Lamas B, Martins Breyner N, Malaisé Y, Wulczynski M, Galipeau HJ, Gaultier E, Cartier C, Verdu EF, Houdeau E. Evaluating the Effects of Chronic Oral Exposure to the Food Additive Silicon Dioxide on Oral Tolerance Induction and Food Sensitivities in Mice.
ENVIRONMENTAL HEALTH PERSPECTIVES 2024;
132:27007. [PMID:
38380914 PMCID:
PMC10880545 DOI:
10.1289/ehp12758]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND
The increasing prevalence of food sensitivities has been attributed to changes in gut microenvironment; however, ubiquitous environmental triggers such as inorganic nanoparticles (NPs) used as food additives have not been thoroughly investigated.
OBJECTIVES
We explored the impact of the NP-structured food-grade silicon dioxide (f g - SiO 2 ) on intestinal immune response involved in oral tolerance (OT) induction and evaluated the consequences of oral chronic exposure to this food-additive using a mouse model of OT to ovalbumin (OVA) and on gluten immunopathology in mice expressing the celiac disease risk gene, HLA-DQ8.
METHODS
Viability, proliferation, and cytokine production of mesenteric lymph node (MLN) cells were evaluated after exposure to f g - SiO 2 . C57BL/6J mice and a mouse model of OT to OVA were orally exposed to f g - SiO 2 or vehicle for 60 d. Fecal lipocalin-2 (Lcn-2), anti-OVA IgG, cytokine production, and immune cell populations were analyzed. Nonobese diabetic (NOD) mice expressing HLA-DQ8 (NOD/DQ8), exposed to f g - SiO 2 or vehicle, were immunized with gluten and immunopathology was investigated.
RESULTS
MLN cells exposed to f g - SiO 2 presented less proliferative T cells and lower secretion of interleukin 10 (IL-10) and transforming growth factor beta (TGF- β ) by T regulatory and CD 45 + CD 11 b + CD 103 + cells compared to control, two factors mediating OT. Mice given f g - SiO 2 exhibited intestinal Lcn-2 level and interferon gamma (IFN- γ ) secretion, showing inflammation and less production of IL-10 and TGF- β . These effects were also observed in OVA-tolerized mice exposed to f g - SiO 2 , in addition to a breakdown of OT and a lower intestinal frequency of T cells. In NOD/DQ8 mice immunized with gluten, the villus-to-crypt ratio was decreased while the CD 3 + intraepithelial lymphocyte counts and the Th1 inflammatory response were aggravated after f g - SiO 2 treatment.
DISCUSSION
Our results suggest that chronic oral exposure to f g - SiO 2 blocked oral tolerance induction to OVA, and worsened gluten-induced immunopathology in NOD/DQ8 mice. The results should prompt investigation on the link between SiO 2 exposure and food sensitivities in humans. https://doi.org/10.1289/EHP12758.
Collapse