D.G.); (A.A.); (B.P.); (O.S.)
| | - Burcin Pehlivanoglu
- Department of Pathology, Faculty of Medicine, Dokuz Eylul University, 35220 Izmir, Turkey; (S.C.); (D.G.); (A.A.); (B.P.); (O.S.)
| | - Ozgul Sagol
- Department of Pathology, Faculty of Medicine, Dokuz Eylul University, 35220 Izmir, Turkey; (S.C.); (D.G.); (A.A.); (B.P.); (O.S.)
| |
Collapse
|
5
|
Bingham V, Harewood L, McQuaid S, Craig SG, Revolta JF, Kim CS, Srivastava S, Quezada-Marín J, Humphries MP, Salto-Tellez M. Topographic analysis of pancreatic cancer by TMA and digital spatial profiling reveals biological complexity with potential therapeutic implications. Sci Rep 2024; 14:11361. [PMID: 38762572 PMCID: PMC11102543 DOI: 10.1038/s41598-024-62031-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal human malignancies. Tissue microarrays (TMA) are an established method of high throughput biomarker interrogation in tissues but may not capture histological features of cancer with potential biological relevance. Topographic TMAs (T-TMAs) representing pathophysiological hallmarks of cancer were constructed from representative, retrospective PDAC diagnostic material, including 72 individual core tissue samples. The T-TMA was interrogated with tissue hybridization-based experiments to confirm the accuracy of the topographic sampling, expression of pro-tumourigenic and immune mediators of cancer, totalling more than 750 individual biomarker analyses. A custom designed Next Generation Sequencing (NGS) panel and a spatial distribution-specific transcriptomic evaluation were also employed. The morphological choice of the pathophysiological hallmarks of cancer was confirmed by protein-specific expression. Quantitative analysis identified topography-specific patterns of expression in the IDO/TGF-β axis; with a heterogeneous relationship of inflammation and desmoplasia across hallmark areas and a general but variable protein and gene expression of c-MET. NGS results highlighted underlying genetic heterogeneity within samples, which may have a confounding influence on the expression of a particular biomarker. T-TMAs, integrated with quantitative biomarker digital scoring, are useful tools to identify hallmark specific expression of biomarkers in pancreatic cancer.
Collapse
Affiliation(s)
- Victoria Bingham
- Precision Medicine Centre of Excellence, The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, BT9 7AE, UK
| | - Louise Harewood
- Precision Medicine Centre of Excellence, The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, BT9 7AE, UK
| | - Stephen McQuaid
- Precision Medicine Centre of Excellence, The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, BT9 7AE, UK
- Cellular Pathology, Belfast Health and Social Care Trust, Belfast, Northern Ireland, UK
| | - Stephanie G Craig
- Precision Medicine Centre of Excellence, The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, BT9 7AE, UK
| | - Julia F Revolta
- Precision Medicine Centre of Excellence, The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, BT9 7AE, UK
| | - Chang S Kim
- Precision Medicine Centre of Excellence, The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, BT9 7AE, UK
| | - Shambhavi Srivastava
- Precision Medicine Centre of Excellence, The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, BT9 7AE, UK
| | - Javier Quezada-Marín
- Precision Medicine Centre of Excellence, The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, BT9 7AE, UK
| | - Matthew P Humphries
- Precision Medicine Centre of Excellence, The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, BT9 7AE, UK.
- Leeds Teaching Hospitals NHS Trust, Leeds, LS9 7TF, UK.
- University of Leeds, St James' University Hospital, Leeds, UK.
| | - Manuel Salto-Tellez
- Precision Medicine Centre of Excellence, The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, BT9 7AE, UK.
- Cellular Pathology, Belfast Health and Social Care Trust, Belfast, Northern Ireland, UK.
- Division of Molecular Pathology, The Institute for Cancer Research, London, UK.
| |
Collapse
|
6
|
Ahmed HS. BEYOND TRADITIONAL TOOLS: EXPLORING CONVOLUTIONAL NEURAL NETWORKS AS INNOVATIVE PROGNOSTIC MODELS IN PANCREATIC DUCTAL ADENOCARCINOMA. ARQUIVOS DE GASTROENTEROLOGIA 2024; 61:e23107. [PMID: 38511794 DOI: 10.1590/s0004-2803.24612023-117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/07/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive and lethal form of cancer with limited prognostic accuracy using traditional factors. This has led to the exploration of innovative prognostic models, including convolutional neural networks (CNNs), in PDAC. CNNs, a type of artificial intelligence algorithm, have shown promise in various medical applications, including image analysis and pattern recognition. Their ability to extract complex features from medical images makes them suitable for improving prognostication in PDAC. However, implementing CNNs in clinical practice poses challenges, such as data availability and interpretability. Future research should focus on multi-center studies, integrating multiple data modalities, and combining CNN outputs with biomarker panels. Collaborative efforts and patient autonomy should be considered to ensure the ethical implementation of CNN-based prognostic models. Further validation and optimisation of CNN-based models are necessary to enhance their reliability and clinical utility in PDAC prognostication. BACKGROUND •Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with limited prognostic accuracy through traditional methods. BACKGROUND •Convolutional neural networks (CNNs) are being explored for prognostic models in PDAC. BACKGROUND •They can extract complex features from images, aiding PDAC prognostication. BACKGROUND •Further validation and optimization of CNN-based models are needed for better reliability and clinical utility in PDAC.
Collapse
|
7
|
Rawlani P, Ghosh NK, Kumar A. Role of artificial intelligence in the characterization of indeterminate pancreatic head mass and its usefulness in preoperative diagnosis. Artif Intell Gastroenterol 2023; 4:48-63. [DOI: 10.35712/aig.v4.i3.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/11/2023] [Accepted: 10/08/2023] [Indexed: 12/07/2023] Open
Abstract
Artificial intelligence (AI) has been used in various fields of day-to-day life and its role in medicine is immense. Understanding of oncology has been improved with the introduction of AI which helps in diagnosis, treatment planning, management, prognosis, and follow-up. It also helps to identify high-risk groups who can be subjected to timely screening for early detection of malignant conditions. It is more important in pancreatic cancer as it is one of the major causes of cancer-related deaths worldwide and there are no specific early features (clinical and radiological) for diagnosis. With improvement in imaging modalities (computed tomography, magnetic resonance imaging, endoscopic ultrasound), most often clinicians were being challenged with lesions that were difficult to diagnose with human competence. AI has been used in various other branches of medicine to differentiate such indeterminate lesions including the thyroid gland, breast, lungs, liver, adrenal gland, kidney, etc. In the case of pancreatic cancer, the role of AI has been explored and is still ongoing. This review article will focus on how AI can be used to diagnose pancreatic cancer early or differentiate it from benign pancreatic lesions, therefore, management can be planned at an earlier stage.
Collapse
Affiliation(s)
- Palash Rawlani
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Nalini Kanta Ghosh
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Ashok Kumar
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| |
Collapse
|
8
|
Kourounis G, Elmahmudi AA, Thomson B, Hunter J, Ugail H, Wilson C. Computer image analysis with artificial intelligence: a practical introduction to convolutional neural networks for medical professionals. Postgrad Med J 2023; 99:1287-1294. [PMID: 37794609 PMCID: PMC10658730 DOI: 10.1093/postmj/qgad095] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 10/06/2023]
Abstract
Artificial intelligence tools, particularly convolutional neural networks (CNNs), are transforming healthcare by enhancing predictive, diagnostic, and decision-making capabilities. This review provides an accessible and practical explanation of CNNs for clinicians and highlights their relevance in medical image analysis. CNNs have shown themselves to be exceptionally useful in computer vision, a field that enables machines to 'see' and interpret visual data. Understanding how these models work can help clinicians leverage their full potential, especially as artificial intelligence continues to evolve and integrate into healthcare. CNNs have already demonstrated their efficacy in diverse medical fields, including radiology, histopathology, and medical photography. In radiology, CNNs have been used to automate the assessment of conditions such as pneumonia, pulmonary embolism, and rectal cancer. In histopathology, CNNs have been used to assess and classify colorectal polyps, gastric epithelial tumours, as well as assist in the assessment of multiple malignancies. In medical photography, CNNs have been used to assess retinal diseases and skin conditions, and to detect gastric and colorectal polyps during endoscopic procedures. In surgical laparoscopy, they may provide intraoperative assistance to surgeons, helping interpret surgical anatomy and demonstrate safe dissection zones. The integration of CNNs into medical image analysis promises to enhance diagnostic accuracy, streamline workflow efficiency, and expand access to expert-level image analysis, contributing to the ultimate goal of delivering further improvements in patient and healthcare outcomes.
Collapse
Affiliation(s)
- Georgios Kourounis
- NIHR Blood and Transplant Research Unit, Newcastle University and Cambridge University, Newcastle upon Tyne, NE1 7RU, United Kingdom
- Institute of Transplantation, The Freeman Hospital, Newcastle upon Tyne, NE7 7DN, United Kingdom
| | - Ali Ahmed Elmahmudi
- Faculty of Engineering and Informatics, Bradford University, Bradford, BD7 1DP, United Kingdom
| | - Brian Thomson
- Faculty of Engineering and Informatics, Bradford University, Bradford, BD7 1DP, United Kingdom
| | - James Hunter
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Hassan Ugail
- Faculty of Engineering and Informatics, Bradford University, Bradford, BD7 1DP, United Kingdom
| | - Colin Wilson
- NIHR Blood and Transplant Research Unit, Newcastle University and Cambridge University, Newcastle upon Tyne, NE1 7RU, United Kingdom
- Institute of Transplantation, The Freeman Hospital, Newcastle upon Tyne, NE7 7DN, United Kingdom
| |
Collapse
|
9
|
Abu-Khudir R, Hafsa N, Badr BE. Identifying Effective Biomarkers for Accurate Pancreatic Cancer Prognosis Using Statistical Machine Learning. Diagnostics (Basel) 2023; 13:3091. [PMID: 37835833 PMCID: PMC10572229 DOI: 10.3390/diagnostics13193091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Pancreatic cancer (PC) has one of the lowest survival rates among all major types of cancer. Consequently, it is one of the leading causes of mortality worldwide. Serum biomarkers historically correlate well with the early prognosis of post-surgical complications of PC. However, attempts to identify an effective biomarker panel for the successful prognosis of PC were almost non-existent in the current literature. The current study investigated the roles of various serum biomarkers including carbohydrate antigen 19-9 (CA19-9), chemokine (C-X-C motif) ligand 8 (CXCL-8), procalcitonin (PCT), and other relevant clinical data for identifying PC progression, classified into sepsis, recurrence, and other post-surgical complications, among PC patients. The most relevant biochemical and clinical markers for PC prognosis were identified using a random-forest-powered feature elimination method. Using this informative biomarker panel, the selected machine-learning (ML) classification models demonstrated highly accurate results for classifying PC patients into three complication groups on independent test data. The superiority of the combined biomarker panel (Max AUC-ROC = 100%) was further established over using CA19-9 features exclusively (Max AUC-ROC = 75%) for the task of classifying PC progression. This novel study demonstrates the effectiveness of the combined biomarker panel in successfully diagnosing PC progression and other relevant complications among Egyptian PC survivors.
Collapse
Affiliation(s)
- Rasha Abu-Khudir
- Chemistry Department, College of Science, King Faisal University, P.O. Box 380, Hofuf 31982, Al-Ahsa, Saudi Arabia
- Chemistry Department, Biochemistry Branch, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Noor Hafsa
- Computer Science Department, College of Computer Science and Information Technology, King Faisal University, P.O. Box 400, Hofuf 31982, Al-Ahsa, Saudi Arabia;
| | - Badr E. Badr
- Egyptian Ministry of Labor, Training and Research Department, Tanta 31512, Egypt;
- Botany Department, Microbiology Unit, Faculty of Science, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
10
|
Kriegsmann M, Kriegsmann K, Steinbuss G, Zgorzelski C, Albrecht T, Heinrich S, Farkas S, Roth W, Dang H, Hausen A, Gaida MM. Implementation of deep learning in liver pathology optimizes diagnosis of benign lesions and adenocarcinoma metastasis. Clin Transl Med 2023; 13:e1299. [PMID: 37415390 PMCID: PMC10326372 DOI: 10.1002/ctm2.1299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 05/28/2023] [Indexed: 07/08/2023] Open
Abstract
INTRODUCTION Differentiation of histologically similar structures in the liver, including anatomical structures, benign bile duct lesions, or common types of liver metastases, can be challenging with conventional histological tissue sections alone. Accurate histopathological classification is paramount for the diagnosis and adequate treatment of the disease. Deep learning algorithms have been proposed for objective and consistent assessment of digital histopathological images. MATERIALS AND METHODS In the present study, we trained and evaluated deep learning algorithms based on the EfficientNetV2 and ResNetRS architectures to discriminate between different histopathological classes. For the required dataset, specialized surgical pathologists annotated seven different histological classes, including different non-neoplastic anatomical structures, benign bile duct lesions, and liver metastases from colorectal and pancreatic adenocarcinoma in a large patient cohort. Annotation resulted in a total of 204.159 image patches, followed by discrimination analysis using our deep learning models. Model performance was evaluated on validation and test data using confusion matrices. RESULTS Evaluation of the test set based on tiles and cases revealed overall highly satisfactory prediction capability of our algorithm for the different histological classes, resulting in a tile accuracy of 89% (38 413/43 059) and case accuracy of 94% (198/211). Importantly, the separation of metastasis versus benign lesions was certainly confident on case level, confirming the classification model performed with high diagnostic accuracy. Moreover, the whole curated raw data set is made publically available. CONCLUSIONS Deep learning is a promising approach in surgical liver pathology supporting decision making in personalized medicine.
Collapse
Affiliation(s)
- Mark Kriegsmann
- Institute of PathologyHeidelberg UniversityHeidelbergGermany
- Pathology WiesbadenWiesbadenGermany
| | - Katharina Kriegsmann
- Department of HematologyOncology and RheumatologyHeidelberg UniversityHeidelbergGermany
- Laborarztpraxis Rhein‐Main MVZ GbRFrankfurt am MainFrankfurtGermany
| | - Georg Steinbuss
- Department of HematologyOncology and RheumatologyHeidelberg UniversityHeidelbergGermany
| | | | - Thomas Albrecht
- Institute of PathologyHeidelberg UniversityHeidelbergGermany
| | - Stefan Heinrich
- Department of SurgeryJGU‐MainzUniversity Medical Center MainzMainzGermany
| | - Stefan Farkas
- Department of SurgerySt. Josefs‐ HospitalWiesbadenGermany
| | - Wilfried Roth
- Institute of PathologyJGU‐MainzUniversity Medical Center MainzMainzGermany
| | - Hien Dang
- Department of SurgeryDepartment of Surgical ResearchThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Anne Hausen
- Institute of PathologyJGU‐MainzUniversity Medical Center MainzMainzGermany
| | - Matthias M. Gaida
- Institute of PathologyJGU‐MainzUniversity Medical Center MainzMainzGermany
- TRONJGU‐MainzTranslational Oncology at the University Medical CenterMainzGermany
- Research Center for ImmunotherapyJGU‐MainzUniversity Medical Center MainzMainzGermany
| |
Collapse
|
11
|
Xu J, Xin J, Shi P, Wu J, Cao Z, Feng X, Zheng N. Lymphoma Recognition in Histology Image of Gastric Mucosal Biopsy with Prototype Learning. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083432 DOI: 10.1109/embc40787.2023.10340697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Lymphomas are a group of malignant tumors developed from lymphocytes, which may occur in many organs. Therefore, accurately distinguishing lymphoma from solid tumors is of great clinical significance. Due to the strong ability of graph structure to capture the topology of the micro-environment of cells, graph convolutional networks (GCNs) have been widely used in pathological image processing. Nevertheless, the softmax classification layer of the graph convolutional models cannot drive learned representations compact enough to distinguish some types of lymphomas and solid tumors with strong morphological analogies on H&E-stained images. To alleviate this problem, a prototype learning based model is proposed, namely graph convolutional prototype network (GCPNet). Specifically, the method follows the patch-to-slide architecture first to perform patch-level classification and obtain image-level results by fusing patch-level predictions. The classification model is assembled with a graph convolutional feature extractor and prototype-based classification layer to build more robust feature representations for classification. For model training, a dynamic prototype loss is proposed to give the model different optimization priorities at different stages of training. Besides, a prototype reassignment operation is designed to prevent the model from getting stuck in local minima during optimization. Experiments are conducted on a dataset of 183 Whole slide images (WSI) of gastric mucosa biopsy. The proposed method achieved superior performance than existing methods.Clinical relevance- The work proposed a new deep learning framework tailored to lymphoma recognition on pathological image of gastric mucosal biopsy to differentiate lymphoma, adenocarcinoma and inflammation.
Collapse
|
12
|
Borys K, Schmitt YA, Nauta M, Seifert C, Krämer N, Friedrich CM, Nensa F. Explainable AI in medical imaging: An overview for clinical practitioners – Saliency-based XAI approaches. Eur J Radiol 2023; 162:110787. [PMID: 37001254 DOI: 10.1016/j.ejrad.2023.110787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023]
Abstract
Since recent achievements of Artificial Intelligence (AI) have proven significant success and promising results throughout many fields of application during the last decade, AI has also become an essential part of medical research. The improving data availability, coupled with advances in high-performance computing and innovative algorithms, has increased AI's potential in various aspects. Because AI rapidly reshapes research and promotes the development of personalized clinical care, alongside its implementation arises an urgent need for a deep understanding of its inner workings, especially in high-stake domains. However, such systems can be highly complex and opaque, limiting the possibility of an immediate understanding of the system's decisions. Regarding the medical field, a high impact is attributed to these decisions as physicians and patients can only fully trust AI systems when reasonably communicating the origin of their results, simultaneously enabling the identification of errors and biases. Explainable AI (XAI), becoming an increasingly important field of research in recent years, promotes the formulation of explainability methods and provides a rationale allowing users to comprehend the results generated by AI systems. In this paper, we investigate the application of XAI in medical imaging, addressing a broad audience, especially healthcare professionals. The content focuses on definitions and taxonomies, standard methods and approaches, advantages, limitations, and examples representing the current state of research regarding XAI in medical imaging. This paper focuses on saliency-based XAI methods, where the explanation can be provided directly on the input data (image) and which naturally are of special importance in medical imaging.
Collapse
|
13
|
Jiang J, Chao WL, Culp S, Krishna SG. Artificial Intelligence in the Diagnosis and Treatment of Pancreatic Cystic Lesions and Adenocarcinoma. Cancers (Basel) 2023; 15:2410. [PMID: 37173876 PMCID: PMC10177524 DOI: 10.3390/cancers15092410] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Pancreatic cancer is projected to become the second leading cause of cancer-related mortality in the United States by 2030. This is in part due to the paucity of reliable screening and diagnostic options for early detection. Amongst known pre-malignant pancreatic lesions, pancreatic intraepithelial neoplasia (PanIN) and intraductal papillary mucinous neoplasms (IPMNs) are the most prevalent. The current standard of care for the diagnosis and classification of pancreatic cystic lesions (PCLs) involves cross-sectional imaging studies and endoscopic ultrasound (EUS) and, when indicated, EUS-guided fine needle aspiration and cyst fluid analysis. However, this is suboptimal for the identification and risk stratification of PCLs, with accuracy of only 65-75% for detecting mucinous PCLs. Artificial intelligence (AI) is a promising tool that has been applied to improve accuracy in screening for solid tumors, including breast, lung, cervical, and colon cancer. More recently, it has shown promise in diagnosing pancreatic cancer by identifying high-risk populations, risk-stratifying premalignant lesions, and predicting the progression of IPMNs to adenocarcinoma. This review summarizes the available literature on artificial intelligence in the screening and prognostication of precancerous lesions in the pancreas, and streamlining the diagnosis of pancreatic cancer.
Collapse
Affiliation(s)
- Joanna Jiang
- Department of Internal Medicine, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Wei-Lun Chao
- Department of Computer Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Stacey Culp
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Somashekar G. Krishna
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Ohio State University Wexner Medical Ceter, Columbus, OH 43210, USA
| |
Collapse
|
14
|
Abstract
Machine learning methods have been growing in prominence across all areas of medicine. In pathology, recent advances in deep learning (DL) have enabled computational analysis of histological samples, aiding in diagnosis and characterization in multiple disease areas. In cancer, and particularly endocrine cancer, DL approaches have been shown to be useful in tasks ranging from tumor grading to gene expression prediction. This review summarizes the current state of DL research in endocrine cancer histopathology with an emphasis on experimental design, significant findings, and key limitations.
Collapse
Affiliation(s)
- Siddhi Ramesh
- Department of Medicine, Section of Hematology/Oncology, University of Chicago Medical Center, 5841 South Maryland Avenue, MC 2115, Chicago, IL 60637, USA; The University of Chicago Medicine & Biological Sciences, 5841 South Maryland Avenue, Chicago, IL, USA
| | - James M Dolezal
- Department of Medicine, Section of Hematology/Oncology, University of Chicago Medical Center, 5841 South Maryland Avenue, MC 2115, Chicago, IL 60637, USA; The University of Chicago Medicine & Biological Sciences, 5841 South Maryland Avenue, Chicago, IL, USA
| | - Alexander T Pearson
- Department of Medicine, Section of Hematology/Oncology, University of Chicago Medical Center, 5841 South Maryland Avenue, MC 2115, Chicago, IL 60637, USA; University of Chicago Comprehensive Cancer Center, Chicago, IL, USA; The University of Chicago Medicine & Biological Sciences, 5841 South Maryland Avenue, Chicago, IL, USA.
| |
Collapse
|
15
|
Kriegsmann K, Lobers F, Zgorzelski C, Kriegsmann J, Janßen C, Meliß RR, Muley T, Sack U, Steinbuss G, Kriegsmann M. Deep learning for the detection of anatomical tissue structures and neoplasms of the skin on scanned histopathological tissue sections. Front Oncol 2022; 12:1022967. [PMID: 36483044 PMCID: PMC9723465 DOI: 10.3389/fonc.2022.1022967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/24/2022] [Indexed: 01/25/2023] Open
Abstract
Basal cell carcinoma (BCC), squamous cell carcinoma (SqCC) and melanoma are among the most common cancer types. Correct diagnosis based on histological evaluation after biopsy or excision is paramount for adequate therapy stratification. Deep learning on histological slides has been suggested to complement and improve routine diagnostics, but publicly available curated and annotated data and usable models trained to distinguish common skin tumors are rare and often lack heterogeneous non-tumor categories. A total of 16 classes from 386 cases were manually annotated on scanned histological slides, 129,364 100 x 100 µm (~395 x 395 px) image tiles were extracted and split into a training, validation and test set. An EfficientV2 neuronal network was trained and optimized to classify image categories. Cross entropy loss, balanced accuracy and Matthews correlation coefficient were used for model evaluation. Image and patient data were assessed with confusion matrices. Application of the model to an external set of whole slides facilitated localization of melanoma and non-tumor tissue. Automated differentiation of BCC, SqCC, melanoma, naevi and non-tumor tissue structures was possible, and a high diagnostic accuracy was achieved in the validation (98%) and test (97%) set. In summary, we provide a curated dataset including the most common neoplasms of the skin and various anatomical compartments to enable researchers to train, validate and improve deep learning models. Automated classification of skin tumors by deep learning techniques is possible with high accuracy, facilitates tumor localization and has the potential to support and improve routine diagnostics.
Collapse
Affiliation(s)
- Katharina Kriegsmann
- Department of Hematology, Oncology and Rheumatology, Heidelberg University, Heidelberg, Germany
| | - Frithjof Lobers
- Department of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | | | - Jörg Kriegsmann
- MVZ Histology, Cytology and Molecular Diagnostics Trier, Trier, Germany,Proteopath Trier, Trier, Germany
| | - Charlotte Janßen
- Center for Industrial Mathematics (ZeTeM), University of Bremen, Bremen, Germany
| | | | - Thomas Muley
- Translational Lung Research Centre (TLRC) Heidelberg, Member of the German Centre for Lung Research (DZL), Heidelberg, Germany
| | - Ulrich Sack
- Department of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Georg Steinbuss
- Department of Hematology, Oncology and Rheumatology, Heidelberg University, Heidelberg, Germany
| | - Mark Kriegsmann
- Institute of Pathology, Heidelberg University, Heidelberg, Germany,*Correspondence: Mark Kriegsmann,
| |
Collapse
|
16
|
Huang B, Huang H, Zhang S, Zhang D, Shi Q, Liu J, Guo J. Artificial intelligence in pancreatic cancer. Theranostics 2022; 12:6931-6954. [PMID: 36276650 PMCID: PMC9576619 DOI: 10.7150/thno.77949] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/24/2022] [Indexed: 11/30/2022] Open
Abstract
Pancreatic cancer is the deadliest disease, with a five-year overall survival rate of just 11%. The pancreatic cancer patients diagnosed with early screening have a median overall survival of nearly ten years, compared with 1.5 years for those not diagnosed with early screening. Therefore, early diagnosis and early treatment of pancreatic cancer are particularly critical. However, as a rare disease, the general screening cost of pancreatic cancer is high, the accuracy of existing tumor markers is not enough, and the efficacy of treatment methods is not exact. In terms of early diagnosis, artificial intelligence technology can quickly locate high-risk groups through medical images, pathological examination, biomarkers, and other aspects, then screening pancreatic cancer lesions early. At the same time, the artificial intelligence algorithm can also be used to predict the survival time, recurrence risk, metastasis, and therapy response which could affect the prognosis. In addition, artificial intelligence is widely used in pancreatic cancer health records, estimating medical imaging parameters, developing computer-aided diagnosis systems, etc. Advances in AI applications for pancreatic cancer will require a concerted effort among clinicians, basic scientists, statisticians, and engineers. Although it has some limitations, it will play an essential role in overcoming pancreatic cancer in the foreseeable future due to its mighty computing power.
Collapse
Affiliation(s)
- Bowen Huang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Haoran Huang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Shuting Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Dingyue Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Qingya Shi
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Jianzhou Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Junchao Guo
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
17
|
MALDI-MSI: A Powerful Approach to Understand Primary Pancreatic Ductal Adenocarcinoma and Metastases. Molecules 2022; 27:molecules27154811. [PMID: 35956764 PMCID: PMC9369872 DOI: 10.3390/molecules27154811] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer-related deaths are very commonly attributed to complications from metastases to neighboring as well as distant organs. Dissociate response in the treatment of pancreatic adenocarcinoma is one of the main causes of low treatment success and low survival rates. This behavior could not be explained by transcriptomics or genomics; however, differences in the composition at the protein level could be observed. We have characterized the proteomic composition of primary pancreatic adenocarcinoma and distant metastasis directly in human tissue samples, utilizing mass spectrometry imaging. The mass spectrometry data was used to train and validate machine learning models that could distinguish both tissue entities with an accuracy above 90%. Model validation on samples from another collection yielded a correct classification of both entities. Tentative identification of the discriminative molecular features showed that collagen fragments (COL1A1, COL1A2, and COL3A1) play a fundamental role in tumor development. From the analysis of the receiver operating characteristic, we could further advance some potential targets, such as histone and histone variations, that could provide a better understanding of tumor development, and consequently, more effective treatments.
Collapse
|
18
|
Schuurmans M, Alves N, Vendittelli P, Huisman H, Hermans J. Setting the Research Agenda for Clinical Artificial Intelligence in Pancreatic Adenocarcinoma Imaging. Cancers (Basel) 2022; 14:cancers14143498. [PMID: 35884559 PMCID: PMC9316850 DOI: 10.3390/cancers14143498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers worldwide, associated with a 98% loss of life expectancy and a 30% increase in disability-adjusted life years. Image-based artificial intelligence (AI) can help improve outcomes for PDAC given that current clinical guidelines are non-uniform and lack evidence-based consensus. However, research on image-based AI for PDAC is too scattered and lacking in sufficient quality to be incorporated into clinical workflows. In this review, an international, multi-disciplinary team of the world’s leading experts in pancreatic cancer breaks down the patient pathway and pinpoints the current clinical touchpoints in each stage. The available PDAC imaging AI literature addressing each pathway stage is then rigorously analyzed, and current performance and pitfalls are identified in a comprehensive overview. Finally, the future research agenda for clinically relevant, image-driven AI in PDAC is proposed. Abstract Pancreatic ductal adenocarcinoma (PDAC), estimated to become the second leading cause of cancer deaths in western societies by 2030, was flagged as a neglected cancer by the European Commission and the United States Congress. Due to lack of investment in research and development, combined with a complex and aggressive tumour biology, PDAC overall survival has not significantly improved the past decades. Cross-sectional imaging and histopathology play a crucial role throughout the patient pathway. However, current clinical guidelines for diagnostic workup, patient stratification, treatment response assessment, and follow-up are non-uniform and lack evidence-based consensus. Artificial Intelligence (AI) can leverage multimodal data to improve patient outcomes, but PDAC AI research is too scattered and lacking in quality to be incorporated into clinical workflows. This review describes the patient pathway and derives touchpoints for image-based AI research in collaboration with a multi-disciplinary, multi-institutional expert panel. The literature exploring AI to address these touchpoints is thoroughly retrieved and analysed to identify the existing trends and knowledge gaps. The results show absence of multi-institutional, well-curated datasets, an essential building block for robust AI applications. Furthermore, most research is unimodal, does not use state-of-the-art AI techniques, and lacks reliable ground truth. Based on this, the future research agenda for clinically relevant, image-driven AI in PDAC is proposed.
Collapse
Affiliation(s)
- Megan Schuurmans
- Diagnostic Image Analysis Group, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (P.V.); (H.H.)
- Correspondence: (M.S.); (N.A.)
| | - Natália Alves
- Diagnostic Image Analysis Group, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (P.V.); (H.H.)
- Correspondence: (M.S.); (N.A.)
| | - Pierpaolo Vendittelli
- Diagnostic Image Analysis Group, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (P.V.); (H.H.)
| | - Henkjan Huisman
- Diagnostic Image Analysis Group, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (P.V.); (H.H.)
| | - John Hermans
- Department of Medical Imaging, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands;
| |
Collapse
|
19
|
Tran ML, Holm MB, Verbeke CS. Tumour Size and T-Stage in Pancreatic Cancer Resection Specimens Depend on the Pathology Examination Approach. Cancers (Basel) 2022; 14:cancers14102471. [PMID: 35626076 PMCID: PMC9139767 DOI: 10.3390/cancers14102471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 12/17/2022] Open
Abstract
In the eighth edition of the TNM classification for pancreatic ductal adenocarcinoma (PDAC), stages T1 to T3 are defined by tumour size, size measurement being deemed objective and accurate. This study investigated whether various, currently used approaches to tumour measurement result in different tumour sizes and differences in T-stage assignment. In a series of 315 resected PDAC, tumour sizes were measured as follows: macroscopically in a single or in two perpendicular planes and with or without microscopic corroboration. Comparison of the resulting tumour sizes showed that both macroscopic measurement in two planes and microscopic corroboration gave significantly different results (p < 0.001). Compared to the most simple approach (macroscopic measurement in one plane), the comprehensive approach (macroscopic measurement in two planes with microscopic corroboration) resulted in a larger tumour size in 263 (83%) cases (mean absolute size difference: 10 mm; mean relative size change: 36%). T-stage assignment differed in 142 (45%) cases between the simple and comprehensive approach and affected 87%, 38% and 48% of the cases deemed to be stage T1, T2 and T3, respectively. In conclusion, tumour size and T-stage are highly approach-dependent. Consensus on an accurate method is required to ensure comparability of these basic data.
Collapse
Affiliation(s)
- My Linh Tran
- Department of Pathology, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway; (M.L.T.); (M.B.H.)
| | - Maia Blomhoff Holm
- Department of Pathology, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway; (M.L.T.); (M.B.H.)
- Department of Pathology, Oslo University Hospital, 0379 Oslo, Norway
| | - Caroline Sophie Verbeke
- Department of Pathology, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway; (M.L.T.); (M.B.H.)
- Department of Pathology, Oslo University Hospital, 0379 Oslo, Norway
- Correspondence: ; Tel.: +47-405-578-36
| |
Collapse
|
20
|
Weis CA, Bindzus JN, Voigt J, Runz M, Hertjens S, Gaida MM, Popovic ZV, Porubsky S. Assessment of glomerular morphological patterns by deep learning algorithms. J Nephrol 2022; 35:417-427. [PMID: 34982414 PMCID: PMC8927010 DOI: 10.1007/s40620-021-01221-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 12/11/2022]
Abstract
Background Compilation of different morphological lesion signatures is characteristic of renal pathology. Previous studies have documented the potential value of artificial intelligence (AI) in recognizing relatively clear-cut glomerular structures and patterns, such as segmental or global sclerosis or mesangial hypercellularity. This study aimed to test the capacity of deep learning algorithms to recognize complex glomerular structural changes that reflect common diagnostic dilemmas in nephropathology. Methods For this purpose, we defined nine classes of glomerular morphological patterns and trained twelve convolutional neuronal network (CNN) models on these. The two-step training process was done on a first dataset defined by an expert nephropathologist (12,253 images) and a second consensus dataset (11,142 images) defined by three experts in the field. Results The efficacy of CNN training was evaluated using another set with 180 consensus images, showing convincingly good classification results (kappa-values 0.838–0.938). Furthermore, we elucidated the image areas decisive for CNN-based decision making by class activation maps. Finally, we demonstrated that the algorithm could decipher glomerular disease patterns coinciding in a single glomerulus (e.g. necrosis along with mesangial and endocapillary hypercellularity). Conclusions In summary, our model, focusing on glomerular lesions detectable by conventional microscopy, is the first sui generis to deploy deep learning as a reliable and promising tool in recognition of even discrete and/or overlapping morphological changes. Our results provide a stimulus for ongoing projects that integrate further input levels next to morphology (such as immunohistochemistry, electron microscopy, and clinical information) to develop a novel tool applicable for routine diagnostic nephropathology. Supplementary Information The online version contains supplementary material available at 10.1007/s40620-021-01221-9.
Collapse
Affiliation(s)
- Cleo-Aron Weis
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, 68167, Mannheim, Germany.
| | - Jan Niklas Bindzus
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, 68167, Mannheim, Germany
| | - Jonas Voigt
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, 68167, Mannheim, Germany
| | - Marlen Runz
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, 68167, Mannheim, Germany.,Mannheim Institute for Intelligent Systems in Medicine, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Svetlana Hertjens
- Institute of Medical Statistics and Biometry, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Matthias M Gaida
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Zoran V Popovic
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, 68167, Mannheim, Germany
| | - Stefan Porubsky
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| |
Collapse
|
21
|
Ju J, Wismans LV, Mustafa DAM, Reinders MJT, van Eijck CHJ, Stubbs AP, Li Y. Robust deep learning model for prognostic stratification of pancreatic ductal adenocarcinoma patients. iScience 2021; 24:103415. [PMID: 34901786 PMCID: PMC8637475 DOI: 10.1016/j.isci.2021.103415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/27/2021] [Accepted: 11/05/2021] [Indexed: 02/07/2023] Open
Abstract
A major challenge for treating patients with pancreatic ductal adenocarcinoma (PDAC) is the unpredictability of their prognoses due to high heterogeneity. We present Multi-Omics DEep Learning for Prognosis-correlated subtyping (MODEL-P) to identify PDAC subtypes and to predict prognoses of new patients. MODEL-P was trained on autoencoder integrated multi-omics of 146 patients with PDAC together with their survival outcome. Using MODEL-P, we identified two PDAC subtypes with distinct survival outcomes (median survival 10.1 and 22.7 months, respectively, log rank p = 1 × 10−6), which correspond to DNA damage repair and immune response. We rigorously validated MODEL-P by stratifying patients in five independent datasets into these two survival groups and achieved significant survival difference, which is superior to current practice and other subtyping schemas. We believe the subtype-specific signatures would facilitate PDAC pathogenesis discovery, and MODEL-P can provide clinicians the prognoses information in the treatment decision-making to better gauge the benefits versus the risks. We developed DL-based MODEL-P to identify prognosis-correlated PDAC subtypes The identified subtypes related to DNA damage repair and immune response processes MODEL-P stratified patients from independent datasets into distinct survival groups MODEL-P could be used in clinics to aid treatment decision-making
Collapse
Affiliation(s)
- Jie Ju
- Department of Pathology & Clinical Bioinformatics, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Leonoor V Wismans
- Department of Surgery, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Dana A M Mustafa
- Department of Pathology & Clinical Bioinformatics, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Marcel J T Reinders
- The Delft Bioinformatics Lab, Delft University of Technology, Rotterdam, the Netherlands
| | - Casper H J van Eijck
- Department of Surgery, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Andrew P Stubbs
- Department of Pathology & Clinical Bioinformatics, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Yunlei Li
- Department of Pathology & Clinical Bioinformatics, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|