1
|
Yoshida R, Motoyama K, Ito T, Hemmi H. Effects of producing high levels of hyperthermophile-specific C 25,C 25-archaeal membrane lipids in Escherichia coli. Biochem Biophys Res Commun 2024; 729:150349. [PMID: 38972140 DOI: 10.1016/j.bbrc.2024.150349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
A hyperthermophilic archaeon, Aeropyrum pernix, synthesizes C25,C25-archaeal membrane lipids, or extended archaeal membrane lipids, which contain two C25 isoprenoid chains that are linked to glycerol-1-phosphate via ether bonds and are longer than the usual C20,C20-archaeal membrane lipids. The C25,C25-archaeal membrane lipids are believed to allow the archaeon to survive under harsh conditions, because they are able to form lipid membranes that are impermeable at temperatures approaching the boiling point. The effect that C25,C25-archaeal membrane lipids exert on living cells, however, remains unproven along with an explanation for why the hyperthermophilic archaeon synthesizes these specific lipids instead of the more common C20,C20-archaeal lipids or double-headed tetraether lipids. To shed light on the effects that these hyperthermophile-specific membrane lipids exert on living cells, we have constructed an E. coli strain that produces C25,C25-archaeal membrane lipids. However, a resultant low level of productivity would not allow us to assess the effects of their production in E. coli cells. Herein, we report an enhancement of the productivity of C25,C25-archaeal membrane lipids in engineered E. coli strains via the introduction of metabolic pathways such as an artificial isoprenol utilization pathway where the precursors of isoprenoids are synthesized via a two-step phosphorylation of prenol and isoprenol supplemented to a growth medium. In the strain with the highest titer, a major component of C25,C25-archaeal membrane lipids reached ∼11 % of total lipids of E. coli. It is noteworthy that the high production of the extended archaeal lipids did not significantly affect the growth of the bacterial cells. The permeability of the cell membrane of the strain became slightly lower in the presence of the exogenous membrane lipids with longer hydrocarbon chains, which demonstrated the possibility to enhance bacterial cell membranes by the hyperthermophile-specific lipids, along with the surprising robustness of the E. coli cell membrane.
Collapse
Affiliation(s)
- Ryo Yoshida
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 460-8601, Japan
| | - Kento Motoyama
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 460-8601, Japan
| | - Tomokazu Ito
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 460-8601, Japan
| | - Hisashi Hemmi
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 460-8601, Japan.
| |
Collapse
|
2
|
Forte J, Maurizi L, Fabiano MG, Conte AL, Conte MP, Ammendolia MG, D'Intino E, Catizone A, Gesualdi L, Rinaldi F, Carafa M, Marianecci C, Longhi C. Gentamicin loaded niosomes against intracellular uropathogenic Escherichia coli strains. Sci Rep 2024; 14:10196. [PMID: 38702355 PMCID: PMC11068731 DOI: 10.1038/s41598-024-59144-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/08/2024] [Indexed: 05/06/2024] Open
Abstract
Urinary tract infections (UTIs) are the most common bacterial infections and uropathogenic Escherichia coli (UPEC) is the main etiological agent of UTIs. UPEC can persist in bladder cells protected by immunological defenses and antibiotics and intracellular behavior leads to difficulty in eradicating the infection. The aim of this paper is to design, prepare and characterize surfactant-based nanocarriers (niosomes) able to entrap antimicrobial drug and potentially to delivery and release antibiotics into UPEC-infected cells. In order to validate the proposed drug delivery system, gentamicin, was chosen as "active model drug" due to its poor cellular penetration. The niosomes physical-chemical characterization was performed combining different techniques: Dynamic Light Scattering Fluorescence Spectroscopy, Transmission Electron Microscopy. Empty and loaded niosomes were characterized in terms of size, ζ-potential, bilayer features and stability. Moreover, Gentamicin entrapped amount was evaluated, and the release study was also carried out. In addition, the effect of empty and loaded niosomes was studied on the invasion ability of UPEC strains in T24 bladder cell monolayers by Gentamicin Protection Assay and Confocal Microscopy. The observed decrease in UPEC invasion rate leads us to hypothesize a release of antibiotic from niosomes inside the cells. The optimization of the proposed drug delivery system could represent a promising strategy to significatively enhance the internalization of antimicrobial drugs.
Collapse
Affiliation(s)
- Jacopo Forte
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | - Linda Maurizi
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | - Maria Gioia Fabiano
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | - Antonietta Lucia Conte
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | - Maria Pia Conte
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | - Maria Grazia Ammendolia
- Centro Nazionale Tecnologie Innovative in Sanità Pubblica, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy.
| | - Eleonora D'Intino
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | - Angela Catizone
- Dipartimento Scienze Anatomiche, Istologiche, Medico Legali e Dell'Apparato Locomotore, Sapienza Università di Roma, Via Scarpa, 16, 00161, Rome, Italy
| | - Luisa Gesualdi
- Dipartimento Scienze Anatomiche, Istologiche, Medico Legali e Dell'Apparato Locomotore, Sapienza Università di Roma, Via Scarpa, 16, 00161, Rome, Italy
| | - Federica Rinaldi
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro, 5, 00185, Rome, Italy.
| | - Maria Carafa
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | - Carlotta Marianecci
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | - Catia Longhi
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| |
Collapse
|
3
|
Upton C, Healey J, Rothnie AJ, Goddard AD. Insights into membrane interactions and their therapeutic potential. Arch Biochem Biophys 2024; 755:109939. [PMID: 38387829 DOI: 10.1016/j.abb.2024.109939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Recent research into membrane interactions has uncovered a diverse range of therapeutic opportunities through the bioengineering of human and non-human macromolecules. Although the majority of this research is focussed on fundamental developments, emerging studies are showcasing promising new technologies to combat conditions such as cancer, Alzheimer's and inflammatory and immune-based disease, utilising the alteration of bacteriophage, adenovirus, bacterial toxins, type 6 secretion systems, annexins, mitochondrial antiviral signalling proteins and bacterial nano-syringes. To advance the field further, each of these opportunities need to be better understood, and the therapeutic models need to be further optimised. Here, we summarise the knowledge and insights into several membrane interactions and detail their current and potential uses therapeutically.
Collapse
Affiliation(s)
- Calum Upton
- School of Biosciences, Health & Life Science, Aston University, Birmingham, B4 7ET, UK
| | - Joseph Healey
- Nanosyrinx, The Venture Centre, University of Warwick Science Park, Coventry, CV4 7EZ, UK
| | - Alice J Rothnie
- School of Biosciences, Health & Life Science, Aston University, Birmingham, B4 7ET, UK
| | - Alan D Goddard
- School of Biosciences, Health & Life Science, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
4
|
McCarthy NLC, Chan CL, Mignini Urdaneta GECM, Liao Y, Law RV, Ces O, Seddon JM, Brooks NJ. The effect of hydrostatic pressure on lipid membrane lateral structure. Methods Enzymol 2024; 700:49-76. [PMID: 38971612 DOI: 10.1016/bs.mie.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
High pressure is both an environmental challenge to which deep sea biology has to adapt, and a highly sensitive thermodynamic tool that can be used to trigger structural changes in biological molecules and assemblies. Lipid membranes are amongst the most pressure sensitive biological assemblies and pressure can have a large influence on their structure and properties. In this chapter, we will explore the use of high pressure small angle X-ray diffraction and high pressure microscopy to measure and quantify changes in the lateral structure of lipid membranes under both equilibrium high pressure conditions and in response to pressure jumps.
Collapse
Affiliation(s)
| | - Chi L Chan
- Department of Chemistry, Imperial College London, London, United Kingdom
| | | | - Yifei Liao
- Department of Chemistry, Imperial College London, London, United Kingdom
| | - Robert V Law
- Department of Chemistry, Imperial College London, London, United Kingdom
| | - Oscar Ces
- Department of Chemistry, Imperial College London, London, United Kingdom
| | - John M Seddon
- Department of Chemistry, Imperial College London, London, United Kingdom
| | - Nicholas J Brooks
- Department of Chemistry, Imperial College London, London, United Kingdom.
| |
Collapse
|
5
|
Feng S, Kong L, Gee S, Im W. Molecular Condensate in a Membrane: A Tugging Game between Hydrophobicity and Polarity with Its Biological Significance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5955-5962. [PMID: 35503859 DOI: 10.1021/acs.langmuir.2c00876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Lipid self-organization and lipid-water interfaces have been an increasingly important topic positioned at the crossroads of physical chemistry and biology. Some neutral lipids can partition into the biomembrane and play an important biological role. In this study, we have used all-atom molecular dynamics simulations to dissect the partition, aggregation, flip-flop, and modulation of neutral lipids including (i) menaquinone/menaquinol, (ii) ubiquinone/ubiquinol, and (iii) triacylglycerol. The partitioning of these molecules is driven by the balancing force between headgroup hydrophilicity and acyl chain hydrophobicity as well as the lipid shapes. We then discuss the emerging questions in this area, share our own perspectives, and mention the development of the CHARMM-GUI membrane modeling platform, which enables further computational investigations into those questions.
Collapse
|
6
|
Levitan I. Evaluating membrane structure by Laurdan imaging: Disruption of lipid packing by oxidized lipids. CURRENT TOPICS IN MEMBRANES 2021; 88:235-256. [PMID: 34862028 DOI: 10.1016/bs.ctm.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Impact of different lipids on membrane structure/lipid order is critical for multiple biological processes. Laurdan microscopy provides a unique tool to assess this property in heterogeneous biological membranes. This review describes the general principles of the approach and its application in model membranes and cells. It also provides an in-depth discussion of the insights obtained using Laurdan microscopy to evaluate the differential effects of cholesterol, oxysterols and oxidized phospholipids on lipid packing of ordered and disordered domains in vascular endothelial cells.
Collapse
Affiliation(s)
- Irena Levitan
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|