1
|
Li Z, Zhang C, Wang L, Zhang Q, Dong Y, Sha X, Wang B, Zhu Z, Wang W, Wang Y, Zhou Y, Zhang Y. Chitooligosaccharides promote diabetic wound healing by mediating fibroblast proliferation and migration. Sci Rep 2025; 15:556. [PMID: 39747336 DOI: 10.1038/s41598-024-84398-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
Diabetic wounds are notoriously difficult to heal due to impaired cell repair mechanisms, reduced angiogenesis, and a heightened risk of infection. Fibroblasts play a vital role in wound healing by producing extracellular matrix (ECM) components and various growth factors, but their function is inhibited in diabetic wounds. Chitooligosaccharides (COS), intermediate products of chitosan degradation, have shown efficacy in promoting tissue repair, yet their role in diabetic wound healing remains underexplored. In a mouse model of diabetic wounds, COS treatment demonstrated substantial bioactivity in accelerating wound healing by enhancing fibroblast proliferation and migration. Additionally, COS increased collagen III deposition and angiogenesis at the wound sites. The COS also mitigated inflammatory responses by controlling leukocyte infiltration and bacterial infection. Mechanistically, COS regulated fibroblast activity via the PI3K/Akt signaling pathway, providing a novel bioactive material for chronic wound healing.
Collapse
Affiliation(s)
- Zihan Li
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
- Medical College, Nantong University, Nantong, People's Republic of China
| | - Chuwei Zhang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
- Medical College, Nantong University, Nantong, People's Republic of China
| | - Lei Wang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
- Department of Burn and Plastic Surgery, Zhongda Hospital Affiliated Southeast University, Nanjing, People's Republic of China
| | - Qingrong Zhang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military, Chongqing, People's Republic of China
| | - Yipeng Dong
- Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xinyu Sha
- Affiliated Hospital of Jiangnan University, Wuxi, People's Republic of China
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Bolin Wang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
- Medical College, Nantong University, Nantong, People's Republic of China
| | - Zhihan Zhu
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
- Medical College, Nantong University, Nantong, People's Republic of China
| | | | - Yongjun Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, People's Republic of China.
| | - Youlang Zhou
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China.
- The Hand Surgery Research Center, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, People's Republic of China.
| | - Yi Zhang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China.
| |
Collapse
|
2
|
Lv Y, Xu Y, Liu S, Zeng X, Yang B. Biochanin A Attenuates Psoriasiform Inflammation by Regulating Nrf2/HO-1 Pathway Activation and Attenuating Inflammatory Signalling. Cell Biochem Biophys 2024:10.1007/s12013-024-01595-0. [PMID: 39499389 DOI: 10.1007/s12013-024-01595-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 11/07/2024]
Abstract
Psoriasis is a long-term inflammatory skin condition marked by an overabundance of keratinocytes and the release of pro-inflammatory cytokines in the outer layer of skin. For the comprehensive management of intermediate to advanced psoriasis, innovative biological treatments have been developed. Products for the superficial therapy of mild to moderate psoriasis are still necessary, though. Trifolium pratense contains the isoflavone biochanin A (BCA), which exhibits antiviral, antioxidant, anti-carcinogenic, and anti-inflammatory properties, and helps protect the integrity and function of the endothelium. Although investigations have not shown that BCA is effective in treating psoriasis, it has been shown to slow down the breakdown of the skin barrier by regulating keratinocyte growth. We sought to clarify the basic mechanisms behind BCA's impact on psoriasis in vitro and in vivo using experimental research via regulating Nrf2/HO-1 signaling pathway. By subjecting human primary keratinocytes to psoriasis-related cytokines, psoriasis-like keratinocytes were produced. The CCK8 test was used in this investigation to assess cell viability. BCA reduced keratinocyte growth and inflammatory cascade stimulation produced by TNF-α and IL-6, according to in vitro investigations conducted on HaCaT cells. The in vivo findings showed that six days of BCA therapy significantly decreased the skin, hematological indicators, levels of NO, TBARS, histopathological, and pro-inflammatory factors of COX-2, iNOS, NF-κB pathway. It additionally influenced the protein content of pro-inflammatory cytokines such as IL-17, IL-23, IL-1β in the epidermis along with IL-6, TNF-α among the epidermis and serum. In addition, in contrast to the IMQ group, BCA improved the skin's level of Nrf2/HO-1 protein, anti-inflammatory cytokine IL-10, and antioxidant indicators like SOD, CAT, GST, GSH, GR, and Vit-C. Ultimately, our research shows that BCA was effective in treating psoriasis in pre-clinical animal models by activating the Nrf2/HO-1 pathway, leading to an increase in antioxidant and anti-inflammatory markers.
Collapse
Affiliation(s)
- Yaping Lv
- Department of Dermatology and Venereology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, Shanxi, 030032, China
| | - Yingsheng Xu
- Department of Clinical Nutrition, Ezhou Central Hospital, Ezhou, Hubei, 436000, China
| | - Songchun Liu
- Department of Clinical Nutrition, Ezhou Central Hospital, Ezhou, Hubei, 436000, China
| | - Xianjing Zeng
- General Practice Medicine, Affiliated Hospital of Jinggangshan University, Ji 'an, Jiangxi, 343000, China
| | - Bin Yang
- Department of Dermatology, Affiliated Hospital of Jinggangshan University, Ji 'an, Jiangxi, 343000, China, Jinggangshan University, Ji 'an, Jiangxi, 343009, China.
| |
Collapse
|
3
|
Jadav M, Solanki R, Patel S, Pooja D, Kulhari H. Development of thiolated xanthan gum-stearylamine conjugate based mucoadhesive system for the delivery of biochanin-A to melanoma cells. Int J Biol Macromol 2024; 257:128693. [PMID: 38092110 DOI: 10.1016/j.ijbiomac.2023.128693] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Recently, instead of creating new active compounds, scientists have been working to increase the bioavailability and residence time of existing drugs by modifying the characteristics of the delivery systems. In the present study, a novel mucoadhesive bioconjugate (SN-XG-SH) was synthesized by functionalizing a polysaccharide xanthan gum (XG) with cysteamine hydrochloride (CYS) and a lipid stearylamine (SN). FTIR, CHNS and 1H NMR studies confirmed the successful synthesis of SN-XG-SH. Mucoadhesion of the thiolated XG was enhanced and evaluated by different methods. Disulfide bond formation between thiolated XG and skin mucus enhances mucoadhesive behavior. The mucoadhesive bioconjugate was used to prepare nanoparticles for the delivery of hydrophobic biochanin-A (Bio-A) for the treatment of melanoma. The thiolated xanthan gum nanoparticles also demonstrated high drug entrapment efficiency, sustained drug release, and high storage stability. The drug loaded nanoparticles (Bio-A@TXNPs) significantly improved the cytotoxicity of Bio-A against human epidermoid cancer cells (A431 cells) by inducing apoptosis and changing mitochondrial membrane potential. In conclusion, thiolation of XG improves its mucoadhesive properties and prolongs the release of Bio-A. Thus, thiolated XG conjugate has a high potential for use as a bioadhesive agent in controlled and localised delivery of drugs in different skin diseases including melanoma.
Collapse
Affiliation(s)
- Mahima Jadav
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Raghu Solanki
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Sunita Patel
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Deep Pooja
- School of Pharmacy, National Forensic Science University, Gandhinagar, Gujarat 382007, India.
| | - Hitesh Kulhari
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India.
| |
Collapse
|
4
|
State-of-the-art advancement of surface functionalized layered double hydroxides for cell-specific targeting of therapeutics. Adv Colloid Interface Sci 2023; 314:102869. [PMID: 36933542 DOI: 10.1016/j.cis.2023.102869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/14/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Over the years, layered double hydroxides (LDHs) hold a specific position in biomedicine due to their tunable chemical composition and appropriate structural properties. However, LDHs lack adequate sensitivity for active targeting because of less active surface area and low mechanical strength in physiological conditions. The exploitation of eco-friendly materials, such as chitosan (CS), for surface engineering of LDHs, whose payloads are transferred only under certain conditions, can help develop stimuli-responsive materials owing to high biosafety and unique mechanical strength. We aim to render a well-oriented scenario toward the latest achievements of a bottom-up technology relying on the surface functionalization of LDHs to fabricate functional formulations with promoted bio-functionality and high encapsulation efficiency for various bioactives. Many efforts have been devoted to critical aspects of LDHs, including systemic biosafety and the suitability for developing multicomponent systems via integration with therapeutic modalities, which are thoroughly discussed herein. In addition, a comprehensive discussion was provided for the recent progress in the emergence of CS-coated LDHs. Finally, the challenges and future perspectives in the fabrication of efficient CS-LDHs in biomedicine are considered, with a special focus on cancer treatment.
Collapse
|
5
|
Future Trends in Biomaterials and Devices for Cells and Tissues. Int J Mol Sci 2023; 24:ijms24043309. [PMID: 36834721 PMCID: PMC9965920 DOI: 10.3390/ijms24043309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
Setting up physiologically relevant in vitro models requires realizing a proper hierarchical cellular structure, wherein the main tissue features are recapitulated [...].
Collapse
|
6
|
Erythrocyte membrane encapsulated gambogic acid nanoparticles as a therapeutic for hepatocellular carcinoma. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Felix FB, Vago JP, Beltrami VA, Araújo JMD, Grespan R, Teixeira MM, Pinho V. Biochanin A as a modulator of the inflammatory response: an updated overview and therapeutic potential. Pharmacol Res 2022; 180:106246. [PMID: 35562014 DOI: 10.1016/j.phrs.2022.106246] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/19/2022] [Accepted: 05/03/2022] [Indexed: 12/15/2022]
Abstract
Uncontrolled inflammation and failure to resolve the inflammatory response are crucial factors involved in the progress of inflammatory diseases. Current therapeutic strategies aimed at controlling excessive inflammation are effective in some cases, though they may be accompanied by severe side effects, such as immunosuppression. Phytochemicals as a therapeutic alternative can have a fundamental impact on the different stages of inflammation and its resolution. Biochanin A (BCA) is an isoflavone known for its wide range of pharmacological properties, especially its marked anti-inflammatory effects. Recent studies have provided evidence of BCA's abilities to activate events essential for resolving inflammation. In this review, we summarize the most recent findings from pre-clinical studies of the pharmacological effects of BCA on the complex signaling network associated with the onset and resolution of inflammation and BCA's potential protective functionality in several models of inflammatory diseases, such as arthritis, pulmonary disease, neuroinflammation, and metabolic disease.
Collapse
Affiliation(s)
- Franciel Batista Felix
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juliana Priscila Vago
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Vinícius Amorim Beltrami
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Renata Grespan
- Cell Migration Laboratory, Department of Physiology, Universidade Federal de Sergipe, São Cristovão, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Pinho
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
8
|
Adepu S, Ramakrishna S. Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules 2021; 26:5905. [PMID: 34641447 PMCID: PMC8512302 DOI: 10.3390/molecules26195905] [Citation(s) in RCA: 405] [Impact Index Per Article: 101.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
The drug delivery system enables the release of the active pharmaceutical ingredient to achieve a desired therapeutic response. Conventional drug delivery systems (tablets, capsules, syrups, ointments, etc.) suffer from poor bioavailability and fluctuations in plasma drug level and are unable to achieve sustained release. Without an efficient delivery mechanism, the whole therapeutic process can be rendered useless. Moreover, the drug has to be delivered at a specified controlled rate and at the target site as precisely as possible to achieve maximum efficacy and safety. Controlled drug delivery systems are developed to combat the problems associated with conventional drug delivery. There has been a tremendous evolution in controlled drug delivery systems from the past two decades ranging from macro scale and nano scale to intelligent targeted delivery. The initial part of this review provides a basic understanding of drug delivery systems with an emphasis on the pharmacokinetics of the drug. It also discusses the conventional drug delivery systems and their limitations. Further, controlled drug delivery systems are discussed in detail with the design considerations, classifications and drawings. In addition, nano-drug delivery, targeted and smart drug delivery using stimuli-responsive and intelligent biomaterials is discussed with recent key findings. The paper concludes with the challenges faced and future directions in controlled drug delivery.
Collapse
Affiliation(s)
- Shivakalyani Adepu
- Center for Nanofibers and Nanotechnology, National University of Singapore (NUS), 21 Lower Kent Ridge Rd, Singapore 119077, Singapore
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, National University of Singapore (NUS), 21 Lower Kent Ridge Rd, Singapore 119077, Singapore
| |
Collapse
|