1
|
Dubashynskaya NV, Bokatyi AN, Trulioff AS, Rubinstein AA, Novikova VP, Petrova VA, Vlasova EN, Malkov AV, Kudryavtsev IV, Skorik YA. Delivery system for dexamethasone phosphate based on a Zn 2+-crosslinked polyelectrolyte complex of diethylaminoethyl chitosan and chondroitin sulfate. Carbohydr Polym 2025; 348:122899. [PMID: 39567135 DOI: 10.1016/j.carbpol.2024.122899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024]
Abstract
Hybrid nano- and microparticles based on metal ion crosslinked biopolymers are promising carriers for the development of drug delivery systems with improved biopharmaceutical properties. In this work, dexamethasone phosphate-containing particles based on chondroitin sulfate and chitosan or diethylaminoethyl chitosan additionally crosslinked with Zn2+ were prepared. Depending on the polycation/polyanion ratio in the system, anionic and cationic polyelectrolyte complexes (PECs) were obtained. The anionic Zn2+-containing and Zn2+-free PECs had sizes of 154 and 180 nm and ζ-potentials of -22.4 and -27.5 mV, respectively. The cationic Zn2+-containing and Zn2+-free PECs had sizes of 242 and 362 nm and ζ-potentials of 22.4 and 24.7 mV, respectively. The presence of Zn2+ in the system significantly prolonged the release of dexamethasone phosphate from the hybrid polyelectrolyte particle. The resulting release profiles of dexamethasone phosphate were in agreement with the Peppas-Sahlin kinetic model, which considers the combined effects of Fickian diffusion and polymer chain relaxation on the drug release rate. It was shown that the prolongation of drug release was mainly due to swelling and relaxation of the Zn2+ crosslinked polymers. The developed particles exhibited good mucoadhesive properties and pronounced anti-inflammatory activity, making them attractive candidates for biomedical applications.
Collapse
Affiliation(s)
- Natallia V Dubashynskaya
- Institute of Macromolecular Compounds, Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov, National Research Centre «Kurchatov Institute», Bolshoi VO 31, St. Petersburg 199004, Russia
| | - Anton N Bokatyi
- Institute of Macromolecular Compounds, Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov, National Research Centre «Kurchatov Institute», Bolshoi VO 31, St. Petersburg 199004, Russia
| | - Andrey S Trulioff
- Institute of Experimental Medicine, Acad. Pavlov St. 12, Saint Petersburg 197376, Russia
| | - Artem A Rubinstein
- Institute of Experimental Medicine, Acad. Pavlov St. 12, Saint Petersburg 197376, Russia
| | - Veronika P Novikova
- Institute of Macromolecular Compounds, Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov, National Research Centre «Kurchatov Institute», Bolshoi VO 31, St. Petersburg 199004, Russia
| | - Valentina A Petrova
- Institute of Macromolecular Compounds, Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov, National Research Centre «Kurchatov Institute», Bolshoi VO 31, St. Petersburg 199004, Russia
| | - Elena N Vlasova
- Institute of Macromolecular Compounds, Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov, National Research Centre «Kurchatov Institute», Bolshoi VO 31, St. Petersburg 199004, Russia
| | - Alexey V Malkov
- Northern (Arctic) Federal University, Northern Dvina Emb. 17, 163000 Arkhangelsk, Russia
| | - Igor V Kudryavtsev
- Institute of Experimental Medicine, Acad. Pavlov St. 12, Saint Petersburg 197376, Russia
| | - Yury A Skorik
- Institute of Macromolecular Compounds, Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov, National Research Centre «Kurchatov Institute», Bolshoi VO 31, St. Petersburg 199004, Russia.
| |
Collapse
|
2
|
Stoikov II, Antipin IS, Burilov VA, Kurbangalieva AR, Rostovskii NV, Pankova AS, Balova IA, Remizov YO, Pevzner LM, Petrov ML, Vasilyev AV, Averin AD, Beletskaya IP, Nenajdenko VG, Beloglazkina EK, Gromov SP, Karlov SS, Magdesieva TV, Prishchenko AA, Popkov SV, Terent’ev AO, Tsaplin GV, Kustova TP, Kochetova LB, Magdalinova NA, Krasnokutskaya EA, Nyuchev AV, Kuznetsova YL, Fedorov AY, Egorova AY, Grinev VS, Sorokin VV, Ovchinnikov KL, Kofanov ER, Kolobov AV, Rusinov VL, Zyryanov GV, Nosov EV, Bakulev VA, Belskaya NP, Berezkina TV, Obydennov DL, Sosnovskikh VY, Bakhtin SG, Baranova OV, Doroshkevich VS, Raskildina GZ, Sultanova RM, Zlotskii SS, Dyachenko VD, Dyachenko IV, Fisyuk AS, Konshin VV, Dotsenko VV, Ivleva EA, Reznikov AN, Klimochkin YN, Aksenov DA, Aksenov NA, Aksenov AV, Burmistrov VV, Butov GM, Novakov IA, Shikhaliev KS, Stolpovskaya NV, Medvedev SM, Kandalintseva NV, Prosenko OI, Menshchikova EB, Golovanov AA, Khashirova SY. Organic Chemistry in Russian Universities. Achievements of Recent Years. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2024; 60:1361-1584. [DOI: 10.1134/s1070428024080013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/28/2024] [Accepted: 03/31/2024] [Indexed: 01/06/2025]
|
3
|
Li H, Li Z, Lin C, Jiang J, Wang L. Precise recognition of benzonitrile derivatives with supramolecular macrocycle of phosphorylated cavitand by co-crystallization method. Nat Commun 2024; 15:5315. [PMID: 38909020 PMCID: PMC11193764 DOI: 10.1038/s41467-024-49540-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/07/2024] [Indexed: 06/24/2024] Open
Abstract
The importance of molecular docking in drug discovery lies in the precise recognition between potential drug compounds and their target receptors, which is generally based on the computational method. However, it will become quite interesting if the rigid cavity structure of supramolecular macrocycles can precisely recognize a series of guests with specific fragments by mimicking molecular docking through co-crystallization experiments. Herein, we report a phenylphosphine oxide-bridged aromatic supramolecular macrocycle, F[3]A1-[P(O)Ph]3, which precisely recognizes benzonitrile derivatives through non-covalent interactions to form key-lock complexes by co-crystallization method. A total of 15 various benzonitrile derivatives as guest molecules are specifically bound by F[3]A1-[P(O)Ph]3 in co-crystal structures, respectively. Notably, among them, crisaborole (anti-dermatitis) and alectinib (anti-cancer) with the benzonitrile fragment, which are two commercial drug molecules approved by the U.S. Food and Drug Administration (FDA), could also form a key-lock complex with F[3]A1-[P(O)Ph]3 in the crystal state, respectively.
Collapse
Affiliation(s)
- Heng Li
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Zhijin Li
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Chen Lin
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.
| | - Juli Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.
| | - Leyong Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| |
Collapse
|
4
|
Dubashynskaya NV, Bokatyi AN, Sall TS, Egorova TS, Demyanova EV, Dubrovskii YA, Murashko EA, Anufrikov YA, Shasherina AY, Vlasova EN, Skorik YA. Hyaluronan/B12-chitosan polyelectrolyte complex for oral colistin administration. Int J Biol Macromol 2024; 263:130177. [PMID: 38360229 DOI: 10.1016/j.ijbiomac.2024.130177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/25/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Polyelectrolyte complexes (PECs) based on polysaccharides, including hyaluronic acid (HA) and chitosan (CS), are promising delivery systems for antimicrobial agents, including oral administration of the peptide antibiotic colistin (CT). Modification of CS with different targeting ligands to improve intestinal permeability is a suitable way to improve the oral bioavailability of polyelectrolyte particles. This study describes the procedure for obtaining CT-containing PECs based on HA and CS modified with cyanocobalamin (vitamin B12). In this case, vitamin B12 is used as a targeting ligand because it is absorbed in the ileum via specific transporter proteins. The resulting PECs had a hydrodynamic size of about 284 nm and a positive ζ-potential of about 26 mV; the encapsulation efficiency was 88.2 % and the CT content was 42.2 μg/mg. The developed systems provided a two-phase drug release: about 50 % of the CT was released in 0.5-1 h, and about 60 % of the antibiotic was cumulatively released in 5 h. The antimicrobial activity of encapsulated CT was maintained at the same level as the pure drug for at least 24 h (minimum inhibitory concentration against Pseudomonas aeruginosa was 2 μg/mL for both). In addition, the apparent permeability coefficient of CT in the PEC formulation was 2.4 × 10-6 cm/s. Thus, the incorporation of CT into HA- and vitamin B12-modified CS-based PECs can be considered as a simple and convenient method to improve the oral delivery of CT.
Collapse
Affiliation(s)
- Natallia V Dubashynskaya
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russia
| | - Anton N Bokatyi
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russia
| | - Tatiana S Sall
- Institute of Experimental Medicine, Acad. Pavlov St. 12, Saint Petersburg 197376, Russia
| | - Tatiana S Egorova
- State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, St Petersburg 197110, Russia
| | - Elena V Demyanova
- State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, St Petersburg 197110, Russia
| | - Yaroslav A Dubrovskii
- Almazov National Medical Research Centre, Akkuratova 2, St. Petersburg 197341, Russian Federation
| | - Ekaterina A Murashko
- Almazov National Medical Research Centre, Akkuratova 2, St. Petersburg 197341, Russian Federation
| | - Yuri A Anufrikov
- Institute of Chemistry, St. Petersburg State University, Universitetskii 26, Peterhof, 198504 St. Petersburg, Russia
| | - Anna Y Shasherina
- Institute of Chemistry, St. Petersburg State University, Universitetskii 26, Peterhof, 198504 St. Petersburg, Russia
| | - Elena N Vlasova
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russia
| | - Yury A Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russia.
| |
Collapse
|
5
|
Dubashynskaya NV, Bokatyi AN, Trulioff AS, Rubinstein AA, Kudryavtsev IV, Skorik YA. Development and Bioactivity of Zinc Sulfate Cross-Linked Polysaccharide Delivery System of Dexamethasone Phosphate. Pharmaceutics 2023; 15:2396. [PMID: 37896156 PMCID: PMC10610283 DOI: 10.3390/pharmaceutics15102396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Improving the biopharmaceutical properties of glucocorticoids (increasing local bioavailability and reducing systemic toxicity) is an important challenge. The aim of this study was to develop a dexamethasone phosphate (DexP) delivery system based on hyaluronic acid (HA) and a water-soluble cationic chitosan derivative, diethylaminoethyl chitosan (DEAECS). The DexP delivery system was a polyelectrolyte complex (PEC) resulting from interpolymer interactions between the HA polyanion and the DEAECS polycation with simultaneous incorporation of zinc ions as a cross-linking agent into the complex. The developed PECs had a hydrodynamic diameter of 244 nm and a ζ-potential of +24.4 mV; the encapsulation efficiency and DexP content were 75.6% and 45.4 μg/mg, respectively. The designed DexP delivery systems were characterized by both excellent mucoadhesion and prolonged drug release (approximately 70% of DexP was released within 10 h). In vitro experiments showed that encapsulation of DexP in polysaccharide nanocarriers did not reduce its anti-inflammatory activity compared to free DexP.
Collapse
Affiliation(s)
- Natallia V. Dubashynskaya
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, 199004 Saint Petersburg, Russia; (A.N.B.); (Y.A.S.)
| | - Anton N. Bokatyi
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, 199004 Saint Petersburg, Russia; (A.N.B.); (Y.A.S.)
| | - Andrey S. Trulioff
- Institute of Experimental Medicine, Acad. Pavlov St. 12, 197376 Saint Petersburg, Russia; (A.S.T.); (A.A.R.); (I.V.K.)
| | - Artem A. Rubinstein
- Institute of Experimental Medicine, Acad. Pavlov St. 12, 197376 Saint Petersburg, Russia; (A.S.T.); (A.A.R.); (I.V.K.)
| | - Igor V. Kudryavtsev
- Institute of Experimental Medicine, Acad. Pavlov St. 12, 197376 Saint Petersburg, Russia; (A.S.T.); (A.A.R.); (I.V.K.)
| | - Yury A. Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, 199004 Saint Petersburg, Russia; (A.N.B.); (Y.A.S.)
| |
Collapse
|
6
|
Sultanaev V, Yakimova L, Nazarova A, Mostovaya O, Sedov I, Davletshin D, Gilyazova E, Bulatov E, Li ZT, Zhang DW, Stoikov I. Decasubstituted Pillar[5]arene Derivatives Containing L-Tryptophan and L-Phenylalanine Residues: Non-Covalent Binding and Release of Fluorescein from Nanoparticles. Int J Mol Sci 2023; 24:ijms24097700. [PMID: 37175406 PMCID: PMC10178471 DOI: 10.3390/ijms24097700] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Sensitive systems with controlled release of drugs or diagnostic markers are attractive for solving the problems of biomedicine and antitumor therapy. In this study, new decasubstituted pillar[5]arene derivatives containing L-Tryptophan and L-Phenylalanine residues have been synthesized as pH-responsive drug nanocarriers. Fluorescein dye (Fluo) was loaded into the pillar[5]arene associates and used as a spectroscopic probe to evaluate the release in buffered solutions with pH 4.5, 7.4, and 9.2. The nature of the substituents in the pillar[5]arene structure has a huge influence on the rate of delivering. When the dye was loaded into the associates based on pillar[5]arene derivatives containing L-Tryptophan, the Fluo release occurs in the neutral (pH = 7.4) and alkaline (pH = 9.2) buffered solutions. When the dye was loaded into the associates based on pillar[5]arene with L-Phenylalanine fragments, the absence of release was observed in every pH evaluated. This happens as the result of different packing of the dye in the structure of the associate. This fact was confirmed by different fluorescence mechanisms (aggregation-caused quenching and aggregation-induced emission) and association constants. It was shown that the macrocycle with L-Phenylalanine fragments binds the dye more efficiently (lgKa = 3.92). The experimental results indicate that the pillar[5]arene derivatives with amino acids fragments have a high potential to be used as a pH-responsive drug delivery devices, especially for promoting the intracellular delivering, due to its nanometric size.
Collapse
Affiliation(s)
- Vildan Sultanaev
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Luidmila Yakimova
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Anastasia Nazarova
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Olga Mostovaya
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Igor Sedov
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Damir Davletshin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Elvina Gilyazova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Zhang-Ting Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Dan-Wei Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Ivan Stoikov
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
- Federal State Budgetary Scientific Institution «Federal Center for Toxicological, Radiation, and Biological Safety», Nauchny Gorodok, 2, 420075 Kazan, Russia
| |
Collapse
|
7
|
Filimonova D, Nazarova A, Yakimova L, Stoikov I. Solid Lipid Nanoparticles Based on Monosubstituted Pillar[5]arenes: Chemoselective Synthesis of Macrocycles and Their Supramolecular Self-Assembly. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4266. [PMID: 36500889 PMCID: PMC9738619 DOI: 10.3390/nano12234266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Novel monosubstituted pillar[5]arenes with one or two terminal carboxyl groups were synthesized by the reaction of succinic anhydride with pillar[5]arene derivative containing a diethylenetriamine function. The ability for non-covalent self-assembly in chloroform, dimethyl sulfoxide, as well as in tetrahydrofuran-water system was studied. The ability of the synthesized macrocycles to form different types of associates depending on the substituent nature was established. The formation of stable particles with average diameter of 192 nm in chloroform and of 439 nm in DMSO was shown for pillar[5]arene containing two carboxyl fragments. Solid lipid nanoparticles (SLN) based on monosubstituted pillar[5]arenes were synthesized by nanoprecipitation in THF-water system. Minor changes in the structure of the macrocycle substituent can dramatically influence the stability and shape of SLN (spherical and rod-like structures) accordingly to DLS and TEM. The presence of two carboxyl groups in the macrocycle substituent leads to the formation of stable spherical SLN with an average hydrodynamic diameter of 364-454 nm. Rod-like structures are formed by pillar[5]arene containing one carboxyl fragment, which diameter is about of 50-80 nm and length of 700-1000 nm. The synthesized stable SLN open up great prospects for their use as drug storage systems.
Collapse
Affiliation(s)
- Darya Filimonova
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Anastasia Nazarova
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Luidmila Yakimova
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Ivan Stoikov
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
- Federal State Budgetary Scientific Institution «Federal Center for Toxicological, Radiation, and Biological Safety», Nauchny Gorodok-2, 420075 Kazan, Russia
| |
Collapse
|
8
|
Gradzielski M. Polyelectrolyte-Surfactant Complexes As a Formulation Tool for Drug Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13330-13343. [PMID: 36278880 DOI: 10.1021/acs.langmuir.2c02166] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Aqueous polyelectrolyte-surfactant complexes (PESCs) are very rich with respect to their properties and the structures formed by them. By design they normally contain hydrophobic micellar surfactant aggregates complexed by long polyelectrolyte chains, thereby combining the formation of small hydrophobic domains given by the surfactant with large-scale structuring due to the presence of the polyelectrolyte chain. In addition, they contain highly polar regions of surfactant head groups in contact with polyelectrolyte, forming a shell around the micellar aggregates, which often also possesses a certain hydrophobic character. Accordingly, the ability for solubilization of water-insoluble compounds of different sorts is particularly versatile in PESCs. Their solubilization sites with very different polarities and hydrophobic characters make them very flexible in adapting to the requirements of a given drug molecule. This renders them attractive for potential applications in drug delivery. In addition, modification of the rheological properties via self-assembly and network formation can be very important in PESC applications. In the following, we discuss the structures of PESCs and their properties, with a focus on the solubilization properties. Subsequently, examples are described where PESCs have been employed in the context of drug solubilization and delivery. These comprise examples with individual aggregates, cross-linked hydrogels, and ones taking advantage of the high solubilization capacity of microemulsions.
Collapse
Affiliation(s)
- Michael Gradzielski
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124 Sekr. TC 7, D-10623Berlin, Germany
| |
Collapse
|
9
|
Nazarova A, Yakimova L, Mostovaya O, Kulikova T, Mikhailova O, Evtugyn G, Ganeeva I, Bulatov E, Stoikov I. Encapsulation of the quercetin with interpolyelectrolyte complex based on pillar[5]arenes. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Kumar M, Khushi K, Bhardwaj A, Deb DK, Singh N, Elahi D, Sharma S, Bajpai G, Srivastava A. In-vitro Study for Ibuprofen Encapsulation, Controlled Release and Cytotoxicity Improvement using Excipient-Drugs Mixed Micelle. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Editorial of Special Issue "The Self-Assembly and Design of Polyfunctional Nanosystems 2.0". Int J Mol Sci 2022; 23:ijms23084437. [PMID: 35457255 PMCID: PMC9028938 DOI: 10.3390/ijms23084437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 01/27/2023] Open
Abstract
The intention of this Special Issue, entitled "The Self-Assembly and Design of Polyfunctional Nanosystems 2 [...].
Collapse
|
12
|
Nazarova A, Yakimova L, Filimonova D, Stoikov I. Surfactant Effect on the Physicochemical Characteristics of Solid Lipid Nanoparticles Based on Pillar[5]arenes. Int J Mol Sci 2022; 23:779. [PMID: 35054962 PMCID: PMC8775580 DOI: 10.3390/ijms23020779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 12/05/2022] Open
Abstract
Novel monosubstituted pillar[5]arenes containing both amide and carboxyl functional groups were synthesized. Solid lipid nanoparticles based on the synthesized macrocycles were obtained. Formation of spherical particles with an average hydrodynamic diameter of 250 nm was shown for pillar[5]arenes containing N-(amidoalkyl)amide fragments regardless of their concentration. It was established that pillar[5]arene containing N-alkylamide fragments can form spherical particles with two different sizes (88 and 223 nm) depending on its concentration. Mixed solid lipid nanoparticles based on monosubstituted pillar[5]arenes and surfactant (dodecyltrimethylammonium chloride) were obtained for the first time. The surfactant made it possible to level the effect of the macrocycle concentration. It was found that various types of aggregates are formed depending on the macrocycle/surfactant ratio. Changing the macrocycle/surfactant ratio allows to control the charge of the particles surface. This controlled property will lead to the creation of molecular-scale porous materials that selectively interact with various types of substrates, including biopolymers.
Collapse
Affiliation(s)
- Anastasia Nazarova
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia;
| | - Luidmila Yakimova
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia;
| | | | - Ivan Stoikov
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia;
| |
Collapse
|
13
|
Zhu XY, Yang XN, Wu H, Tao Z, Xiao X. Construction of supramolecular fluorescent probe by a water-soluble pillar[5]arene and its recognition of carbonate ion. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xin Yi Zhu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Xi Nan Yang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Heng Wu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| |
Collapse
|
14
|
Dubashynskaya NV, Raik SV, Dubrovskii YA, Demyanova EV, Shcherbakova ES, Poshina DN, Shasherina AY, Anufrikov YA, Skorik YA. Hyaluronan/Diethylaminoethyl Chitosan Polyelectrolyte Complexes as Carriers for Improved Colistin Delivery. Int J Mol Sci 2021; 22:8381. [PMID: 34445088 PMCID: PMC8395075 DOI: 10.3390/ijms22168381] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/14/2022] Open
Abstract
Improving the therapeutic characteristics of antibiotics is an effective strategy for controlling the growth of multidrug-resistant Gram-negative microorganisms. The purpose of this study was to develop a colistin (CT) delivery system based on hyaluronic acid (HA) and the water-soluble cationic chitosan derivative, diethylaminoethyl chitosan (DEAECS). The CT delivery system was a polyelectrolyte complex (PEC) obtained by interpolymeric interactions between the HA polyanion and the DEAECS polycation, with simultaneous inclusion of positively charged CT molecules into the resulting complex. The developed PEC had a hydrodynamic diameter of 210-250 nm and a negative surface charge (ζ-potential = -19 mV); the encapsulation and loading efficiencies were 100 and 16.7%, respectively. The developed CT delivery systems were characterized by modified release (30-40% and 85-90% of CT released in 15 and 60 min, respectively) compared to pure CT (100% CT released in 15 min). In vitro experiments showed that the encapsulation of CT in polysaccharide carriers did not reduce its antimicrobial activity, as the minimum inhibitory concentrations against Pseudomonas aeruginosa of both encapsulated CT and pure CT were 1 μg/mL.
Collapse
Affiliation(s)
- Natallia V. Dubashynskaya
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia; (N.V.D.); (S.V.R.); (D.N.P.)
| | - Sergei V. Raik
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia; (N.V.D.); (S.V.R.); (D.N.P.)
| | - Yaroslav A. Dubrovskii
- Almazov National Medical Research Centre, Akkuratova 2, 197341 St. Petersburg, Russia;
- Institute of Chemistry, St. Petersburg State University, Universitetskii 26, Peterhof, 198504 St. Petersburg, Russia; (A.Y.S.); (Y.A.A.)
- Research and Training Center of Molecular and Cellular Technologies, St. Petersburg State Chemical Pharmaceutical University, Prof. Popova 14, 197376 St. Petersburg, Russia
| | - Elena V. Demyanova
- State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, 197110 St. Petersburg, Russia; (E.V.D.); (E.S.S.)
| | - Elena S. Shcherbakova
- State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, 197110 St. Petersburg, Russia; (E.V.D.); (E.S.S.)
| | - Daria N. Poshina
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia; (N.V.D.); (S.V.R.); (D.N.P.)
| | - Anna Y. Shasherina
- Institute of Chemistry, St. Petersburg State University, Universitetskii 26, Peterhof, 198504 St. Petersburg, Russia; (A.Y.S.); (Y.A.A.)
| | - Yuri A. Anufrikov
- Institute of Chemistry, St. Petersburg State University, Universitetskii 26, Peterhof, 198504 St. Petersburg, Russia; (A.Y.S.); (Y.A.A.)
| | - Yury A. Skorik
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia; (N.V.D.); (S.V.R.); (D.N.P.)
| |
Collapse
|