1
|
Slaets H, Veeningen N, de Keizer PLJ, Hellings N, Hendrix S. Are immunosenescent T cells really senescent? Aging Cell 2024; 23:e14300. [PMID: 39113243 PMCID: PMC11464117 DOI: 10.1111/acel.14300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 10/11/2024] Open
Abstract
Loss of proper T-cell functioning is a feature of aging that increases the risk of developing chronic diseases. In aged individuals, highly differentiated T cells arise with a reduced expression of CD28 and CD27 and an increased expression of KLRG-1 or CD57. These cells are often referred to as immunosenescent T cells but may still be highly active and contribute to autoimmunity. Another population of T cells known as exhausted T cells arises after chronic antigen stimulation and loses its effector functions, leading to a failure to combat malignancies and viral infections. A process called cellular senescence also increases during aging, and targeting this process has proven to be fruitful against a range of age-related pathologies in animal models. Cellular senescence occurs in cells that are irreparably damaged, limiting their proliferation and typically leading to chronic secretion of pro-inflammatory factors. To develop therapies against pathologies caused by defective T-cell function, it is important to understand the differences and similarities between immunosenescence and cellular senescence. Here, we review the hallmarks of cellular senescence versus senescent and exhausted T cells and provide considerations for the development of specific therapies against age-related diseases.
Collapse
Affiliation(s)
- Helena Slaets
- Neuro‐Immune Connections and Repair Lab, Department of Immunology and InfectionBiomedical Research Institute, Hasselt UniversityDiepenbeekBelgium
- UMSC–University MS Center, Campus DiepenbeekDiepenbeekBelgium
| | - Naomi Veeningen
- Neuro‐Immune Connections and Repair Lab, Department of Immunology and InfectionBiomedical Research Institute, Hasselt UniversityDiepenbeekBelgium
- UMSC–University MS Center, Campus DiepenbeekDiepenbeekBelgium
| | - Peter L. J. de Keizer
- Center for Molecular MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Niels Hellings
- Neuro‐Immune Connections and Repair Lab, Department of Immunology and InfectionBiomedical Research Institute, Hasselt UniversityDiepenbeekBelgium
- UMSC–University MS Center, Campus DiepenbeekDiepenbeekBelgium
| | - Sven Hendrix
- Institute of Translational Medicine, Medical School HamburgHamburgGermany
| |
Collapse
|
2
|
Pacheco A, Maguire S, Qaiyum Z, Tang M, Bridger A, Lim M, Tavasolian F, Yau E, Crome SQ, Haroon N, Inman RD. Enhanced Type 1 Interferon Signature in Axial Spondyloarthritis Patients Unresponsive to Secukinumab Treatment. Arthritis Rheumatol 2024. [PMID: 39160761 DOI: 10.1002/art.42974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
OBJECTIVE Axial spondyloarthritis (axSpA) is an inflammatory disease in which overactive interleukin (IL)-17A-producing cells are implicated in a central role. Therapeutically, biologics that target IL-17A, such as secukinumab, have demonstrated improved clinical outcomes. Despite this translational success, there is a gap in understanding why some patients with axSpA do not respond to IL-17A-blocking therapy. Our study aims to discriminate immune profiles between secukinumab responders (SEC-R) and nonresponders (SEC-NR). METHODS Peripheral blood mononuclear cells were collected from 30 patients with axSpA before and 24 weeks after secukinumab treatment. Frequency of CD4+ subsets were compared between SEC-R and SEC-NR using flow cytometry. Mature CD45RO+CD45RA-CD4+ T cells were fluorescent-activated cell sorting sorted, and RNA was measured using NanoString analysis. RESULTS SEC-NR had an increased frequency of IL-17A-producing RORγt+CD4+ T cells compared to healthy controls before secukinumab treatment (P < 0.01). SEC-NR had a significant increase of CXCR3+ CD4+ T cells before secukinumab treatment compared to SEC-R (P < 0.01). Differentially expressed gene analysis revealed up-regulation of type 1 interferon (IFN)-regulated genes in SEC-NR patients compared to SEC-R patients after receiving the biologic. SEC-R patients had an up-regulated cytotoxic CD4+ T cell gene signature before receiving secukinumab treatment compared to SEC-NR patients. CONCLUSION The increased frequency of IL-17A-producing cells in SEC-NR patients suggests a larger inflammatory burden than SEC-R patients. With treatment, SEC-NR patients have a more pronounced type 1 IFN signature than SEC-R patients, suggesting a mechanism contributing to this larger inflammatory burden. The results point toward more immune heterogeneity in axSpA than has been recognized and highlights the need for precision therapeutics in this disease.
Collapse
Affiliation(s)
- Addison Pacheco
- Schroeder Arthritis Institute, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Sinead Maguire
- Schroeder Arthritis Institute, University Health Network and Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Zoya Qaiyum
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
| | - Michael Tang
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
| | - Adam Bridger
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
| | - Melissa Lim
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
| | - Fataneh Tavasolian
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
| | - Enoch Yau
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
| | - Sarah Q Crome
- University of Toronto, Ajmera Transplant Centre, University Health Network, and Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Nigil Haroon
- University of Toronto and Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Robert D Inman
- Schroeder Arthritis Institute, University Health Network, Ajmera Transplant Centre, University Health Network, Toronto Western Hospital, University Health Network, and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Hoeks C, Puijfelik FV, Koetzier SC, Rip J, Corsten CEA, Wierenga-Wolf AF, Melief MJ, Stinissen P, Smolders J, Hellings N, Broux B, van Luijn MM. Differential Runx3, Eomes, and T-bet expression subdivides MS-associated CD4 + T cells with brain-homing capacity. Eur J Immunol 2024; 54:e2350544. [PMID: 38009648 DOI: 10.1002/eji.202350544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Multiple sclerosis (MS) is a common and devastating chronic inflammatory disease of the CNS. CD4+ T cells are assumed to be the first to cross the blood-central nervous system (CNS) barrier and trigger local inflammation. Here, we explored how pathogenicity-associated effector programs define CD4+ T cell subsets with brain-homing ability in MS. Runx3- and Eomes-, but not T-bet-expressing CD4+ memory cells were diminished in the blood of MS patients. This decline reversed following natalizumab treatment and was supported by a Runx3+ Eomes+ T-bet- enrichment in cerebrospinal fluid samples of treatment-naïve MS patients. This transcription factor profile was associated with high granzyme K (GZMK) and CCR5 levels and was most prominent in Th17.1 cells (CCR6+ CXCR3+ CCR4-/dim ). Previously published CD28- CD4 T cells were characterized by a Runx3+ Eomes- T-bet+ phenotype that coincided with intermediate CCR5 and a higher granzyme B (GZMB) and perforin expression, indicating the presence of two separate subsets. Under steady-state conditions, granzyme Khigh Th17.1 cells spontaneously passed the blood-brain barrier in vitro. This was only found for other subsets including CD28- cells when using inflamed barriers. Altogether, CD4+ T cells contain small fractions with separate pathogenic features, of which Th17.1 seems to breach the blood-brain barrier as a possible early event in MS.
Collapse
Affiliation(s)
- Cindy Hoeks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Center (UMSC), Hasselt, Belgium
| | - Fabiënne van Puijfelik
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Steven C Koetzier
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jasper Rip
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Cato E A Corsten
- Department of Neurology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Annet F Wierenga-Wolf
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Marie-José Melief
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Piet Stinissen
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Center (UMSC), Hasselt, Belgium
| | - Joost Smolders
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Neurology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Niels Hellings
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Center (UMSC), Hasselt, Belgium
| | - Bieke Broux
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Center (UMSC), Hasselt, Belgium
| | - Marvin M van Luijn
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
4
|
Slaets H, Fonteyn L, Eijnde BO, Hellings N. Train your T cells: How skeletal muscles and T cells keep each other fit during aging. Brain Behav Immun 2023; 110:237-244. [PMID: 36893922 DOI: 10.1016/j.bbi.2023.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/13/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Frailty and a failing immune system lead to significant morbidities in the final years of life and bring along a significant burden on healthcare systems. The good news is that regular exercise provides an effective countermeasure for losing muscle tissue when we age while supporting proper immune system functioning. For a long time, it was assumed that exercise-induced immune responses are predominantly mediated by myeloid cells, but it has become evident that they receive important help from T lymphocytes. Skeletal muscles and T cells interact, not only in muscle pathology but also during exercise. In this review article, we provide an overview of the most important aspects of T cell senescence and discuss how these are modulated by exercise. In addition, we describe how T cells are involved in muscle regeneration and growth. A better understanding of the complex interactions between myocytes and T cells throughout all stages of life provides important insights needed to design strategies that effectively combat the wave of age-related diseases the world is currently faced with.
Collapse
Affiliation(s)
- Helena Slaets
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Lena Fonteyn
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium; SMRC - Sports Medical Research Center, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Bert O Eijnde
- SMRC - Sports Medical Research Center, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Niels Hellings
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium; UMSC - University MS Center, Campus Diepenbeek, Diepenbeek, Belgium.
| |
Collapse
|
5
|
Wang B, Hu S, Fu X, Li L. CD4
+
Cytotoxic T Lymphocytes in Cancer Immunity and Immunotherapy. Adv Biol (Weinh) 2022; 7:e2200169. [PMID: 36193961 DOI: 10.1002/adbi.202200169] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/24/2022] [Indexed: 11/05/2022]
Abstract
CD4+ T cells have the ability to differentiate into relatively specialized effector subsets after exposure to innate immune signals. The remarkable plasticity of CD4+ T cells is required to achieve immune responses in different tissues and against various pathogens. Numerous studies have shown that CD4+ T cells can play direct and indispensable roles in protective immunity by killing infected or transformed cells. Although the lineage decision of commitment to the CD4+ or CD8+ cell lineage is once thought to be inflexible, the identification of antigen-experienced CD4+ T cells with cytotoxic activity suggests the existence of unexpected plasticity for these cells. The recognition of CD4+ cytotoxic T lymphocytes (CTLs) and the mechanisms driving the differentiation of this particular cell subset create opportunities to explore the roles of these effector cells in protective immunity and immune-related pathology. CD4+ CTLs are proven to play a protective role in antiviral immunity. Here, the latest investigations on the phenotypic and functional features of CD4+ CTLs and their roles in antitumor immunity and immunotherapy are briefly reviewed.
Collapse
Affiliation(s)
- Boyu Wang
- Thoracic Surgery Laboratory Department of Thoracic Surgery Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Hubei 430030 P. R. China
| | - Shaojie Hu
- Thoracic Surgery Laboratory Department of Thoracic Surgery Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Hubei 430030 P. R. China
| | - Xiangning Fu
- Thoracic Surgery Laboratory Department of Thoracic Surgery Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Hubei 430030 P. R. China
| | - Lequn Li
- Thoracic Surgery Laboratory Department of Thoracic Surgery Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Hubei 430030 P. R. China
| |
Collapse
|
6
|
Hoeks C, Duran G, Hellings N, Broux B. When Helpers Go Above and Beyond: Development and Characterization of Cytotoxic CD4+ T Cells. Front Immunol 2022; 13:951900. [PMID: 35903098 PMCID: PMC9320319 DOI: 10.3389/fimmu.2022.951900] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/21/2022] [Indexed: 11/26/2022] Open
Abstract
Once regarded as an experimental artefact, cytotoxic CD4+ T cells (CD4 CTL) are presently recognized as a biologically relevant T cell subset with important functions in anti-viral, anti-tumor, and autoimmune responses. Despite the potentially large impact on their micro-environment, the absolute cell counts of CD4 CTL within the peripheral circulation are relatively low. With the rise of single cell analysis techniques, detection of these cells is greatly facilitated. This led to a renewed appraisal of CD4 CTL and an increased insight into their heterogeneous nature and ontogeny. In this review, we summarize the developmental path from naïve CD4+ T cells to terminally differentiated CD4 CTL, and present markers that can be used to detect or isolate CD4 CTL and their precursors. Subsets of CD4 CTL and their divergent functionalities are discussed. Finally, the importance of local cues as triggers for CD4 CTL differentiation is debated, posing the question whether CD4 CTL develop in the periphery and migrate to site of inflammation when called for, or that circulating CD4 CTL reflect cells that returned to the circulation following differentiation at the local inflammatory site they previously migrated to. Even though much remains to be learned about this intriguing T cell subset, it is clear that CD4 CTL represent interesting therapeutic targets for several pathologies.
Collapse
Affiliation(s)
- Cindy Hoeks
- Neuro Immune Connections & Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Center (UMSC), Hasselt, Belgium
| | - Gayel Duran
- Neuro Immune Connections & Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Center (UMSC), Hasselt, Belgium
| | - Niels Hellings
- Neuro Immune Connections & Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Center (UMSC), Hasselt, Belgium
| | - Bieke Broux
- Neuro Immune Connections & Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Center (UMSC), Hasselt, Belgium
- *Correspondence: Bieke Broux,
| |
Collapse
|
7
|
Single-cell transcriptomics links malignant T cells to the tumor immune landscape in cutaneous T cell lymphoma. Nat Commun 2022; 13:1158. [PMID: 35241665 PMCID: PMC8894386 DOI: 10.1038/s41467-022-28799-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Cutaneous T cell lymphoma (CTCL) represents a heterogeneous group of non-Hodgkin lymphoma distinguished by the presence of clonal malignant T cells. The heterogeneity of malignant T cells and the complex tumor microenvironment remain poorly characterized. With single-cell RNA analysis and bulk whole-exome sequencing on 19 skin lesions from 15 CTCL patients, we decipher the intra-tumor and inter-lesion diversity of CTCL patients and propose a multi-step tumor evolution model. We further establish a subtyping scheme based on the molecular features of malignant T cells and their pro-tumorigenic microenvironments: the TCyEM group, demonstrating a cytotoxic effector memory T cell phenotype, shows more M2 macrophages infiltration, while the TCM group, featured by a central memory T cell phenotype and adverse patient outcome, is infiltrated by highly exhausted CD8+ reactive T cells, B cells and Tregs with suppressive activities. Our results establish a solid basis for understanding the nature of CTCL and pave the way for future precision medicine for CTCL patients.
Collapse
|
8
|
Erens C, Van Broeckhoven J, Hoeks C, Schabbauer G, Cheng PN, Chen L, Hellings N, Broux B, Lemmens S, Hendrix S. L-Arginine Depletion Improves Spinal Cord Injury via Immunomodulation and Nitric Oxide Reduction. Biomedicines 2022; 10:biomedicines10020205. [PMID: 35203413 PMCID: PMC8869469 DOI: 10.3390/biomedicines10020205] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/03/2021] [Accepted: 01/12/2022] [Indexed: 12/30/2022] Open
Abstract
Background: Spinal cord injury (SCI) elicits robust neuroinflammation that eventually exacerbates the initial damage to the spinal cord. L-arginine is critical for the responsiveness of T cells, which are important contributors to neuroinflammation after SCI. Furthermore, L-arginine is the substrate for nitric oxide (NO) production, which is a known inducer of secondary damage. Methods: To accomplish systemic L-arginine depletion, repetitive injections of recombinant arginase-1 (rArg-I) were performed. Functional recovery and histopathological parameters were analyzed. Splenic immune responses were evaluated by flow cytometry. Pro-inflammatory gene expression and nitrite concentrations were measured. Results: We show for the first time that systemic L-arginine depletion improves locomotor recovery. Flow cytometry and immunohistological analysis showed that intraspinal T-cell infiltration was reduced by 65%, and peripheral numbers of Th1 and Th17 cells were suppressed. Moreover, rArg-I treatment reduced the intraspinal NO production by 40%. Histopathological analyses revealed a 37% and 36% decrease in the number of apoptotic neurons and neuron-macrophage/microglia contacts in the spinal cord, respectively. Conclusions: Targeting detrimental T-cell responses and NO-production via rArg-I led to a reduced neuronal cell death and an improved functional recovery. These findings indicate that L-arginine depletion holds promise as a therapeutic strategy after SCI.
Collapse
Affiliation(s)
- Céline Erens
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (C.E.); (J.V.B.); (C.H.); (N.H.); (B.B.); (S.L.)
| | - Jana Van Broeckhoven
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (C.E.); (J.V.B.); (C.H.); (N.H.); (B.B.); (S.L.)
| | - Cindy Hoeks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (C.E.); (J.V.B.); (C.H.); (N.H.); (B.B.); (S.L.)
| | - Gernot Schabbauer
- Institute for Vascular Biology, Center for Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria;
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Centre of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Paul N. Cheng
- Department Research and Development, Bio-Cancer Treatment International Limited, Hong Kong 999077, China; (P.N.C.); (L.C.)
| | - Li Chen
- Department Research and Development, Bio-Cancer Treatment International Limited, Hong Kong 999077, China; (P.N.C.); (L.C.)
| | - Niels Hellings
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (C.E.); (J.V.B.); (C.H.); (N.H.); (B.B.); (S.L.)
| | - Bieke Broux
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (C.E.); (J.V.B.); (C.H.); (N.H.); (B.B.); (S.L.)
| | - Stefanie Lemmens
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (C.E.); (J.V.B.); (C.H.); (N.H.); (B.B.); (S.L.)
| | - Sven Hendrix
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (C.E.); (J.V.B.); (C.H.); (N.H.); (B.B.); (S.L.)
- Institute for Translational Medicine, Medical School Hamburg, 20457 Hamburg, Germany
- Correspondence:
| |
Collapse
|
9
|
Lyu M, Wang S, Gao K, Wang L, Zhu X, Liu Y, Wang M, Liu X, Li B, Tian L. Dissecting the Landscape of Activated CMV-Stimulated CD4+ T Cells in Humans by Linking Single-Cell RNA-Seq With T-Cell Receptor Sequencing. Front Immunol 2021; 12:779961. [PMID: 34950144 PMCID: PMC8691692 DOI: 10.3389/fimmu.2021.779961] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/12/2021] [Indexed: 11/14/2022] Open
Abstract
CD4+ T cells are crucial in cytomegalovirus (CMV) infection, but their role in infection remains unclear. The heterogeneity and potential functions of CMVpp65-reactivated CD4+ T cell subsets isolated from human peripheral blood, as well as their potential interactions, were analyzed by single-cell RNA-seq and T cell receptor (TCR) sequencing. Tregs comprised the largest population of these reactivated cells, and analysis of Treg gene expression showed transcripts associated with both inflammatory and inhibitory functions. The detailed phenotypes of CMV-reactivated CD4+ cytotoxic T1 (CD4+ CTL1), CD4+ cytotoxic T2 (CD4+ CTL2), and recently activated CD4+ T (Tra) cells were analyzed in single cells. Assessment of the TCR repertoire of CMV-reactivated CD4+ T cells confirmed the clonal expansion of stimulated CD4+ CTL1 and CD4+ CTL2 cells, which share a large number of TCR repertoires. This study provides clues for resolving the functions of CD4+ T cell subsets and their interactions during CMV infection. The specific cell groups defined in this study can provide resources for understanding T cell responses to CMV infection.
Collapse
Affiliation(s)
- Menghua Lyu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,BGI-Shenzhen, Shenzhen, China
| | - Shiyu Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,BGI-Shenzhen, Shenzhen, China
| | - Kai Gao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,BGI-Shenzhen, Shenzhen, China
| | - Longlong Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,BGI-Shenzhen, Shenzhen, China
| | | | - Ya Liu
- BGI-Shenzhen, Shenzhen, China
| | | | - Xiao Liu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Bin Li
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lei Tian
- BGI-Shenzhen, Shenzhen, China.,Department of Neurology, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, China
| |
Collapse
|