1
|
Sherman SV, Marinacci LX, Rincon SP, Raynor EM. Case 32-2024: A 72-Year-Old Woman with Dyspnea, Dysphagia, and Dysarthria. N Engl J Med 2024; 391:1441-1450. [PMID: 39413380 DOI: 10.1056/nejmcpc2312734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Affiliation(s)
- Stephanie V Sherman
- From the Department of Medicine, Baylor College of Medicine, Houston (S.V.S.); and the Departments of Medicine (L.X.M.), Radiology (S.P.R.), and Neurology (E.M.R.), Harvard Medical School, the Departments of Medicine (L.X.M.) and Neurology (E.M.R.), Beth Israel Deaconess Medical Center, and the Department of Radiology, Massachusetts General Hospital (S.P.R.) - all in Boston
| | - Lucas X Marinacci
- From the Department of Medicine, Baylor College of Medicine, Houston (S.V.S.); and the Departments of Medicine (L.X.M.), Radiology (S.P.R.), and Neurology (E.M.R.), Harvard Medical School, the Departments of Medicine (L.X.M.) and Neurology (E.M.R.), Beth Israel Deaconess Medical Center, and the Department of Radiology, Massachusetts General Hospital (S.P.R.) - all in Boston
| | - Sandra P Rincon
- From the Department of Medicine, Baylor College of Medicine, Houston (S.V.S.); and the Departments of Medicine (L.X.M.), Radiology (S.P.R.), and Neurology (E.M.R.), Harvard Medical School, the Departments of Medicine (L.X.M.) and Neurology (E.M.R.), Beth Israel Deaconess Medical Center, and the Department of Radiology, Massachusetts General Hospital (S.P.R.) - all in Boston
| | - Elizabeth M Raynor
- From the Department of Medicine, Baylor College of Medicine, Houston (S.V.S.); and the Departments of Medicine (L.X.M.), Radiology (S.P.R.), and Neurology (E.M.R.), Harvard Medical School, the Departments of Medicine (L.X.M.) and Neurology (E.M.R.), Beth Israel Deaconess Medical Center, and the Department of Radiology, Massachusetts General Hospital (S.P.R.) - all in Boston
| |
Collapse
|
2
|
Li J, Wu X, Chu T, Tan X, Wang S, Qu R, Chen Z, Wang Z. The efficacy and safety of FcRn inhibitors in patients with myasthenia gravis: a systematic review and meta-analysis. J Neurol 2024; 271:2298-2308. [PMID: 38431900 DOI: 10.1007/s00415-024-12247-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Myasthenia gravis (MG) is an autoimmune disease that causes local or generalized muscle weakness. Complement inhibitors and targeting of the neonatal Fc receptor (FcRn) to block IgG cycling are two novel and successful mechanisms. METHODS PubMed, EMBASE, the Cochrane Library, and ClinicalTrials.gov were systematically searched to identify relevant studies published before May 18, 2023. Review Manager 5.3 software was used to assess the data. RESULTS We pooled 532 participants from six randomized controlled trials (RCTs). Compared to the placebo, the FcRn inhibitors were more efficacy in Myasthenia Gravis Activities of Daily Living (MG-ADL) (MD = - 1.69 [- 2.35, - 1.03], P < 0.00001), MG-ADL responder (RR = 2.01 [1.62, 2.48], P < 0.00001), Quantitative Myasthenia Gravis (QMG) (MD = - 2.45 [- 4.35, - 0.55], P = 0.01), Myasthenia Gravis Composite (MGC) (MD = - 2.97 [- 4.27, - 1.67], P < 0.00001), 15-item revised version of the Myasthenia Gravis Quality of Life (MGQoL15r) (MD = - 2.52 [- 3.54, - 1.50], P < 0.00001), without increasing the risk of safety. The subgroup analysis showed that efgartigimod was more effective than placebo in MG-ADL responders. Rozanolixizumab was more effective than the placebo except in QMG, and batoclimab was more effective than the placebo except in MG-ADL responder. Nipocalizumab did not show satisfactory efficacy in all outcomes. With the exception of rozanolixizumab, all drugs showed non-inferior safety profiles to placebo. CONCLUSION FcRn inhibitors have good efficacy and safety in patients with MG. Among them, efgartigimod and nipocalimab were effective without causing an increased safety risk. Rozanolixizumab, despite its superior efficacy, caused an increased incidence of adverse events. Current evidence does not suggest that nipocalimab is effective in patients with MG.
Collapse
Affiliation(s)
- Jiaxuan Li
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Xin Wu
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Tianchen Chu
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Xin Tan
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu Province, China
| | - Shixin Wang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Ruisi Qu
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Zhouqing Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| | - Zhong Wang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| |
Collapse
|
3
|
Strohl WR. Structure and function of therapeutic antibodies approved by the US FDA in 2023. Antib Ther 2024; 7:132-156. [PMID: 38617189 PMCID: PMC11011201 DOI: 10.1093/abt/tbae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 04/16/2024] Open
Abstract
In calendar year 2023, the United States Food and Drug Administration (US FDA) approved a total of 55 new molecular entities, of which 12 were in the class of therapeutic antibodies. Besides antibody protein drugs, the US FDA also approved another five non-antibody protein drugs, making the broader class of protein drugs about 31% of the total approved drugs. Among the 12 therapeutic antibodies approved by the US FDA, 8 were relatively standard IgG formats, 3 were bivalent, bispecific antibodies and 1 was a trivalent, bispecific antibody. In 2023, no new antibody-drug conjugates, immunocytokines or chimeric antigen receptor-T cells were approved. Of the approved antibodies, two targeted programmed cell death receptor-1 (PD-1) for orphan indications, two targeted CD20 for diffuse large B cell lymphoma, two targeted different receptors (B-cell maturation antigen [BCMA] and G-coupled protein receptor class C, group 5, member D [GPRC5D]) for treatment of multiple myeloma, and one each that targeted amyloid-β protofibrils for Alzheimer's disease, neonatal Fc receptor alpha-chain for myasthenia gravis, complement factor C5 for CD55 deficiency with hyper-activation of complement, angiopathic thrombosis and severe protein-losing enteropathy disease, interleukin (IL)-23p19 for severely active ulcerative colitis, IL-17A-F for plaque psoriasis and respiratory syncytial virus (RSV)-F protein for season-long RSV prophylaxis in infants.
Collapse
Affiliation(s)
- William R Strohl
- Scientific Advisor Department, BiStro Biotechnology Consulting, 1086 Tullo Farm Rd., Bridgewater, NJ 08807, USA
| |
Collapse
|
4
|
Dziadkowiak E, Baczyńska D, Waliszewska-Prosół M. MuSK Myasthenia Gravis-Potential Pathomechanisms and Treatment Directed against Specific Targets. Cells 2024; 13:556. [PMID: 38534400 DOI: 10.3390/cells13060556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disease in which autoantibodies target structures within the neuromuscular junction, affecting neuromuscular transmission. Muscle-specific tyrosine kinase receptor-associated MG (MuSK-MG) is a rare, often more severe, subtype of the disease with different pathogenesis and specific clinical features. It is characterized by a more severe clinical course, more frequent complications, and often inadequate response to treatment. Here, we review the current state of knowledge about potential pathomechanisms of the MuSK-MG and their therapeutic implications as well as ongoing research in this field, with reference to key points of immune-mediated processes involved in the background of myasthenia gravis.
Collapse
Affiliation(s)
- Edyta Dziadkowiak
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | | |
Collapse
|
5
|
Mina-Osorio P, Tran MH, Habib AA. Therapeutic Plasma Exchange Versus FcRn Inhibition in Autoimmune Disease. Transfus Med Rev 2024; 38:150767. [PMID: 37867088 DOI: 10.1016/j.tmrv.2023.150767] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 10/24/2023]
Abstract
Therapeutic plasma exchange (TPE or PLEX) is used in a broad range of autoimmune diseases, with the goal of removing autoantibodies from the circulation. A newer approach for the selective removal of immunoglobulin G (IgG) antibodies is the use of therapeutic molecules targeting the neonatal Fc receptor (FcRn). FcRn regulates IgG recycling, and its inhibition results in a marked decrease in circulating autoantibodies of the IgG subtype. The difference between FcRn inhibition and PLEX is often questioned. With anti-FcRn monoclonal antibodies (mAbs) and fragments only recently entering this space, limited data are available regarding long-term efficacy and safety. However, the biology of FcRn is well understood, and mounting evidence regarding the efficacy, safety, and potential differences among compounds in development is available, allowing us to compare against nonselective plasma protein depletion methods such as PLEX. FcRn inhibitors may have distinct advantages and disadvantages over PLEX in certain scenarios. Use of PLEX is preferred over FcRn inhibition where removal of antibodies other than IgG or when concomitant repletion of missing plasma proteins is needed for therapeutic benefit. Also, FcRn targeting has not yet been studied for use in acute flares or crisis states of IgG-mediated diseases. Compared with PLEX, FcRn inhibition is associated with less invasive access requirements, more specific removal of IgG versus other immunoglobulins without a broad impact on circulating proteins, and any impacts on other therapeutic drug levels are restricted to other mAbs. In addition, the degree of IgG reduction is similar with FcRn inhibitors compared with that afforded by PLEX. Here we describe the scientific literature regarding the use of PLEX and FcRn inhibitors in autoimmune diseases and provide an expert discussion around the potential benefits of these options in varying clinical conditions and scenarios.
Collapse
Affiliation(s)
| | - Minh-Ha Tran
- Department of Pathology, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Ali A Habib
- Department of Neurology, School of Medicine, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
6
|
Biburger M. My Name Is Legion, for We Are Many-The Complex Community of Antibody Receptors. Int J Mol Sci 2023; 24:15226. [PMID: 37894907 PMCID: PMC10607173 DOI: 10.3390/ijms242015226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Antibodies act as the central mediators of immunological defense mechanisms, therapeutic agents within clinics, and the mediators of various immune-mediated disorders [...].
Collapse
Affiliation(s)
- Markus Biburger
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany;
- FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
7
|
Dual-Targeting Polymer Nanoparticles Efficiently Deliver DNA Vaccine and Induce Robust Prophylactic Immunity against Spring Viremia of Carp Virus Infection. Microbiol Spectr 2022; 10:e0308522. [PMID: 36073822 PMCID: PMC9603200 DOI: 10.1128/spectrum.03085-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Spring viremia of carp virus (SVCV) is highly contagious and lethal to most cyprinid fish, causing serious economic losses to the carp aquaculture industry. Although DNA vaccines can generate long-term humoral and cellular immune responses, which provide protective immunity against SVCV, the major drawback of DNA vaccines is their low immunogenicity in clinical tests. Here, we construct a dual-targeted polymer DNA vaccine delivery platform (MCS-PCHG) by using mannosylated chitosan to encapsulate the poly(d,l-lactide-co-glycolide)-loaded DNA vaccine containing the heavy-chain CH3 region (CH3) of common carp IgM and the antigenic domain (G131c). The developed nanovaccine delivery platform showed good biocompatibility in vivo and in vitro. With the modification of the mannose moiety and the modification of CH3, the constructed MCS-PCHG could efficiently activate the maturation of antigen-presenting cells. Moreover, we observe significantly high level of immune-related genes expression, serum antigen-specific IgM, SVCV-neutralizing antibody titers in fish vaccinated with MCS-PCHG. Next, the protective efficacy of MCS-PCHG was further evaluated by challenge test. The highest survival rate (ca. 84%) was observed in fish vaccinated with MCS-PCHG after challenging with SVCV. This study presents a novel design for smart, dual-targeted polymer nanoparticles, which are inherently biocompatible, promising for targeted vaccine delivery. IMPORTANCE Spring viremia of carp virus (SVCV) affects global cyprinid fish farming industry, with no available commercial vaccine. Herein, we developed a dual-targeting polymer nanovaccine (MCS-PCHG) by using mannose and common carp IgM heavy chain CH3 region (CH3) as antigen presenting cell (APCs) recognition moiety, attaining the effective delivery of antigen. This dual-targeting polymer vaccine can efficiently activate the APCs, and further induce robust and durable adaptive immune response with good protection against SVCV infection. Our study provides valuable theoretical basis for developing efficient vaccine against infectious diseases in aquaculture.
Collapse
|
8
|
Duan W, Zhou H, Dong X, Li B, Li Y, Cai H, Zhou Q, Ouyang S, Yin W, Yang H. Application of lymphoplasmapheresis in the treatment of severe myasthenia gravis. Front Neurol 2022; 13:1018509. [PMID: 36303555 PMCID: PMC9595276 DOI: 10.3389/fneur.2022.1018509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background Lymphoplasmapheresis (LPE) is a treatment that combines traditional plasma exchange and lymphocyte removal technique. It has been applied to treat a variety of autoimmune diseases, but its application value in the treatment of severe myasthenia gravis (MG) is not yet clear. Therefore, the aim of this study was to investigate the efficacy and safety of LPE in severe MG. Methods Clinical data of 123 severe patients with MG (Myasthenia Gravis Foundation of America Clinical Classification, Class IV) who received LPE treatment were included in a retrospective analysis. Efficacy was evaluated by the change of Quantitative Myasthenia Gravis score (QMGS) before and after treatment. Univariate and multivariate logistic regression analysis was used to explore clinical factors affecting efficacy. Results A total of 220 replacements were performed in 123 patients, with an average of 1.79 replacements per patient. The overall safety of LPE was good, and no serious adverse reactions occurred. After treatment, the mean QMGS of patients decreased significantly, from 23.40 ± 4.25 points before treatment to 17.93 ± 5.61 points after treatment, a decrease of 5.47 ± 4.16 points. 75.6% of patients experienced remission of clinical symptoms. During a 2-month follow-up of 64 patients, a progressive improvement in QMGS was found. Each muscle group involved in MG responded well to LPE treatment. In addition, LPE significantly reduced the levels of AChR-Ab and inflammatory cytokines in patients. Age ≥ 50 years and co-infection were unfavorable factors affecting the efficacy. Conclusions In this study cohort, LPE is safe for the treatment of severe MG and achieves good treatment outcome with fewer replacements. In patients with MG, the avoidance and timely control of infection are necessary. Our study provides a potential new treatment option for severe MG.
Collapse
Affiliation(s)
- Weiwei Duan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaohua Dong
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bijuan Li
- Department of Blood Transfusion, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Haobing Cai
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Song Ouyang
- Department of Neurology, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Weifan Yin
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Huan Yang
| |
Collapse
|
9
|
Lekova E, Zelek WM, Gower D, Spitzfaden C, Osuch IH, John-Morris E, Stach L, Gormley D, Sanderson A, Bridges A, Wear ER, Petit-Frere S, Burden MN, Priest R, Wattam T, Kitchen SJ, Feeney M, Davis S, Morgan BP, Nichols EM. Discovery of functionally distinct anti-C7 monoclonal antibodies and stratification of anti-nicotinic AChR positive Myasthenia Gravis patients. Front Immunol 2022; 13:968206. [PMID: 36148231 PMCID: PMC9486540 DOI: 10.3389/fimmu.2022.968206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Myasthenia Gravis (MG) is mediated by autoantibodies against acetylcholine receptors that cause loss of the receptors in the neuromuscular junction. Eculizumab, a C5-inhibitor, is the only approved treatment for MG that mechanistically addresses complement-mediated loss of nicotinic acetylcholine receptors. It is an expensive drug and was approved despite missing the primary efficacy endpoint in the Phase 3 REGAIN study. There are two observations to highlight. Firstly, further C5 inhibitors are in clinical development, but other terminal pathway proteins, such as C7, have been relatively understudied as therapeutic targets, despite the potential for lower and less frequent dosing. Secondly, given the known heterogenous mechanisms of action of autoantibodies in MG, effective patient stratification in the REGAIN trial may have provided more favorable efficacy readouts. We investigated C7 as a target and assessed the in vitro function, binding epitopes and mechanism of action of three mAbs against C7. We found the mAbs were human, cynomolgus monkey and/or rat cross-reactive and each had a distinct, novel mechanism of C7 inhibition. TPP1820 was effective in preventing experimental MG in rats in both prophylactic and therapeutic dosing regimens. To enable identification of MG patients that are likely to respond to C7 inhibition, we developed a patient stratification assay and showed in a small cohort of MG patients (n=19) that 63% had significant complement activation and C7-dependent loss of AChRs in this in vitro set up. This study provides validation of C7 as a target for treatment of MG and provides a means of identifying patients likely to respond to anti-C7 therapy based on complement-activating properties of patient autoantibodies.
Collapse
Affiliation(s)
- Eleonora Lekova
- Immunology Research Unit, GlaxoSmithKline Research & Development (GSK R&D), Stevenage, United Kingdom
| | - Wioleta M. Zelek
- Division of Infection and Immunity and Dementia Research Institute, Systems Immunity Research Institute, School of Medicine, Cardiff University, Wales, United Kingdom
| | - David Gower
- Medicinal Science and Technology, Biopharm Discovery, GlaxoSmithKline Research & Development (GSK R&D), Stevenage, United Kingdom
| | - Claus Spitzfaden
- Medicines, Science and Technology, Protein Cellular and Structural Sciences (PCSS) Structural and Biophysical Sciences, GlaxoSmithKline Research & Development (GSK R&D), Stevenage, United Kingdom
| | - Isabelle H. Osuch
- Immunology Research Unit, GlaxoSmithKline Research & Development (GSK R&D), Stevenage, United Kingdom
| | - Elen John-Morris
- Immunology Research Unit, GlaxoSmithKline Research & Development (GSK R&D), Stevenage, United Kingdom
| | - Lasse Stach
- Medicinal Science and Technology, Biopharm Discovery, GlaxoSmithKline Research & Development (GSK R&D), Stevenage, United Kingdom
| | - Darren Gormley
- Immunology Research Unit, GlaxoSmithKline Research & Development (GSK R&D), Stevenage, United Kingdom
| | - Andrew Sanderson
- Medicines, Science and Technology, Protein Cellular and Structural Sciences (PCSS) Protein and Cellular Sciences, GlaxoSmithKline Research & Development (GSK R&D), Stevenage, United Kingdom
| | - Angela Bridges
- Medicines, Science and Technology, Protein Cellular and Structural Sciences (PCSS) Protein and Cellular Sciences, GlaxoSmithKline Research & Development (GSK R&D), Stevenage, United Kingdom
| | - Elizabeth R. Wear
- Immunology Research Unit, GlaxoSmithKline Research & Development (GSK R&D), Stevenage, United Kingdom
| | - Sebastien Petit-Frere
- Immunology Research Unit, GlaxoSmithKline Research & Development (GSK R&D), Stevenage, United Kingdom
| | - Michael N. Burden
- Medicinal Science and Technology, Biopharm Discovery, GlaxoSmithKline Research & Development (GSK R&D), Stevenage, United Kingdom
| | - Richard Priest
- Medicinal Science and Technology, Biopharm Discovery, GlaxoSmithKline Research & Development (GSK R&D), Stevenage, United Kingdom
| | - Trevor Wattam
- Medicinal Science and Technology, Biopharm Discovery, GlaxoSmithKline Research & Development (GSK R&D), Stevenage, United Kingdom
| | - Semra J. Kitchen
- Immunology Research Unit, GlaxoSmithKline Research & Development (GSK R&D), Stevenage, United Kingdom
| | - Maria Feeney
- Immunology Research Unit, GlaxoSmithKline Research & Development (GSK R&D), Stevenage, United Kingdom
| | - Susannah Davis
- Medicinal Science and Technology, Biopharm Discovery, GlaxoSmithKline Research & Development (GSK R&D), Stevenage, United Kingdom
| | - B. Paul Morgan
- Division of Infection and Immunity and Dementia Research Institute, Systems Immunity Research Institute, School of Medicine, Cardiff University, Wales, United Kingdom
| | - Eva-Maria Nichols
- Immunology Research Unit, GlaxoSmithKline Research & Development (GSK R&D), Stevenage, United Kingdom
- *Correspondence: Eva-Maria Nichols,
| |
Collapse
|
10
|
Therapies in Autoimmune Peripheral Neuropathies beyond Intravenous Immunoglobulin, Plasma Exchange and Corticosteroids: An Analytical Review. Transfus Med Rev 2022; 36:220-229. [DOI: 10.1016/j.tmrv.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/20/2022]
|
11
|
Ward ES, Gelinas D, Dreesen E, Van Santbergen J, Andersen JT, Silvestri NJ, Kiss JE, Sleep D, Rader DJ, Kastelein JJP, Louagie E, Vidarsson G, Spriet I. Clinical Significance of Serum Albumin and Implications of FcRn Inhibitor Treatment in IgG-Mediated Autoimmune Disorders. Front Immunol 2022; 13:892534. [PMID: 35757719 PMCID: PMC9231186 DOI: 10.3389/fimmu.2022.892534] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/22/2022] [Indexed: 12/26/2022] Open
Abstract
Serum albumin (SA), the most abundant soluble protein in the body, maintains plasma oncotic pressure and regulates the distribution of vascular fluid and has a range of other important functions. The goals of this review are to expand clinical knowledge regarding the functions of SA, elucidate effects of dysregulated SA concentration, and discuss the clinical relevance of hypoalbuminemia resulting from various diseases. We discuss potential repercussions of SA dysregulation on cholesterol levels, liver function, and other processes that rely on its homeostasis, as decreased SA concentration has been shown to be associated with increased risk for cardiovascular disease, hyperlipidemia, and mortality. We describe the anti-inflammatory and antioxidant properties of SA, as well as its ability to bind and transport a plethora of endogenous and exogenous molecules. SA is the primary serum protein involved in binding and transport of drugs and as such has the potential to affect, or be affected by, certain medications. Of current relevance are antibody-based inhibitors of the neonatal Fc receptor (FcRn), several of which are under clinical development to treat immunoglobulin G (IgG)-mediated autoimmune disorders; some have been shown to decrease SA concentration. FcRn acts as a homeostatic regulator of SA by rescuing it, as well as IgG, from intracellular degradation via a common cellular recycling mechanism. Greater clinical understanding of the multifunctional nature of SA and the potential clinical impact of decreased SA are needed; in particular, the potential for certain treatments to reduce SA concentration, which may affect efficacy and toxicity of medications and disease progression.
Collapse
Affiliation(s)
- E Sally Ward
- Cancer Sciences Unit, Centre for Cancer Immunology, University of Southampton, Southampton, United Kingdom
| | | | - Erwin Dreesen
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | | | - Jan Terje Andersen
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Department of Pharmacology, University of Oslo, Oslo, Norway
| | | | - Joseph E Kiss
- Vitalant Northeast Division and Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Daniel J Rader
- Departments of Genetics and Medicine, Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - John J P Kastelein
- Department of Vascular Medicine, Genetics of Cardiovascular Disease, Academic Medical Center (AMC) of the University of Amsterdam, Amsterdam, Netherlands
| | | | - Gestur Vidarsson
- Department of Experimental Immunohematology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Isabel Spriet
- Department of Clinical Pharmacology and Pharmacotherapy, KU Leuven, Leuven, Belgium.,Pharmacy Department, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Development of New Drugs for Autoimmune Hemolytic Anemia. Pharmaceutics 2022; 14:pharmaceutics14051035. [PMID: 35631621 PMCID: PMC9147507 DOI: 10.3390/pharmaceutics14051035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/27/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Autoimmune hemolytic anemia (AIHA) is a rare disorder characterized by the autoantibody-mediated destruction of red blood cells, and treatments for it still remain challenging. Traditional first-line immunosuppressive therapy, which includes corticosteroids and rituximab, is associated with adverse effects as well as treatment failures, and relapses are common. Subsequent lines of therapy are associated with higher rates of toxicity, and some patients remain refractory to currently available treatments. Novel therapies have become promising for this vulnerable population. In this review, we will discuss the mechanism of action, existing data, and ongoing clinical trials of current novel therapies for AIHA, including B-cell-directed therapy, phagocytosis inhibition, plasma cell-directed therapy, and complement inhibition.
Collapse
|
13
|
McCombe JA, Pittock SJ. Anti-complement Agents for Autoimmune Neurological Disease. Neurotherapeutics 2022; 19:711-728. [PMID: 35553024 PMCID: PMC9294087 DOI: 10.1007/s13311-022-01223-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2022] [Indexed: 01/06/2023] Open
Abstract
In recent years, there has been increasing recognition of the diversity of autoimmune neurological diseases affecting all levels of the nervous system. A growing understanding of disease pathogenesis has enabled us to better target specific elements of the immune system responsible for the cell dysfunction and cell destruction seen in these diseases. This is no better demonstrated than in the development of complement directed therapies for the treatment of complement mediated autoimmune neurological conditions. Herein, we describe the basic elements of the complement cascade, provide an overview of select autoimmune neurological diseases whose pathogenesis is mediated by complement, the effector system of autoantigen bound autoantibodies, and discuss the complement directed therapies trialed in the treatment of these diseases. Several complement-directed therapies have demonstrated benefit in the treatment of autoimmune neurological diseases; we also review the trials resulting in the approval of these therapies for the treatment of AChR Ab-positive myasthenia gravis (MG) and neuromyelitis spectrum disorder. Finally, on the heels of the recent successes described, we discuss possibilities for the future, including additional targeted therapies with greater ease of administration, improved risk profiles, and other possible uses for therapeutics targeting elements of the complement cascade.
Collapse
Affiliation(s)
- Jennifer A McCombe
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Sean J Pittock
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
14
|
Caudill JL, Gillard L. HDFN Resulting from Anti-U: Alternatives to Allogeneic Intrauterine Transfusion. Lab Med 2021; 53:e79-e82. [PMID: 34791347 DOI: 10.1093/labmed/lmab099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Hemolytic disease of the fetus and newborn (HDFN) carries significant fetal mortality risks. Although anti-D as a source of HDFN has been prevented for decades using D-specific immunoglobulin to prevent alloimmunization between fetus and mother, minor blood groups may still result in disease, with potentially disastrous consequences if left untreated. Strategies such as intrauterine transfusion, early delivery, and vigilant serologic monitoring of fetal anemia have been the standards of care for alloimmunized patients, but beyond this not much more is possible. Mothers with rare phenotypes who are alloimmunized against extremely common red blood cell antigens may find access to rare antigen-negative blood units limited. This case study presents a healthy G10P6 woman with known anti-U presenting for treatment via intrauterine transfusion in the second trimester and follows the patient through successful delivery. Difficulties in obtaining rare blood for the patient because of concomitant delivery events involving 2 patients with anti-U at the facility opened discussions about the difficulties of and alternatives to intrauterine transfusion where rare blood phenotypes are involved.
Collapse
Affiliation(s)
- Jamie L Caudill
- Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, US
| | | |
Collapse
|